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Abstract

Basing object assignment on recipients’ actions can improve allocations but
also distort action choices. The degree to which a planner should utilize such
information to make allocation decisions is addressed in previous work on “de-
centralized” settings, i.e. where individual recipients strategically choose their
own actions. We consider less competitive situations (e.g. organ allocation)
where strategic agents (transplant centers) choose actions (medical treatments)
on behalf of multiple potential recipients (patients). When there are many such
agents, we show that equilibrium behavior resembles that of the decentralized
setting and that a reduction in competition reduces the threat of distortions,
improving welfare. With sufficiently few agents, however, a second form of
equilibrium arises where agents inefficiently “invert” action choices for multiple
recipient types, diverting resources towards high-value recipients. Computa-
tional analysis suggests that such equilibria are welfare-optimal only in some
low-stakes allocation problems.

Keywords: strategic classification, mechanism design, imperfect competi-
tion.
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1 Introduction

Resources are sometimes allocated to recipients based on their actions. As a running
example, patients awaiting organ transplants are prioritized based on the interim
medical treatment they (or their care providers) select. Heart transplant patients
obtain higher status in wait lists by receiving certain forms of advanced life support.
Liver transplant patients historically received higher priority when placed in inten-
sive care units (ICU). Examples beyond organ transplantation include school choice
settings where residential location affects priorities (Park and Hahm, 2023), or the
allocation of fixed budgets, awards, or grants based on recipients’ costly actions.1

The degree to which actions should be used as a basis for resource allocation de-
pends on a tradeoff between the possible improvement in allocation decisions versus
the welfare cost of distorting incentives in action choices. These distortions can be
non-trivial: an October 2018 policy change created a strict priority of heart patients
treated with intra-aortic balloon pumps (IABP) over patients treated with high-dose
inotropes (HDI); shortly afterwards IABP usage roughly tripled (Ran et al., 2021).2

These distortions impact welfare not only in that action choices are suboptimal (e.g.
overly aggressive treatments), but because these choices conflate the planner’s inten-
tion to favor a different set of agents. While individual recipients can partly internalize
the former effect, the latter “congestion effect” spills over to other recipients.

While various factors determine the magnitude of this congestion effect, there is
one that has not been addressed in related literature that is a crucial feature in organ
allocation: more than one recipient falls under the care of a single strategic decision
maker. In particular, a Transplant Center (TC) that chooses actions (treatments)
on behalf of multiple patients might internalize part of the congestion effect. In turn
this might reduce gaming, or allow a mechanism designer to achieve higher levels of
welfare by accounting for this effect. Parker et al. (2018) provide compelling evidence
of reduced gaming in the context of heart allocation: a statistical measure of “over-
treatment” in heart patients is strongly, positively related to the number of competing
Transplant Centers within a transplant region. Our work is motivated by the resulting

1Certification agencies are a related example, but where the budget constraint is softer than the
kind we consider here; see Frankel and Kartik (2021), Ball (forthcoming), Perez-Richet and Skreta
(2022), and Perez-Richet and Skreta (2023).

2Similarly in 2002, when ICU status was removed as a prioritization factor for liver transplant
patients due to perceived abuse, ICU admission rates dropped by roughly half (Snyder, 2010).
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mechanism design question of how to account for this competition effect.
We construct a model to analyze (i) the degree to which recipients should be prior-

itized based on their actions and, more significantly, (ii) how that degree is affected by
“competition,” i.e. the extent to which recipients’ action decisions are (de)centralized
as described above. The simplest model that allows us to do this—in the language of
organ transplantation—involves two types of patients who obtain Low or High value
from an organ and, respectively, negative or positive benefit from taking a “Treat-
ment” action. A planner who fully prioritizes the Treatment classification distorts
action choices for Low-type patients. At the other extreme, eliminating priorities
altogether removes these distortions but fails to utilize information that could im-
prove aggregate welfare. In many organ allocation applications,3 policy discussions
typically focus on these two extremes: whether “treated” recipients should receive
full or no prioritization over others. To generalize this binary comparison we allow
for partial prioritization via what we call rationing through classification (RTC): the
planner rations some fraction of organs to the class of patients taking the “Treatment”
action, allocating the rest amongst the remaining patients. A maximal ration gives
the Treatment class full priority, whereas a sufficiently low ration prioritizes neither
class. Our questions above concern the optimal choice of this ration.

The “perfect competition” special case of our model, where individual patients
decide their own actions (Section 3), fits within a literature on strategic classification
(e.g. Braverman and Garg (2020), Perez-Richet and Skreta (2022)). Consistent with
that literature we show that equilibrium welfare is maximized when the planner max-
imizes the Treatment patients’ ration of organs subject to a no-distortions constraint:
Low type patients must not have the incentive to choose Treatment. Any higher
ration—inducing Low types to game the system—necessary lowers welfare.

The novelty of our work is to extend this analysis to the “imperfect competition”
setting (Section 4) where n strategic Transplant Centers (TC’s) make Treatment
decisions on behalf of their own set of patients. This captures the phenomenon in the
examples discussed above that, while allocation is based on recipient actions, multiple
recipients’ actions are chosen by a single strategic agent.

The introduction of TC’s has the flavor of reducing competition and might lead
to the following intuition. Since TC’s internalize the congestion effect of “wrongly”
choosing Treatment for its Low type patients, the planner can further increase priori-

3E.g. The IABP heart patients and ICU liver patients discussed above.
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tization of Treatment patients without creating distortions. Thus assuming it remains
welfare-optimal to eliminate distortions (as under perfect competition), reduced com-
petition improves resource allocation without distorting actions, improving welfare.

We show the extent to which this intuition partially holds, with the determining
factor being whether equilibria under imperfect competition have the same structure
as equilibria under perfect competition. When the structure remains the same, it
means that the planner again trades off an increased ration for Treatment patients
versus distorted action choices for Low types. In this case our main results reestablish
the welfare-optimality of no distortions, derive the optimal ration under such equilib-
ria, and verify the above intuition that competition harms welfare. We also compare
the extreme cases of full and no prioritization discussed earlier (Subsection 4.5).

For some parameters, however, the imperfect competition setting yields equilibria
with a less-intuitive “Inversion” structure, where action choices are doubly distorted:
each TC simultaneously chooses the Treatment action for some Low types and does
not choose Treatment for some High types. Convexities in TCs’ payoff functions al-
low for such equilibria, and complicate the general analysis. Computational analysis
suggests two things. First, Inversion equilibria can arise only when there is a low rel-
ative cost for Low types to take the Treatment action (or if the planner rations in a
way that discriminates against Treatment patients). Second, and surprisingly, Inver-
sion equilibria can be welfare-optimal among all equilibria, though this phenomenon
occurs only in some low-stakes cases where organs are relatively plentiful.

1.1 Related Literature

The work closest to ours is that on strategic classification. This literature focuses on
the case where individual recipients strategically choose their own actions, analogous
to our baseline “perfect competition” model (Section 3). We distinguish ourselves
from this work by allowing “imperfect competition” (Section 4), centralizing multiple
decisions under one strategic agent.4 Our contribution is to show the extent to which
results in the baseline model extend to the general one and how this is impacted by
the level of competition.

Generally speaking, models in this literature have the following characteristics.
A planner wishes to correctly classify an agent’s type as being above or below some

4An additional minor difference is that we impose a “classification budget” representing the fixed
supply of resources.
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threshold (high or low). All agents desire a high classification and can misrepresent
their privately known type at some cost. In a continuous-type version of our baseline
model (Section 3), Braverman and Garg (2020) maximize equilibrium classification
accuracy net of agents’ manipulation costs. Under some assumptions they show that
optimal classifiers (i) typically require randomization, and (ii) induce no manipu-
lation. Our setup necessarily induces randomness by the nature of our budgeted
rationing problem but its quantification is determined endogenously by equilibrium
behavior. Nevertheless our Theorem 2 is analogous to their result.

Perez-Richet and Skreta (2022) allow the planner to commit to a probabilistic
testing function that maps (misrepresented) types into randomized signals. The
planner uses realized observations to make optimal classification decisions. Under
an increasing-returns assumption on misrepresentation costs, accuracy-maximizing
mechanisms “raise the bar” by offering the greatest chance of high classification only
to observed types above some artificially high threshold. The agents achieving this
threshold in equilibrium are precisely those whose true type is above the planner’s
desired threshold. Other types engage in no misrepresentation, being compensated
with enough probability of high classification to offset the benefit of doing so. Perez-
Richet and Skreta (2023) impose this no-misrepresentation condition as a constraint
under which they find optimal allocation mechanisms.

In a machine learning context Hardt et al. (2016) provide efficient, near-optimal
algorithms for classification accuracy against strategic agents both when the classifi-
cation objective is known and when it first must be learned by the algorithm through
existing data. In a related model, Milli et al. (2019) analyze the tradeoff between
accuracy and the resulting manipulation costs imposed on “high type” agents.

Other work examines variations on mechanism-, scoring-, or ratings-design under
costly misrepresentation. Frankel and Kartik (2021) consider agents who vary both
in type as above and in misrepresentation costs. This dual heterogeneity leads the
planner to under-weight observed information to improve accuracy in equilibrium.
When types are multidimensional Ball (forthcoming) shows that the planner benefits
by under-weighting some dimensions and over-weighting others. Lee and Suen (2023)
consider allocating university seats based on exam scores obtained naturally (high
types) or through wasteful tutoring (low types), showing that increasing resources
(seats) can increase distortions (wasteful tutoring). Finally, Akbarpour et al. (2024)
provide a more distinct setting in which rationing is optimal even when the use of
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transfers is available.
Turning to dynamic settings, Munoz-Rodriguez (2024) studies a model that is

somewhat like an overlapping generations version of our “perfect competition” model
but with partially verifiable types. The optimal dynamic mechanism improves out-
comes by granting low types future option value for forgoing early transplants. In a
model of dynamic discrete choice, Sweat (2024) studies the impact of costly treatment
and organ selectivity in heart transplantation.

While the imperfect competition aspect of our main model (Section 4) is novel from
the perspective of the above literature, it also leads to a generalization of congestion
games pioneered by Wardrop (1952). Increasing one’s allocation probability through
the “route” of misrepresentation necessarily decreases someone else’s. Fixing the
planner’s choice of ration in our baseline model of Section 3, equilibrium existence
for example would follow immediately from that literature (Konishi, 2004), though of
course we go beyond this by evaluating welfare as we vary the ration.

Allowing a finite set of Transplant Centers each to control a mass of patients, our
general model becomes a type of atomic congestion game (ACG) for any fixed choice
of ration. An existing literature derives existence and uniqueness results for such
games as long as they are sufficiently structured, e.g. if all traffic is of a single type
and the network is sufficient simple (Bhaskar et al., 2015; Harks and Timmermans,
2018). In our “two-traffic-type” model, however, payoffs violate the typical concavity
assumptions that lead to these kind of results; in fact they locally violate concavity
everywhere. Despite this technical challenge we provide an existence result under
fairly weak additional assumptions on our primitives (Theorem 4).

In a one-type model, Wan (2012) shows that in ACG’s with two nodes, total
equilibrium welfare increases when a fixed amount of traffic is split amongst fewer
atomic agents. Here there is no resource to be allocated; agents are merely trying
to minimize transportation costs on a fixed network. Nevertheless our Proposition 3
draws an analogous conclusion in our two-type model, the difference being that our
planner adjusts the optimal rationing of resources with respect to the number of
agents. The intuition discussed earlier applies in both cases: with fewer agents, a
greater share of congestion costs are internalized by each agent.
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2 Model

2.1 Primitives

Though our model is stylized for tractability, we use the terminology of organ allo-
cation to ease interpretation. There is a continuum of patients having two possible
types: a mass rℓ > 0 of low type patients and a mass rh > 0 of high type patients.
Each patient takes action N (“Non-treatment”) or T (“Treatment”). The strategic
choice of a patient’s action is made either by the patient (Section 3) or a Transplant
Center who chooses actions for a subset of patients (Section 4). A mass ϕ < rℓ + rh

of organs is assigned to patients as described in Subsection 2.2.
A patient’s welfare depends on their type, action, and whether they receive an

organ. Any patient receiving an organ obtains welfare L∗, independent of type and
action.5 Otherwise a patient of type i ∈ {ℓ, h} who takes action a ∈ {N, T} obtains
welfare La

i . To capture the relevant tradeoffs in our problem we assume

LN
h < LT

h < LT
ℓ < LN

ℓ < L∗ (1)

Interpreting high types as “high risk” (sicker) patients, these inequalities embody
natural assumptions underlying our motivating examples. First, the Treatment action
is beneficial (pre-transplant) for high types but not for low types. Second, high types
receive higher marginal benefit from organs; this assumption corresponds to the real
world objective of prioritizing high-risk patients (Persad et al., 2009), but only plays
a role in our welfare statements.

An economy is summarized by primitives (rh, rℓ, ϕ, LN
h , LT

h , LT
ℓ , LN

ℓ , L∗). In Sec-
tion 4 we add the additional primitive n > 0, representing the number of Transplant
Centers choosing actions on behalf of their respective patients.

2.2 Rationing through Classification

The planner observes patients’ actions but not their types. Therefore the planner is
restricted to assigning some fraction k of the organs to patients who took action T

5This normalization is without loss of generality in both our strategic and welfare analysis. How-
ever it is a realistic approximation when welfare is measured in post-transplant expected life-years,
both in liver (Schaubel et al., 2009) and heart (Meyer et al., 2015) transplantation. “Treatments”
in these applications target improvements in short-term hazard rates rather than long-term quality
of life.
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and assigning the remaining mass (1 − k)ϕ of organs to patients whose action is
N . We define the process of Rationing through Classification as one where (i) the
planner publicly commits to a ration k ∈ [0, 1], (ii) each patient takes an action N or
T (chosen individually in Section 3 or by their Transplant Center in Section 4), and
(iii) kϕ organs are (uniformly randomly) assigned to patients taking action T , and
the rest assigned to those taking N . The ration k represents the degree to which the
planner uses classification information as a basis for allocation. Our main question is
how the choice of k impacts the structure of equilibria and equilibrium welfare.

Naively, a planner might expect to maximize utilitarian welfare by choosing k to
be maximal, since the first-best organ assignment is to maximize organ allocation to
high types. Of course this ignores the possibility that this induces low types also to
take action T , achieving neither a first best assignment nor first-best action choices.
At another extreme a planner could attempt to induce efficient action choices by
choosing a “proportional” value of k. Namely, let

k̄ ≡ rh/(rℓ + rh)

denote the percentage of patients who are of high type. Even when ration k̄ induces
efficient action choices,6 organ assignment is far from optimal since organs are assigned
to all patients with equal probability. Our work examines not only how adjustments
to k can fine-tune this trade-off, but whether it does so.

Our restriction to RTC is technically a restriction on feasible mechanisms; e.g.
the planner could commit to choosing ration k ex post, as a function of all patients’
realized action choices. This restriction is not significant for two reasons. First, RTC
is without loss of generality in our baseline “perfect competition” model because in-
finitesimal agents are “price takers.”7 Second, any general mechanism that is not RTC
requires the planner to observe a profile of realized actions before making allocation
decisions. While this is feasible within our model (made static for tractability), it is
less practical in a dynamic setting.

6It may not; see Section 4.
7Any equilibrium under a general mechanism that results (ex post) in ration k is an equilibrium

under RTC when the planner (ex ante) commits to constant k.
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3 Perfect Competition

3.1 Equilibrium structure

Fixing a ration k, each patient selfishly chooses action N or T . A strategy profile
p = (pℓ, ph) denotes the fractions of low- and high-type patients that choose action T .
In the equilibrium analysis we can restrict attention to non-wasteful profiles, i.e.
where pℓrℓ ≥ (1−k)ϕ and phrh ≥ kϕ. A (non-wasteful) profile p induces the following
allocation probabilities for patients who have chosen N or T :8

πN(p) = (1 − k)ϕ
(1 − pℓ)rℓ + (1 − ph)rh

πT (p) = kϕ

pℓrℓ + phrh

(2)

When a profile p is clear from the context we may simply write πN and πT .
A patient’s payoff is their expected welfare using the values in (1). A profile p is

an equilibrium if it satisfies the following incentive compatibility conditions.

pℓ < 1 =⇒ πNL∗ + (1 − πN)LN
ℓ ≥ πT L∗ + (1 − πT )LT

ℓ

pℓ > 0 =⇒ πNL∗ + (1 − πN)LN
ℓ ≤ πT L∗ + (1 − πT )LT

ℓ

ph < 1 =⇒ πNL∗ + (1 − πN)LN
h ≥ πT L∗ + (1 − πT )LT

h

ph > 0 =⇒ πNL∗ + (1 − πN)LN
h ≤ πT L∗ + (1 − πT )LT

h

Observe that if some type has an incentive not to choose its “natural action” (N
for low types, T for high types), then it receives a strictly higher allocation probability
at its non-natural action. Since this cannot hold for both types simultaneously, we
have the following. (Formal proofs are in the appendix.)

Lemma 1. If (pℓ, ph) is an equilibrium then at least one type chooses its natural
action with certainty, i.e. pℓ = 0 or ph = 1 (or both).

Also intuitive is that an increase in k should induce more patients to choose T ,
and that high type patients are induced more easily than low types. (Interestingly
this intuition fails to hold in Section 4.) With Lemma 1 this leads to the following
description of equilibria.

8Define πN (1, 1) = 0 = πT (0, 0); these particular values are not significant in the analysis.
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Proposition 1 (Unique equilibrium). For any k ∈ [0, 1] there exists a unique equi-
librium p∗(k). Furthermore p∗() is weakly increasing in k and satisfies

k < k′ =⇒ p∗
ℓ(k) = 0, p∗

h(k) < 1 (biased toward N)

k′ ≤ k ≤ k∗ =⇒ p∗
ℓ(k) = 0, p∗

h(k) = 1 (separating)

k > k∗ =⇒ p∗
ℓ(k) > 0, p∗

h(k) = 1 (biased toward T)

where

k′ = max
{

0,
rh

ϕ

ϕ(L∗ − LN
h ) + rl(LN

h − LT
h )

rh(L∗ − LN
h ) + rl(L∗ − LT

h )

}
< k̄ ≡ rh

rℓ + rh

(3)

k∗ = min
{

1,
rh

ϕ

ϕ(L∗ − LN
l ) + rl(LN

l − LT
l )

rh(L∗ − LN
l ) + rl(L∗ − LT

l )

}
> k̄ ≡ rh

rℓ + rh

(4)

In fact p∗() is constant only on [k′, k∗]. For some primitives it is possible that
k′ = 0 or k∗ = 1. In particular the proof of Proposition 1 implies

k′ > 0 ⇔ LT
h − LN

h

L∗ − LN
h

<
ϕ

rl

(5)

k∗ < 1 ⇔ LN
l − LT

l

L∗ − LT
l

<
ϕ

rh

(6)

Intuition driving (6) is that low types are more easily induced to choose T (via an
increase in k) when (i) organ supply is increased, (ii) there are less competing high
types, (iii) the cost of choosing T is decreased, or (iv) the benefit of receiving an
organ conditional on choosing T is higher. Analogous intuition drives (5).

3.2 Equilibrium welfare

For any k ∈ [0, 1], denote the equilibrium fraction of organs allocated to high
types as

f(k) = (1 − k) (1 − p∗
h(k))rh

(1 − p∗
h(k))rh + (1 − p∗

ℓ(k))rℓ

+ k
p∗

h(k)rh

p∗
h(k)rh + p∗

ℓ(k)rℓ

where p∗
ℓ(k), p∗

h(k) is the unique equilibrium for k. An increase in k affects welfare
both by increasing the fraction of organs allocated to patients choosing T , and by
(weakly) increasing the percentage of patients choosing T . While the total effect can
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be positive or negative, an obvious case is when k ∈ [k′, k∗]. Since p∗() is constant in
this range, an increase in k simply increases f(), increasing total welfare.

For k ∈ [k∗, 1], it turns out that an increase in k disproportionately increases
the number of low types choosing T to the extent that f() decreases. Analogously,
for k ∈ [0, k′] a decrease in k disproportionately increases the number of high types
choosing N , increasing f().

Theorem 1. The equilibrium fraction f() of organs allocated to high types is
• decreasing in k for k ∈ [0, k′];
• increasing in k for k ∈ [k′, k∗];
• decreasing in k for k ∈ [k∗, 1].

Furthermore f() is maximized at k∗.

For an intuition, imagine primitives are such that when k = 1, (i) all patients
choose T in equilibrium, but (ii) any low type patient is indifferent between the
lottery they face—receiving an organ (L∗) or or not (LT

ℓ )—and deviating to choose N

(a payoff of LN
ℓ ). Note that every patient faces the same probability πT = ϕ/(rℓ + rh)

of receiving an organ.
Next consider a small decrease in k and a “proportional” change in the strategy

profile such that (i) a mass ϵ of low type patients instead choose N and (ii) a mass
πT ϵ of organs is rationed amongst those low type patients choosing N . Note that once
again every patient (at N or T ) has probability πT of receiving an organ. However
this means that low types choosing T are strictly worse off than low types choosing
N (since their welfare is lower conditional on not receiving an organ). In order to
restore equilibrium indifference, a greater than proportional number of low types must
choose N . In other words, p∗

ℓ(k) must be disproportionately sensitive to changes in
k ∈ [k∗, 1]. An analogous argument applies to p∗

h(k) for k ∈ [0, k′].
Theorem 1 has immediate welfare implications. For k ∈ [k′, k∗] welfare increases

in k since actions remain fixed while f() increases. For k ∈ [k∗, 1], an increase in k

reduces f() and increases p∗
ℓ(), necessarily decreasing welfare. Finally for k ∈ [0, k′],

an increase in k decreases f() but also improves welfare by reducing p∗
h(). Either

effect can dominate, breaking symmetry with the case k ∈ [k∗, 1]. Nevertheless once
can separately prove that equilibrium welfare at any k ∈ [0, k′] is inferior to that
obtained at k∗.

Theorem 2. Utilitarian welfare (total patient equilibrium payoffs) is
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• increasing in k for k ∈ [k′, k∗];
• decreasing in k for k ∈ [k∗, 1];
• maximized at k∗ among all k ∈ [0, 1].

We next turn to the “imperfect competition” setting where Transplant Centers
decide actions on behalf of their own share of patients. Notably Lemma 1 does not
extend to that setting, allowing for a second form of equilibria. Even when equilibria
do resemble those of Proposition 1, the arguments proving Theorem 2 no longer apply
(because f() loses a monotonicity property). We show instead that the conclusions
of Theorem 2 extend in the form of Theorem 5.

4 Imperfect Competition

4.1 Atomic agents

We capture the idea of imperfect competition by specifying a number n of atomic
agents who choose actions on behalf of their own patients. Formally, there are
n Transplant Centers (TC’s), each choosing actions on behalf of a mass rℓ/n of
low-type patients and a mass rh/n of high-types. A strategy for TC i is a pair
pi = (piℓ, pih) ∈ [0, 1]2 specifying the percentages of its low-type and high-type pa-
tients taking action T . A strategy profile is denoted p = (pi)i∈T C = (piℓ, pih)i∈T C .
We let p−i denote the list of strategies for all TC’s other than i.

A TC’s payoff is the total expected welfare of its patients as in (1). We continue
to interpret the parameters in (1) as individual patient welfare, in which case payoffs
are that of a utilitarian TC that puts weight only on its own patients. However, since
individual patients play no strategic role in this section, one could go well beyond
that interpretation. For example, the parameters in (1) could instead represent a
TC’s profitability from patients, conditional on their type, treatment decision, and
transplant status; or they could represent some combination of welfare, profits, or
any cost or benefit the TC receives from different patient outcomes, as long as they
are additive across patients. Such interpretations might lead to different planner
objectives than those we consider here.

Generalizing concepts from earlier, a profile p is non-wasteful (for k) when there
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are no more organs than patients at N or at T , i.e.

(1 −∑
piℓ/n) rℓ + (1 −∑

pih/n) rh ≥ (1 − k)ϕ and (∑ piℓ/n) rℓ + (∑ pih/n) rh ≥ kϕ

Analogous to (2), a non-wasteful profile p induces allocation probabilities

πN = (1 − k)ϕ
(1 −∑

piℓ/n) rℓ + (1 −∑
pih/n) rh

πT = kϕ

(∑ piℓ/n) rℓ + (∑ pih/n) rh

The payoff to Transplant Center i at profile p is

ui(p) = 1
n

[
(1 − piℓ)rℓ(πNL∗ + (1 − πN)LN

ℓ ) + (1 − pih)rh(πNL∗ + (1 − πN)LN
h )

+ piℓrℓ(πT L∗ + (1 − πT )LT
ℓ ) + pihrh(πT L∗ + (1 − πN)LT

h )
] (7)

In standard fashion, pi is a best response to p−i if pi ∈ arg max ui(·, p−i), and p

is a (pure Nash) equilibrium if, for each i, pi is a best response to p−i.

4.2 Equilibrium structure and intuition

The perfect competition setting yields intuitive equilibria: low types take action
N and high types take action T , with the possible exception that patients of one
type instead take the opposite action. The imperfect competition setting admits the
possibility of equilibria with the “inverse” structure: TC’s assign low types to action
T and high types to action N , again with a possible exception for only one type.

Theorem 3. Fix k and suppose p is an equilibrium. There exists an equilibrium p∗

that is payoff-equivalent to p, is symmetric, and satisfies one of the following.
• (Non-inversion) For every TC i, p∗

iℓ = 0 or p∗
ih = 1.

• (Inversion) For every TC i, p∗
iℓ = 1 or p∗

ih = 0.

“Interior” equilibria are ruled out since, at any strategy profile, all TC’s face the
same linear incentive to “swap” the opposite actions of opposite-type patients. At any
interior profile, all TC’s would prefer executing the same such swaps until reaching
the same kind of a corner solution (a Non-inversion or Inversion strategy).

For an intuition behind symmetry, note that the set of Non-inversion strategies
is a monotonic, one-dimensional set: a decision of how many patients to send to
Treatment, prioritizing high-type patients over low types. If TC i sends fewer patients
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to Treatment than TC j, then i has a greater marginal incentive than j to send
additional patients to Treatment since doing so crowds out fewer of i’s own patients.
Since both TC’s should face the same marginal incentive in equilibrium, they must
choose symmetric Non-inversion strategies; the same argument applies to Inversion.

Inversion equilibria appear perverse since each TC simultaneously chooses T for
at least some of its low type patients and chooses N for at least some of its high
type patients. For an intuition as to how such equilibria arise, consider TC i’s best
response when (rationally or not) i’s competitors choose T for a “large” percentage of
their patients. First, excess congestion at T could conceivably lead i to choose N for
(at least some of) its high types in order to give those (high marginal value) patients
better odds of an organ. Given this, it is conceivable that i prefers to choose T for
its low types to avoid congesting its high types at N . This possibility is strongest
when low types have low marginal value from organs and low value of N versus T .
If this reasoning leads i to choose T for a “large” percentage of patients, we have
constructed an equilibrium.

Computational analysis demonstrates that one or both forms of equilibria might
exist (Subsection 4.3). One factor contributing to this—and complicating equilib-
rium analysis in general—is that payoff functions (7) exhibit convexities9 contrasting
typical assumptions made in the literature on atomic congestion games. While our
computational results suggest a general existence result, our analytical result below
specifically shows that Non-inversion equilibria exist under mild additional assump-
tions. The first is that any patient’s benefit of receiving an organ exceeds the welfare
difference between any two non-receiving patients.

Assumption 1 (Organs are sufficiently valuable). L∗ − LN
ℓ > LN

ℓ − LN
h .

Under this assumption, and for “reasonable” rations k (i.e. no less than the pro-
portional value k̄ = rh/(rℓ +rh)), exactly one Non-inversion equilibrium exists as long
as, relative to organ scarcity, high types benefit significantly from Treatment (8), and
Treatment makes high and low type patients similar (9).10

Theorem 4. Fix n ≥ 3 and suppose that Assumption 1 holds. If k ≥ k̄ and

LT
h − LN

h

LN
ℓ − LN

h

≥ ϕ

(rℓ + rh)n − ϕ(n − 1) (8)

9In fact they locally violate concavity everywhere; see the online appendix.
10Even weaker assumptions are used in the proof, but require concepts from Subsection 4.4.
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and
LT

ℓ − LT
h

(LT
h − LN

h ) + (LN
ℓ − LT

ℓ ) < 1 − ϕ

(rℓ + rh)n−1
n

(9)

then there exists a unique Non-inversion equilibrium.

The proof cannot be applied to the full range of the model’s primitives, and
does not apply to Inversion equilibria due to complications arising from convexities
in payoff functions. We therefore turn to computational analysis to investigate the
prevalence of either type of equilibrium.

4.3 Computational analysis: equilibria and welfare

Across a wide range of economies and rations k we search for all (approximate)
equilibria, classify each one (as Non-inverting or Inverting), and evaluate its welfare.
We find that while Inversion equilibria can exist—even exclusively—they are atypical,
arising when organs are relatively plentiful and when LT

ℓ − LT
h is relatively large. Not

surprisingly these conditions oppose conditions (8) and (9).
To strengthen the argument that Inversion equilibria are atypical, we focus on

primitives that should make Inversion equilibria most plausible. In these cases,
our computational results suggest not only that Inversion equilibria have low preva-
lence, but that the equilibrium-welfare maximizing ration k typically leads to a Non-
inversion equilibrium, with exceptions only in what we view as extreme cases. We next
describe these primitives, providing technical details and additional computations in
the online appendix.

We consider a full (discretized) range of values for 0 < ϕ < rℓ +rh ≡ 1 and rations
0 ≤ k ≤ 1. We consider n = 3 TC’s since (i) Theorem 3 and 4 require n ≥ 3 and (ii)
additional computations confirm that Inversion equilibria become less prevalent as n

increases (see Observation 5 below).
Normalizing patient welfare values LN

h ≡ 0 and LN
ℓ ≡ 0.5, we set L∗ equal to

2LN
ℓ −LN

h = 1 since (i) this is a lower bound for L∗ in Assumption 1 and (ii) additional
computations confirm Inversion equilibria become less prevalent as L∗ increases (see
Observation 4 below). With these three values fixed, we consider the full (discretized)
range of values for LT

h and LT
ℓ satisfying Equation 1.

For all such instances we compute approximate equilibria, classifying each as an
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Figure 1: Equilibrium structure when rℓ = 0.3, ϕ = 0.5. Black: unique Inversion equilib-
rium. Unshaded: unique Non-inversion equilibrium. Green: one of equilibrium type.

Inversion or Non-inversion profile.11 We present these results using the following
notation.

∆h ≡ LT
h − LN

h ≥ 0 ∆T ≡ LT
ℓ − LT

h ≥ 0

∆ℓ ≡ LN
ℓ − LT

ℓ ≥ 0 ∆∗ ≡ L∗ − LN
ℓ ≥ 0

(10)

Our normalizations of LN
h , LN

ℓ , and L∗ imply ∆h + ∆T + ∆ℓ = 0.5 (and ∆∗ = 0.5).
Thus the set of feasible choices of LT

h and LT
ℓ can be visualized as a 2-dimensional

simplex representing feasible choices of the triplet (∆ℓ, ∆T , ∆h), as in Figure 1. The
vertical dimension of the prism represents the ration k ∈ [0, 1].

As one example of our computations, the prism in Figure 1 shows which (approx-
imate) equilibrium types exist when rℓ = 0.3 and ϕ = 0.5. More generally Figure 2
displays prisms for various rℓ and ϕ. Consistent with Theorem 4, a unique Non-
inversion equilibrium exists for sufficiently large k and sufficiently small ∆T . However
they exist beyond the set of primitives assumed in that theorem (with uniqueness im-
plied by Proposition 2). Even when one does not exist, a unique Inversion equilibrium
does; we find (approximate) equilibrium existence across the full range of parameters
despite the poorly behaved payoff functions that complicate more general analytical
results. We now summarize our computational findings.

Observations. For the parameters discussed above we find:
1. For each instance considered, there exists a unique Non-inversion equilibrium

or a unique Inversion equilibrium (or both).
2. Inversion equilibria are more prevalent as ∆T becomes large. Since a large ∆T

(∆ℓ, ∆h ≈ 0) implies a low cost to choosing the “wrong” action for either type.
A TC may be induced to do so if this increases the rate at which its high
types receive organs. If in addition k = 0.5, a Non-inversion strategy profile is

11The use of a high-performance numerical computing Python library (Bradbury et al., 2018) was
crucial in using GPU’s to overcome the computational challenges of searching for all equilibria in
each of a large number of economies.
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almost payoff equivalent to its mirror (Inversion) profile obtained by reversing
all patients’ actions; Figure 2 exhibits equilibrium multiplicity in these cases.

3. Inversion equilibria are more prevalent when organs are more plentiful. When ϕ

is large, the intuition for Inversion equilibria (Subsection 4.2) becomes stronger.
4. Inversion equilibria are less prevalent as L∗ increases (see online appendix).

Intuitively, as the distinction between types and actions disappears we converge
to a one-type congestion model with known existence and uniqueness results.

5. Inversion equilibria are less prevalent as n increases (see online appendix), con-
sistent with their non-existence under Perfect Competition (Proposition 1).

Observations 3 and 4 suggest that Inversion equilibria arise in cases where the
planner’s allocation problem has lower stakes, i.e. organs are more plentiful or provide
lower value. In remaining cases (where ∆T is large) it makes little sense to Ration
through Classification in the first place, since action choices have little screening
power: N and T are almost cheap-talk messages.

The remaining question is on welfare: What ration k (and equilibrium form)
maximizes welfare? Though intuition suggests that welfare maximizing equilibria
should be Non-inverting, it is logically possible for Inversion equilibria to be optimal.
To see why, suppose ∆ℓ ≈ 0 (low types have a low cost for Treatment), and start
from some arbitrary Non-inversion profile at which the allocation probabilities satisfy
πN < πT . If TC i increases piℓ, its payoff changes primarily in two ways: (i) it gains
since its low-type patients receive organs more frequently and (ii) it loses because it
crowds out its own high-type patients, who receive organs less frequently. If we had
started from an Inversion profile where πN > πT , the same conclusion would follow
from a decrease in piℓ, but with a stronger effect (ii). The asymmetry in effect (ii) is
because crowding out high types from receiving organs is more costly when those high
types are taking the “wrong” action, N . Interestingly, this introduces the possibility
for Inversion profiles to provide a stronger incentive for a TC not to crowd out its
own (and others’) high types from receiving organs, because doing so is more costly
than if actions were reversed.

Can this improvement in the high types’s share of organs outweigh the “wrong”
choices being made over actions? Our computations illustrate that it can in some
cases where ∆ℓ is small (Figure 3). However the fact that it happens only when ∆ℓ is
small—even under primitives that make Inversion equilibria most plausible—justify
our focus on Non-inversion equilibria for the remainder of the paper.
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Figure 3: Across all values of k, the welfare-maximizing equilibrium is an Inversion equi-
librium for economies in the blue regions.
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4.4 Non-inversion equilibrium

We next show how the ideas of Section 3 extend to Imperfect Competition via Non-
inversion equilibria, the challenge being that in exceptional cases such equilibria may
neither exist (Figure 2) nor be optimal (when ∆ℓ is small; Figure 3). To overcome
this, we first show general existence and uniqueness of “NI-candidates:” symmetric,
Non-inversion strategy profiles satisfying only certain local IC constraints. Since any
NI equilibrium is an NI-candidate, this proves at most one NI equilibrium can exist (as
in our computations). We then prove our main results: the conclusions of Theorem 1
and Theorem 2 hold for any NI-candidate, and thus for any NI equilibrium.

Definition 1 (NI-candidate). Fixing k, a symmetric profile p∗ is an NI-candidate
for k when any one of the following holds.

• (1-NI) p∗
iℓ ≡ 0 and ∂ui

∂pih
(p∗) ≡ 0.

• (1-NI corner) p∗
iℓ ≡ 0, p∗

ihrh ≡ kϕ, and ∂ui

∂pih
(p∗) ≤ 0.

• (2-NI) p∗
iℓ ≡ 0, p∗

ih ≡ 1, ∂ui

∂pih
(p∗) ≥ 0, and ∂ui

∂piℓ
(p∗) ≤ 0.

• (3-NI) p∗
ih ≡ 1 and ∂ui

∂piℓ
(p∗) ≡ 0.

• (3-NI corner) p∗
ih ≡ 1, (1 − p∗

iℓ)rℓ ≡ (1 − k)ϕ, and ∂ui

∂piℓ
(p∗) ≥ 0.

The following result extends Proposition 1 to NI-candidates.

Proposition 2 (Unique NI-candidate). Fix n ≥ 3 and suppose Assumption 1 holds.
For any k ∈ [0, 1] there exists a unique NI-candidate p∗(k). Furthermore p∗() is weakly
increasing in k, and

k < k′
n =⇒ ∀i, p∗

iℓ(k) = 0 and p∗
ih(k) < 1 (Region NI-1)

k′
n ≤ k ≤ k∗

n =⇒ ∀i, p∗
iℓ(k) = 0 and p∗

ih(k) = 1 (Region NI-2)

k > k∗
n =⇒ ∀i, p∗

iℓ(k) > 0 and p∗
ih(k) = 1 (Region NI-3)

where

k′
n = max

0,
−(LT

h − LN
h ) + ϕ

rℓ

(
n−1

n
L∗ + 1

n
LN

ℓ − LN
h

)
ϕ
rℓ

(
n−1

n
L∗ + 1

n
LN

ℓ − LN
h

)
+ ϕ

rh

n−1
n

(L∗ − LT
h )

 (11)

k∗
n = min

1,
(LN

ℓ − LT
ℓ ) + ϕ

rℓ

n−1
n

(L∗ − LN
ℓ )

α

 > k′ (12)

α = ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
n − 1

n
L∗ + 1

n
LT

h − LT
ℓ

]
> 0
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It can be checked that k′
n and k∗

n converge to (3) and (4) as n → ∞. The
result is obtained by proving a limited form of concavity among Non-Inversion profiles
(Lemma 5). Notably, a version of that lemma cannot hold for Inversion profiles, so
we do not have corresponding results for such equilibria.

Extending the main conclusions of Theorem 1 and Theorem 2 to NI-candidates,
both the fraction of organs allocated to high types and utilitarian welfare are single-
peaked on k ∈ [k′

n, 1] and are maximized at k = k∗
n.12

Theorem 5. Fix n ≥ 3 and suppose that Assumption 1 holds. Among all NI-
candidates for k ∈ [0, 1], both the equilibrium fraction of organs allocated to high
types and TCs’ total equilibrium payoffs are

• increasing in k for k ∈ [k′
n, k∗

n],
• decreasing in k for k ∈ [k∗

n, 1], and
• maximized at k∗

n (defined in Equation 12).

Note that the intuition provided after Theorem 1 does not apply here. Namely, as
k ∈ [k∗

n, 1] increases, low types shift to T at a slower rate since a TC internalizes the
congestion effect on its high types. Plausibly, an increase in k might then increase
the equilibrium fraction of organs allocated to high types. Nevertheless Theorem 5
rules this out. It also leads to the following result.

Proposition 3 (Competition lowers welfare). The ration k∗
n is decreasing in n.

Therefore maximal welfare across all NI-candidates is decreasing in n.

The simple proof of this (which we omit) is apparent in the following comparison
between the perfect and imperfect competition scenarios. In the perfect competition
case we can rewrite k∗ as defined in (4) using the welfare differences defined in (10).

k∗ =
∆ℓ + ϕ

rℓ
∆∗

ϕ
rℓ

∆∗ + ϕ
rh

(∆∗ + ∆ℓ)

We also can rewrite k∗
n (see proof of Proposition 4).

k∗
n =

∆ℓ + ϕ
rℓ

n−1
n

∆∗
ϕ
rh

n−1
n

∆ℓ +
(

ϕ
rℓ

+ ϕ
rh

)
n−1

n
∆∗ − ϕ

rh

1
n
∆T

12One inconsequential contrast to Theorem 1 is a possible non-monotonicity on k ∈ [0, k′
n].
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Thus imperfect competition shrinks the numerator of k∗ by less than a factor of
(1/n), and the denominator by more than that factor; hence k∗

n > k∗. However
this expression also highlights the role of ∆T : the TC internalizes the congestion its
low types impose on its own high types at Treatment via ∆T , the relative welfare
difference between the types.

4.5 All-or-nothing prioritization

Though fractional rationing (k < 1) is typically optimal, in practice this approach
may be infeasible for a variety of reasons (institutional or political constraints, com-
plexity, etc.). Regardless of the reason, we compare the following two extremes of our
approach more commonly seen in practice.

(FP) Full prioritization of one classification of recipients over the other.

(NP) No Prioritization of either classification over the other.

In our model FP corresponds to setting k = 1 (as long as ϕ ≤ rh). NP uniformly ra-
tions organs across all patients regardless of action, i.e. each patient receives an organ
with probability ϕ/(rℓ + rh). Under perfect competition, NP is the equilibrium result
of setting k = k̄ = rh/(rℓ + rh) (see Proposition 1). Under imperfect competition, the
same is typically true (e.g. when Equation 8 holds).

It follows intuitively (assuming Non-inversion equilibria) that FP achieves close to
the optimal level of welfare when k∗

n is larger (closer to 1) and NP is closer to optimal
when k∗

n is lower (closer to k̄). Therefore we reframe the comparison between FP and
NP as a question of whether k∗

n is large or small. The following comparative statics
use the welfare differences defined in (10).13

Proposition 4 (Conditions justifying FP over NP). Consider varying primitives
LN

h , LT
h , LT

ℓ , LN
ℓ , L∗ in a way that varies only one of the differences ∆ℓ, ∆T , ∆h, ∆∗,

defined in Equation 10, keeping the rest constant.
• k∗

n is increasing in ∆ℓ.
• k∗

n is increasing in ∆T .
• k∗

n is constant in ∆h.
13An alternative approach is to directly compute welfare at (i) the NI-candidate profile when k = 1

and (ii) the separation profile (piℓ, pih) ≡ (0, 1) when k = k̄. It tediously involves two roots when
solving for piℓ in case (i), and offers little additional insight to Proposition 4.
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• k∗
n is decreasing in ∆∗.

Furthermore k∗
n decreases in ϕ.

Natural intuition suggests why FP should be better than NP under these condi-
tions. Large ∆ℓ makes it costly for a low type receiving Treatment to fail to receive
an organ. Large ∆T increases the value of organs to high types, increasing the TC’s
internalized cost or congesting them with low types. At k∗

n, a TC’s marginal decision
(at Non-inversion profiles) does not involve high types, so ∆h is irrelevant. Increasing
∆∗ is analogous to reducing differences between types and actions; if the TC’s ob-
jective becomes organ share maximization it is harder to maintain type separation.
This latter effect implies that an improvement in transplant technology benefiting
both patient types could have the negative impact of increasing distortions. Finally
when ϕ decreases there is less to be gained by choosing Treatment for low types.

5 Conclusion

Basing resource allocations on recipients’ observable actions allows a planner allocate
resources more effectively but distorts action choices. When actions are chosen by the
individual recipients (Section 3) this tradeoff yields a resource allocation problem that
fits within a literature on strategic classification. Our work is the first to consider this
problem in scenarios where action choices are partially centralized. In the language of
organ allocation our strategic agents (Transplant Centers) choose actions (Treatment)
on behalf of many patients.

Intuitively, fewer competing Transplant Centers internalize more of the congestion
effect they impose on other patients by over-utilizing Treatment. This intuition holds
in cases where equilibria of our general model are “Non-inverted,” having the same
structure as in the setting where individual patients choose their own actions. Under
such equilibria, action choices are distorted in at most one direction depending on the
degree to which the planner biases allocation decisions; optimal welfare is achieved
by eliminating these distortions (Theorem 5); and confirming the above intuition,
optimal welfare increases as competition is lessened (Proposition 3).

In some cases, however, equilibria can be “inverted:” a Transplant Center’s action
choices can be simultaneously distorted in two directions, allowing it to disproportion-
ately improve allocation rates for its high-value patients. In exceptional cases such
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counter-intuitive equilibria can even maximize equilibrium welfare. Computational
exercises suggest that this occurs only in “low stakes” cases of our model.

Our work underscores two considerations for policy makers who allocate resources
on the basis of actions. First, a rationing approach allows for welfare-improving
compromises in the all-or-nothing choice between full or no prioritization of one clas-
sification of recipients over another. Second, the novelty of incorporating competition
into our model highlights how optimal allocation policies can be sensitive to market
concentration when agents make allocation-relevant decisions on behalf of many re-
cipients. In applications such as organ allocation, optimal policies are likely to vary
by region when market concentration does (Parker et al., 2018). Relatedly, Agarwal
and Budish (2021) highlight market power as an understudied by necessary compo-
nent of market design analysis. The literature where this interaction has been studied
(e.g. auctions) shows how market power negatively impacts the designer’s objectives.
Interestingly our setting yields the opposite conclusion.
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6 Proofs Appendix

6.1 Perfect Competition

Proof of Lemma 1. If pℓ > 0 then low types weakly prefer choosing Treatment:

πNL∗ + (1 − πN)LN
ℓ ≤ πT L∗ + (1 − πT )LT

ℓ
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Since L∗ > LN
ℓ > LT

ℓ (and min{πN , πT } < 1) this would imply πN < πT . Similarly
ph < 1 would imply πN > πT . Hence pℓ = 0 or ph = 1.

Lemma 2. For any k there is a unique equilibrium pℓ(k), ph(k). Furthermore pℓ()
and ph() are weakly increasing in k.

Proof of Lemma 2. For any k, equilibrium existence follows from standard argu-
ments and is omitted. To prove uniqueness and monotonicity, fix k, k̃ with k ≤ k̃

and let (pℓ, ph) and (p̃ℓ, p̃h) be arbitrary equilibria for k and k̃ respectively, with al-
location probabilities πN , πT , π̃N , π̃T . We show monotonicity (pℓ, ph) ≦ (p̃ℓ, p̃h) which
also implies uniqueness (k = k̃).

Claim: either (pℓ, ph) ≦ (p̃ℓ, p̃h) or (pℓ, ph) ≧ (p̃ℓ, p̃h). If pℓ = p̃ℓ (or ph = p̃h) the
claim follows immediately. If pℓ < p̃ℓ then Lemma 1 implies p̃h = 1 ≥ ph. Similarly
pℓ > p̃ℓ implies ph = 1 ≥ p̃h, proving the claim.

Claim: (pℓ, ph) ≦ (p̃ℓ, p̃h). First suppose instead that pℓ > p̃ℓ and hence ph ≥ p̃h.
Since k ≤ k̃ this implies πN > π̃N and πT < π̃T . Since p is an equilibrium for k, low
types weakly prefer Treatment in that equilibrium:

πT L∗ + (1 − πT )LT
ℓ ≥ πNL∗ + (1 − πN)LN

ℓ

This implies a strict such preference at p̃ under k̃:

π̃T L∗ + (1 − π̃T )LT
ℓ > π̃NL∗ + (1 − π̃N)LN

ℓ

This strict preference requires p̃ℓ = 1 in equilibrium, contradicting pℓ > p̃ℓ. Supposing
ph > p̃h leads to a similar contradiction.

Proof of Proposition 1. By Lemmas 1 and 2 there exist 0 ≤ k′ ≤ k∗ ≤ 1 that
define the three cases of Proposition 1. When k = k̄ = rh/(rℓ + rh), a separating
profile (pℓ = 0, ph = 1) yields πN = πT , so (pℓ = 0, ph = 1) is an equilibrium where
each agent has strict incentive to choose their natural action. By continuity this
would hold for small perturbations of k, thus k′ < k̄ < k∗.

Next, by continuity, k′ is the lowest value of k at which the separation profile
(pℓ = 0, ph = 1) induces a high type to choose T , i.e. at which

πT L∗ + (1 − πT )LT
h ≥ πNL∗ + (1 − πN)LN

h
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Substituting πN = (1 − k)ϕ/rℓ and πT = kϕ/rh this becomes

k ≥
(LN

h − LT
h ) + ϕ

rℓ
ϕ(L∗ − LN

h )
ϕ
rh

(L∗ − LT
h ) + ϕ

rℓ
(L∗ − LN

h )

yielding k′ as in (3). This is positive whenever the numerator is, yielding (5).
Similarly, low types are induced to choose N at the separation profile when

πT L∗ + (1 − πT )LT
ℓ ≤ πNL∗ + (1 − πN)LN

ℓ

Analogous arguments lead to (4) and (6).

Proof of Theorem 1. The result is obvious in the range k ∈ [k′, k∗] where pl(k) ≡ 0,
ph(k) ≡ 1, and hence f(k) ≡ k.

For any k ∈ (k∗, 1), Proposition 1 implies pℓ(k) > 0 and ph(k) = 1; furthermore
pℓ(k) < 1 (otherwise a low type guarantees an organ deviating to N). This implies
an equilibrium indifference condition for low types. Writing equilibrium allocation
probabilities πN , πT as functions of k, it is

πT (k)L∗ + (1 − πT (k))LT
ℓ = πN(k)L∗ + (1 − πN(k))LN

ℓ , or
1 − πN(k)
1 − πT (k) = L∗ − LT

ℓ

L∗ − LN
ℓ

> 1

where LT
ℓ < LN

ℓ implies the inequality. Therefore πN(k) < πT (k), and πN(k), πT (k)
vary in the same direction with a change in k ∈ (k∗, 1). We show πT (k) (hence f) is
decreasing on this range.

Fix k∗ < k < k + ϵ < 1 and let δ = pℓ(k + ϵ) − pℓ(k) ≥ 0. If instead we have
kϕ+ϵϕ

pℓ(k)rℓ+δrℓ+rh
= πT (k + ϵ) ≥ πT (k) = kϕ

pℓ(k)rℓ+rh
then (ϵϕ)/(δrℓ) ≥ πT (k) > πN(k).

This also means (1−k)ϕ
(1−pℓ(k))rℓ

= πN(k) > πN(k + ϵ) = (1−k)ϕ−ϵϕ
(1−pℓ(k))rℓ−δrℓ

. (In words, if an
increase in k moves “disproportionately” few low types to T to increase πT , this must
decrease πN < πT .) This contradicts the fact that πN , πT covary; the indifference
condition cannot hold at k + ϵ. Therefore (with continuity arguments) πT decreases
in k ∈ [k∗, 1].

A symmetric argument applies to k ∈ [0, k′] (where πN > πT ). An increase in
k disproportionately increases ph, increasing πN , the rate at which low types receive
organs, hence decreasing f().
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Proof of Theorem 2. On k ∈ [k′, 1] welfare is clearly single-peaked (with peak at
k∗) following arguments made in the text. The rest of this proof covers k ∈ [0, k′].

At k = 0 we know that (i) all organs go to the agents choosing N, (ii) all low
types choose N (pℓ = 0), and (iii) at most all high types choose N (ph ≤ 1). Thus the
fraction of organs going to high types at k = 0 is

f(0) = (1 − ph(0))rh

(1 − ph(0))rh + rℓ

≤ rh

rh + rℓ

≡ k̄

i.e. high types receive less than their “proportional share” k̄.
At k = k∗, agents use a separating profile and thus f(k∗) = k∗ > k̄ (where the

inequality holds from Proposition 1). Thus when comparing k∗ to k = 0, (i) high
types receive more organs and (ii) treatment decisions are more efficient. Welfare is
thus higher at k∗.

Finally the same conclusion can be drawn for any k ∈ (0, k′]: By Theorem 1 high
types receive even fewer organs at such k than at k = 0, and thus fewer than at k∗.
Furthermore treatment decisions remain less efficient than at k∗. Therefore welfare
is higher at k∗ than at any k ∈ [0, k′].

6.2 Imperfect Competition

It is immediate that any equilibrium profile must be non-wasteful, so we restrict
attention to non-wasteful profiles henceforth.

6.2.1 Equilibrium structure: Non-inversion/Inversion

We first observe that a TC i’s best response must be either a Non-inversion or In-
version strategy: a point on the boundary of [0, 1]2. Fix a profile p with interior
pi ∈ (0, 1)2, resulting in allocation probabilities πN , πT . Consider deviation p′

i ob-
tained from pi by “swapping” ϵ > 0 mass of low types at T to N with ϵ mass of high
types at N to T , i.e.

(p′
iℓ, p′

ih) = (piℓ − ϵn/rℓ, p′
ih + ϵn/rh)

Since this deviation does not change the total masses of patients at N and T it
does not change πN and πT . Therefore this deviation affects neither the other TCs’
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payoffs nor i’s total consumption of organs. The deviation changes i’s payoff only in
that, among i’s patients who fail to receive an organ, some who were assigned to N

transform from high types into low types and some who were assigned to T turn from
low types into high types. The magnitude of this change in payoff is

ϵ[(1 − πN)(LN
ℓ − LN

h ) + (1 − πT )(LT
h − LT

ℓ )] (13)

While (13) can have any sign, its linearity in ϵ means that payoff functions are ruled
surfaces, so a best response is a corner solution (or payoff-equivalent to one).

Lemma 3 (No double-mixing). Fix k, a TC i, and a profile p at which pi is a best
response to p−i. There exists p′

i ∈ [0, 1]2 \ (0, 1)2 such that

(i) p′
i also is a best response to p−i, and

(ii) for any TC j and any p′
−i, uj(pi, p′

−i) = uj(p′
i, p′

−i).

Proof of Lemma 3. Fix i and p as in the Lemma. If (13) is positive, i would have
the incentive to swap equal masses of low types at T with high types at N if feasible.
Since pi is a best response this must be infeasible: either piℓ = 0 or pih = 1. Similarly
if (13) is negative then piℓ = 1 or pih = 0. In either case the result follows immediately
by letting p′

i = pi.
Suppose (13) equals zero. If pi ̸∈ (0, 1)2, setting p′

i = pi proves the result. Other-
wise let (p′

iℓ, p′
ih) = (piℓ − ϵn/rℓ, p′

ih + ϵn/rh) where, choosing ϵ maximally, p′
i ̸∈ (0, 1)2.

Since (13) is zero p′
i is also a best response to p−i, proving (i). Furthermore this

deviation preserves i’s total masses of patients assigned N and T , implying (ii).

Fact 1. The following facts about (13) are used below.

(i) Since |(LT
h − LT

ℓ )| < (LN
ℓ − LN

h ), πN = πT implies that (13) is positive.

(ii) πN = 1 (πT = 1) implies that (13) is negative (positive).

(iii) When a change in strategy profile increases the total mass of patients at T , πN

increases, πT decreases, and thus (13) decreases.

By Lemma 3, a best response is either Non-inverting or Inverting, or it can be
replaced with a payoff equivalent such strategy without affecting other agents’ payoffs.
Figure 4 illustrates these best responses, though we henceforth ignore interior ones.
In addition we can prove the following.
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piℓ

pih

1

1

0

Figure 4: Changing TC i’s strategy along a dashed line (northwestly) changes i’s payoff
according to (13); arrows represent a payoff increase. Best responses lie within the thick
blue line. Depending on parameters, there may exist (shaded) regions of wasteful strategies.

Lemma 4. Fix k. If profile p is an equilibrium, there exists a payoff-equivalent
equilibrium p∗ where either

• (Non-inversion) for every TC i, p∗
iℓ = 0 or p∗

ih = 1; or
• (Inversion) for every TC i, p∗

iℓ = 1 or p∗
ih = 0.

Proof. Fixing such p, if (13) is positive (or negative) all TC’s are using Non-inversion
(or Inversion) strategies (Figure 4). If (13) is zero we can construct a payoff equivalent,
Non-inverting profile p′ (as in the proof of Lemma 3) at which each individual TC
sends the same mass of patients to T at both profiles. Therefore for all i, all best
responses to p−i remain best responses to p′

−i, and thus p′ also is an equilibrium.

6.2.2 Equilibrium structure: symmetry

To make the rest of our proofs more concise, we express strategies and the planner’s
rationing decision in terms of masses rather than percentages. To represent a planner’s
choice of k we denote the masses of organs rationed to N and T as

ϕN = (1 − k)ϕ ϕT = kϕ

Similarly for a given strategy profile p and TC i we write

Ai = (1 − piℓ)rℓ/n Di = piℓrℓ/n

Bi = (1 − pih)rh/n Ei = pihrh/n

Ci =
∑
j ̸=i

[(1 − pjℓ)rℓ/n + (1 − pjh)rh/n] Fi =
∑
j ̸=i

[pjℓrℓ/n + pjhrh/n]
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Here Ai, Bi, and Ci are i’s low types, high types, and competitors that take action
N ; Di, Ei, and Fi correspond to T . We can write (7) (i’s payoff ui) as

AiL
N
ℓ + Ai

Ai + Bi + Ci

ϕN(L∗ − LN
ℓ ) + BiL

N
h + Bi

Ai + Bi + Ci

ϕN(L∗ − LN
h )

+ DiL
T
ℓ + Di

Di + Ei + Fi

ϕT (L∗ − LT
ℓ ) + EiL

T
h + Ei

Di + Ei + Fi

ϕT (L∗ − LT
h )

(14)

keeping in mind that Ai = rℓ/n − Di and Bi = rh/n − Ei.
While a TC’s payoff is not generally concave in pi, it is concave with respect to pih

and, in some special cases, with respect to piℓ. The proof of the lemma also contains
partial derivatives of payoffs utilized in later proofs.

Lemma 5 (Limited concavity.). Fix k, a non-wasteful profile p, and a TC i.

(i) ui(p) is concave in pih.

(ii) If pih = 1 then ui(p) is either decreasing or concave in (non-wasteful) piℓ ∈ [0, 1].

(iii) If Assumption 1 holds, n ≥ 2, and pjh = pkh for all j, k,14 then ui(p) is concave
in piℓ.

Proof. To prove (i) we show (14) is concave in Ei. Omitting subscript i, its derivative
with respect to E (noting B = rh/n − E) is

∂ui

∂E
= A

(A + B + C)2 ϕN(L∗ − LN
ℓ ) − LN

h − A + C

(A + B + C)2 ϕN(L∗ − LN
h )

− D

(D + E + F )2 ϕT (L∗ − LT
ℓ ) + LT

h + D + F

(D + E + F )2 ϕT (L∗ − LT
h )

= (LT
h − LN

h ) + ϕN

A + B + C

(
A

A + B + C
(LN

h − LN
ℓ ) − C

A + B + C
(L∗ − LN

h )
)

+ ϕT

D + E + F

(
D

D + E + F
(LT

ℓ − LT
h ) + F

D + E + F
(L∗ − LT

h )
)

= (LT
h − LN

h ) − ϕN
A(LN

ℓ − LN
h ) + C(L∗ − LN

h )
(A + rh/n − E + C)2 + ϕT

D(LT
ℓ − LT

h ) + F (L∗ − LT
h )

(D + E + F )2

(15)

Since all bracketed terms are positive, (15) is decreasing in E. Therefore ui is concave
in E (i.e. in pih).

14The assumption that both Ci ≥ rh/n and pih = 0 also is sufficient.
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To show (ii) and (iii), the derivative of (14) with respect to D is

∂ui

∂D
= (LT

ℓ − LN
ℓ ) + ϕN

A + B + C

(
B

A + B + C
(LN

ℓ − LN
h ) − C

A + B + C
(L∗ − LN

ℓ )
)

+ ϕT

D + E + F

(
E

D + E + F
(LT

h − LT
ℓ ) + F

D + E + F
(L∗ − LT

ℓ )
)

= (LT
ℓ − LN

ℓ )︸ ︷︷ ︸
treatment effect

+ ϕN
B(LN

ℓ − LN
h ) − C(L∗ − LN

ℓ )
(rℓ/n − D + B + C)2︸ ︷︷ ︸

N -reallocation effect

+ ϕT
−E(LT

ℓ − LT
h ) + F (L∗ − LT

ℓ )
(D + E + F )2︸ ︷︷ ︸

T -reallocation effect

(16)

While the treatment effect is negative, the overall sign of (16) depends on the
signs of two “reallocation effects.” Denote

X = B(LN
ℓ − LN

h ) − C(L∗ − LN
ℓ ) X ′ = −E(LT

ℓ − LT
h ) + F (L∗ − LT

ℓ )

When X > 0 (X < 0) the “N -reallocation effect” is convex and increasing in D

(concave, decreasing in D); when X ′ > 0 (X ′ < 0) the “T -reallocation effect” is
convex and decreasing in D (concave, increasing in D).

Assumption 1 implies X < X ′ (see online appendix); thus there are three cases.
• X < X ′ ≤ 0: it is immediate that (16) is negative, so ui is decreasing in D (i.e.

in piℓ).
• X ≤ 0 < X ′: both reallocation effects are decreasing in D so (16) is decreasing

in D; hence ui is concave in D (in piℓ).
• 0 < X < X ′: both treatment effects are positive and convex in D, but change

in opposite directions with respect to D. Therefore (16)’s sign and its direction
of change w.r.t. D are indeterminate.

To prove statement (ii) of the lemma observe that if pih = 1 (i.e. B = 0) then
X < 0 yielding the first and second cases above.

To prove (iii) observe that if pih = pjh for all j then B ≤ (n−1)C and E ≤ (n−1)F .
If n ≥ 2 then Assumption 1 implies X < 0 < X ′ yielding the second case above.

The next lemma implies the intuitive idea that a TC who is sending more patients
to Treatment than another derives lower marginal benefit from sending additional
patients to Treatment due to crowding out more of its own patients.
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Lemma 6. For any k, any TCs i and j, and any non-wasteful profile p,

∂ui

∂Di

− ∂uj

∂Dj

= ∂ui

∂Ei

− ∂uj

∂Ej

= (Dj − Di)
[

ϕN(L∗ − LN
ℓ )

[rℓ + rh − (Di + Ei + Fi)]2
+ ϕT (L∗ − LT

ℓ )
(Di + Ei + Fi)2

]

+ (Ej − Ei)
[

ϕN(L∗ − LN
h )

[rℓ + rh − (Di + Ei + Fi)]2
+ ϕT (L∗ − LT

h )
(Di + Ei + Fi)2

]
(17)

Proof. Rewriting (15) with Ai = rℓ/n − Di and Ci = (n − 1)(rℓ/n + rh/n) − Fi,

∂ui

∂Ei

= (LT
h −LN

h )−ϕN
(rℓ/n − Di)(LN

ℓ − LN
h ) + ((n − 1)(rℓ/n + rh/n) − Fi)(L∗ − LN

h )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
Di(LT

ℓ − LT
h ) + Fi(L∗ − LT

h )
(Di + Ei + Fi)2 (18)

An analogous expression holds for j. Since Di + Ei + Fi = Dj + Ej + Fj (the total
mass of patients receiving Treatment is fixed), the two denominators in (18) are the
same as those in the analogous expression for j. Hence

∂ui

∂Ei

− ∂uj

∂Ej

= ϕN
(Di − Dj)(LN

ℓ − LN
h ) + (Fi − Fj)(L∗ − LN

h )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Di − Dj)(LT

ℓ − LT
h ) + (Fi − Fj)(L∗ − LT

h )
(Di + Ei + Fi)2

Since Fi − Fj = −(Di − Dj) + (Ej − Ei),

∂ui

∂Ei

− ∂uj

∂Ej

= ϕN
(Di − Dj)(LN

ℓ − LN
h − L∗ + LN

h ) + (Ej − Ei)(L∗ − LN
h )

(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Di − Dj)(LT

ℓ − LT
h − L∗ + LT

h ) + (Ej − Ei)(L∗ − LT
h )

(Di + Ei + Fi)2

which equals (17). The same argument (in the online appendix) yields the same
expression for ∂ui/∂Di − ∂uj/∂Dj.

Proof of Theorem 3. By Lemma 4 it is without loss to restrict attention to Invert-
ing and Non-inverting equilibria. Consider any Non-inverting equilibrium profile p.
Observe that for any i, j, either (piℓ, pih) ≥ (pjℓ, pjh) or (piℓ, pih) ≤ (pjℓ, pjh).

Suppose (piℓ, pih) ⪇ (pjℓ, pjh), i.e. using the above notation suppose Dj ≥ Di and
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Ej ≥ Ei with at least one inequality being strict. By (17) i has a greater marginal
incentive to send patients (of either type) to T than j does. This implies either that
i has the strict incentive to (feasibly) increase pi or that j has the strict incentive to
(feasibly) strictly decrease pj, contradicting the equilibrium assumption. A parallel
argument applies to Inversion equilibria.

6.2.3 NI-candidate existence and uniqueness

To prove Proposition 2 we write the partial derivatives of TC payoffs ui also as a
function of k. For any (symmetric, non-wasteful) non-inversion strategy profile and k,
define δW and δN by evaluating (15) and (16) at such profiles.

δW (E, k) ≡ ∂u

∂Ei

∣∣∣∣∣
∀j Dj=0, Ej=E

(19)

= (LT
h − LN

h ) − ϕN
rℓ(LN

ℓ − LN
h )

n(rℓ + rh − nE)2 − ϕN
(n − 1)(L∗ − LN

h )
n(rℓ + rh − nE) + ϕT

(n − 1)(L∗ − LT
h )

n2E

δN(D, k) ≡ ∂u

∂Di

∣∣∣∣∣
∀j Dj=D, Ej= rh

n

(20)

= (LT
ℓ − LN

ℓ ) − ϕN
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD) − ϕT

rh(LT
ℓ − LT

h )
n(nD + rh)2 + ϕT

(n − 1)(L∗ − LT
ℓ )

n(nD + rh)

With this notation we rewrite Definition 1 as follows.

Definition (NI-candidate). A symmetric profile p∗ (inducing strategies Di = p∗
iℓrℓ/n,

Ei = p∗
ihrh/n) is an NI-candidate if

• (1-NI) p∗
iℓ ≡ 0 and δW (E, k) = 0; or

• (1-NI corner solution) p∗
iℓ ≡ 0, nEi = kϕ, and δW (E, k) ≤ 0; or

• (3-NI) p∗
ih ≡ 1 and δN(D, k) = 0; or

• (3-NI corner solution) p∗
ih ≡ 1, rℓ − nDi = (1 − k)ϕ, and δN(D, k) ≥ 0; or

• (2-NI) p∗
iℓ ≡ 0, p∗

ih ≡ 1, δW (E, k) ≥ 0, and δN(D, k) ≤ 0.

The following lemma conveys the intuition that the benefit of assigning more
patients to T increases in k and decreases in the total mass of patients assigned to
T . This intuition is always true for high type-patients but requires mild assumptions
for low-type patients since they congest their TC’s high-type patients.

Lemma 7 (Properties of δN , δW ).
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(i) δW (E, k) is linearly increasing in k ∈ [0, 1] and decreasing in E ∈ [0, rh/n].

(ii) If Assumption 1 holds, n ≥ 2 implies δN(D, k) is linearly increasing in k ∈ [0, 1],
and n ≥ 3 implies δN(D, k) is decreasing in D ∈ [0, rℓ/n].

Proof. To prove the first claim, note that δW is continuous and differentiable. Dif-
ferentiating δW (E, k) with respect to k yields

∂δW

∂k
= ϕ

rℓ(LN
ℓ − LN

h )
n(rℓ + rh − nE)2 + ϕ

(n − 1)(L∗ − LN
h )

n(rℓ + rh − nE) + ϕ
(n − 1)(L∗ − LT

h )
n2E

> 0 (21)

which is a sum of positive terms independent of k; so δW is linearly increasing in k.
Likewise,

∂δW

∂E
= −ϕN

2rℓ(LN
ℓ − LN

h )
(rℓ + rh − nE)3 − ϕN

(n − 1)(L∗ − LN
h )

(rℓ + rh − nE)2 − ϕT
(n − 1)(L∗ − LT

h )
(nE)2

which for any E ∈ (0, rh/n] is a sum of three strictly negative terms; so δW is de-
creasing in E.

Analogously for the second claim,

∂δN

∂k
= ϕ

(n − 1)(L∗ − LN
ℓ )

n(rℓ − nD) + ϕ
−rh(LT

ℓ − LT
h ) + (n − 1)(rh + nD)(L∗ − LT

ℓ )
n(rh + nD)2 (22)

If n ≥ 2 and Assumption 1 holds, then the second term is strictly positive. Since the
first term is positive, δN is linearly increasing in k. Likewise

∂δN

∂D
= ϕN

−(n − 1)(L∗ − LN
ℓ )

(rℓ − nD)2 + ϕT
2rh(LT

ℓ − LT
h )

(nD + rh)3 − ϕT
(n − 1)(L∗ − LT

ℓ )
(nD + rh)2

Since rh/(nD + rh) < 1,

∂δN

∂D
< ϕN

−(n − 1)(L∗ − LN
ℓ )

(rℓ − nD)2 + ϕT
2(LT

ℓ − LT
h )

(nD + rh)2 − ϕT
(n − 1)(L∗ − LT

ℓ )
(nD + rh)2

If n ≥ 3 and Assumption 1 holds, then the magnitude of the third term exceeds that
of the second term; so δN is decreasing in D.

Lemma 8 (Region 2-NI). Fix k and let ps denote the “NI-separating” profile, ps
iℓ ≡ 0

and ps
ih ≡ 1. Then ps is an NI-candidate for k if and only if k′

n ≤ k ≤ k∗
n, where

k′
n < k∗

n are defined by (11) and (12).

36



Proof. Fixing k, ps is an NI-candidate if and only if a TC has no incentive to decrease
E from its value rh/n and has no incentive to increase D above 0.

The former requirement is δW (rh/n, k) ≥ 0 which, by Equation 19, is

(LT
h − LN

h ) − ϕN

rℓ

1
n

(LN
ℓ − nLN

h + (n − 1)L∗) + ϕT

rh

n − 1
n

(L∗ − LT
h ) ≥ 0

Substituting for ϕN = (1 − k)ϕ and ϕT = kϕ this inequality holds when

k ≥
−(LT

h − LN
h ) + ϕ

rℓ

1
n

(
(n − 1)L∗ + LN

ℓ − nLN
h

)
ϕ
rℓ

1
n

((n − 1)L∗ + LN
ℓ − nLN

h ) + ϕ
rh

n−1
n

(L∗ − LT
h )

≡ k′
n

establishing (11).
The latter requirement is δN(0, k) ≤ 0 which, by Equation 20, is

(LT
ℓ − LN

ℓ ) − ϕN

n−1
n

(L∗ − LN
ℓ )

rℓ

+ ϕT

− 1
n
(LT

ℓ − LT
h ) + n−1

n
(L∗ − LT

ℓ )
rh

≤ 0

which holds when

kα ≤ (LN
ℓ − LT

ℓ ) + ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ )

where α =
[

ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
− 1

n
(LT

ℓ − LT
h ) + n − 1

n
(L∗ − LT

ℓ )
]]

Assumption 1 and the assumption that n ≥ 3 imply α > 0. Dividing both sides of
the inequality by α yields k ≤ k∗

n as defined in (12).

The following implies that separation (2-NI) occurs for non-degenerate values of k.

Lemma 9. For k′
n, k∗

n defined in (11)–(12), k′
n < k∗

n and rh

rℓ+rh
≡ k̄ < k∗

n.

Proof. It is clear from (11) and (12) that k′
n < 1 and k∗

n > 0. Hence if k′
n = 0 or

k∗
n = 1 the conclusion is immediate.

Suppose k′
n > 0 and k∗

n < 1, hence δW (rh/n, k′
n) = 0 and δN(0, k∗

n) = 0. Since δW

is increasing in k, we prove the result by showing δW (rh/n, k∗
n) > 0 = δN(0, k∗

n). We do
this by showing that (i) δW (rh/n, k) − δN(0, k) increases in k, and (ii) δW (rh/n, k̄) >

δN(0, k̄) at the “proportional” value k̄ ≡ rh

rℓ+rh
< k∗

n.
To show (i) we evaluate (21)–(22) at (rh/n, k) and (0, k) (reordering the first two
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terms of the first expression).

∂δW

∂k
(rh/n, k) = ϕ

(n − 1)(L∗ − LN
h )

nrℓ

+ ϕ
(LN

ℓ − LN
h )

nrℓ

+ ϕ
(n − 1)(L∗ − LT

h )
nrh

∂δN

∂k
(0, k) = ϕ

(n − 1)(L∗ − LN
ℓ )

nrℓ

+ ϕ
−(LT

ℓ − LT
h )

nrh

+ ϕ
(n − 1)(L∗ − LT

ℓ )
nrh

It is easy to see that the three terms in the first expression are greater than the
respective terms in the second expression, proving (i).

To prove (ii), evaluate the two derivatives at k̄.

δN(0, k̄) = (LT
ℓ − LN

ℓ ) − ϕ
rℓ

rh + rℓ

(n − 1)(L∗ − LN
ℓ )

nrℓ

+ ϕ
rh

rh + rℓ

−(LT
ℓ − LT

h ) + (n − 1)(L∗ − LT
ℓ )

nrh

= (LT
ℓ − LN

ℓ ) − ϕ
(n − 1)(L∗ − LN

ℓ )
n(rh + rℓ)

+ ϕ
−(LT

ℓ − LT
h ) + (n − 1)(L∗ − LT

ℓ )
n(rh + rℓ)

= (LT
ℓ − LN

ℓ ) − ϕ
(LT

ℓ − LT
h )

n(rh + rℓ)
+ ϕ

(n − 1)(LN
ℓ − LT

ℓ )
n(rh + rℓ)

< 0

which is negative since the magnitude of the first (negative) term exceeds that of the
third (positive) term. Additionally, since δN(0, k∗

n) = 0 and is increasing in k this
implies k̄ < k∗

n.
Secondly,

δW (rh/n, k̄) = (LT
h − LN

h ) − ϕ
rℓ

rh + rℓ

(LN
ℓ − LN

h )
nrℓ

− ϕ
rℓ

rh + rℓ

(n − 1)(L∗ − LN
h )

nrℓ

+ ϕ
rh

rh + rℓ

(n − 1)(L∗ − LT
h )

nrh

= (LT
h − LN

h ) − ϕ
(LN

ℓ − LN
h )

n(rh + rℓ)
− ϕ

(n − 1)(L∗ − LN
h )

n(rh + rℓ)
+ ϕ

(n − 1)(L∗ − LT
h )

n(rh + rℓ)

= (LT
h − LN

h ) − ϕ
(LN

ℓ − LN
h )

n(rh + rℓ)
− ϕ

(n − 1)(LT
h − LN

h )
n(rh + rℓ)
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Note that

δW (rh/n, k̄) − δN(0, k̄) = (LT
h − LN

h ) − (LT
ℓ − LN

ℓ ) − ϕ
(LN

ℓ − LN
h ) − (LT

ℓ − LT
h )

n(rh + rℓ)

− ϕ(n − 1)LT
h − LN

h + LN
ℓ − LT

ℓ

n(rh + rℓ)

=
[
LT

h − LN
h − LT

ℓ + LN
ℓ

] [
1 − ϕ

rh + rℓ

]
> 0

since LT
h > LN

h , LN
ℓ > LT

ℓ , and ϕ < rh + rℓ. Therefore at k∗
n > k̄, (i) implies

δW (rh/n, k∗
n) > δN(0, k∗

n) = 0 = δW (rh/n, k′
n)

implying k∗
n > k′

n.

Lemma 10 (Region 3-NI). If k > k∗
n then there exists a unique NI-candidate. It

satisfies pih ≡ 1.

Proof. Let ps be defined as in Lemma 8 and (with a slight abuse of notation) recall
δN(ps, k∗

n) = 0 by definition of k∗
n. By Lemma 8, k > k∗

n > k′
n implies δW (ps, k) > 0.

The lemma furthermore implies δW (p, k) > 0 for any symmetric profile satisfying
piℓ ≡ 0, i.e. there can be no NI-candidate in region 1-NI.

Lemma 8 similarly implies δN(ps, k) > 0. By Lemma 7, δN(·, k) continuously
decreases as we increase D (piℓ) from zero. Either δN(D, k) = 0 at some unique
D or we have (corner solution) δN(rℓ/n, k) > 0. In the latter case we clearly have a
unique NI-candidate. In the former (interior) case, recall by Lemma 5 (statement (ii))
that at such a profile, a TC’s payoffs are either decreasing or concave in piℓ. Since
δN(D, k) = 0 we must have concavity with respect to piℓ, hence this point uniquely
satisfies the local first- and second-order conditions.

Lemma 11 (Region 1-NI). If k < k′
n then there exists a unique NI-candidate. It

satisfies piℓ ≡ 0.

The omitted proof mirrors that of Lemma 10 with the simplification that, in
reference to Lemma 5, payoffs are always concave in pih.

Proof of Proposition 2. NI-candidate existence, uniqueness, and their description
follow from the above lemmas. Monotonicity of p∗() follows from Lemma 7.
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6.2.4 Optimal NI-candidate

The proof of Theorem 5 relies on the following lemma, stating that in region 3-NI we
have πT > πN .

Lemma 12 (πT > πN in Region NI-3). Fix k, and suppose p∗ is a NI-3 equilibrium:
for all i, p∗

iℓ = p∗
ℓ > 0 (and hence p∗

ih = 1). Then k > (p∗
ℓrℓ + rh)/(rℓ + rh), that is,

the equilibrium allocation probability is higher in T than in N: πT > πN .

Proof. By Lemma 5, p∗
ih = 1 implies ui(p∗) is either decreasing or concave in piℓ.

Since p∗
ℓ > 0 it must be concave. Therefore either the partial derivative (20) is zero,

or the equilibrium is at a corner (where the N-nonwastefulness constraint binds and
πN = 1). However Fact 1(ii) rules out the latter, hence (20) is zero.

Recall for NI-3 equilibria that A = rℓ/n − D, B = 0, C = (n − 1)A, E = rh/n,
F = (n − 1)(D + E). So πN = ϕN/(A + B + C) = ϕN/(rℓ − nD) and πT =
ϕT /(D + E + F ) = ϕT /(rh + nD). Let λ = rh/(rh + nD). Since Equation 20 is zero
we have

(LN
ℓ − LT

ℓ ) + ϕN
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD)

= ϕT
−rh(LT

ℓ − LT
h ) + (n − 1)(nD + rh)(L∗ − LT

ℓ )
n(nD + rh)2

LN
ℓ + πN (n − 1)

n
(L∗ − LN

ℓ )

= LT
ℓ + πT −rh(LT

ℓ − LT
h ) + (n − 1)(nD + rh)(L∗ − LT

ℓ )
n(nD + rh)

Thus

(1 − πN)LN
ℓ + πN

(
(n − 1)

n
L∗ + 1

n
LN

ℓ

)

= LT
ℓ + πT

(
(n − 1)(L∗ − LT

ℓ )
n

+ −rh(LT
ℓ − LT

h )
n(nD + rh)

)

= LT
ℓ + πT

(
n − 1

n
(L∗ − LT

ℓ ) + −λ(LT
ℓ − LT

h )
n

)

= (1 − πT )LT
ℓ + πT

(
n − 1

n
L∗ + (1 − λ)LT

ℓ + λLT
h

n

)

< (1 − πT )LN
ℓ + πT

(
n − 1

n
L∗ + 1

n
LN

ℓ

)
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Since L∗ > LN
ℓ we have πT > πN ; equivalently k > (p∗

ℓrℓ + rh)/(rℓ + rh).

Proof of Theorem 5. For any k let f(k) and πT (k) respectively denote the fraction
of organs allocated to high types and the probability that a patient assigned to T

receives an organ, under k’s NI-candidate. We prove the results regarding f . The
results regarding TCs’ total payoffs follow directly using the same arguments made
in Subsection 3.2 under Perfect Competition.

It is immediate that f() is increasing on [k′
n, k∗

n] since the strategy profile is the
same for all NI-candidates on this range. The remainder of the proof consists of
showing (i) f is decreasing on [k∗

n, 1], and (ii) f(k) < f(k∗
n) for k ∈ [0, k′

n].
Step (i). For any k ∈ (k∗

n, 1], there is at most one symmetric profile (namely
the NI-candidate p(k)) satisfying δN(D, k) = 0 by Lemma 10. Whenever such p(k)
exists (i.e. the NI-candidate is not a corner solution), let D(k) = p(k)rℓ/n denote the
corresponding mass of low types each TC sends to T.

By Lemma 7 D(k) is increasing in k; hence the values of k > k∗
n for which such

δN(D(k), k) = 0 exist are an interval (of the form (k∗
n, x] by continuity). We show that

πT (k) is decreasing in k on this interval. Since pih(k) ≡ 1 on this range, a decrease
in πT () necessarily decreases f(), proving (i).

We implicitly differentiate δN(D(k), k) = 0 (Equation 20) w.r.t. k after substitut-
ing ϕN = (1 − k)ϕ and ϕT = kϕ. (Write D = D(k) and D′ = ∂D(k)/∂k, and ignore
the corner case piℓ ≡ 1, where nD = rℓ.) This yields

ϕ
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD) − ϕ(1 − k)(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD)2 nD′ − ϕ

rh(LT
ℓ − LT

h )
n(nD + rh)2

+ 2ϕk
rh(LT

ℓ − LT
h )

n(nD + rh)3 nD′ + ϕ
(n − 1)(L∗ − LT

ℓ )
n(nD + rh) − ϕk

(n − 1)(L∗ − LT
ℓ )

n(nD + rh)2 nD′ = 0

Denoting r = rℓ + rh and S = nD + rh < r, we obtain

D′ =
(n−1)(L∗−LN

ℓ )
n(r−S) + (n−1)(L∗−LT

ℓ )
nS − rh(LT

ℓ −LT
h )

nS2

(1 − k) (n−1)(L∗−LN
ℓ

)
(r−S)2 + k

(n−1)(L∗−LT
ℓ

)
S2 − 2k

rh(LT
ℓ

−LT
h

)
S3

= (n − 1)(L∗ − LN
ℓ )S2 + (n − 1)(L∗ − LT

ℓ )(r − S)S − rh(LT
ℓ − LT

h )(r − S)
(1 − k)(n − 1)(L∗ − LN

ℓ )S3 + k(n − 1)(L∗ − LT
ℓ )S(r − S)2 − 2krh(LT

ℓ − LT
h )(r − S)2

(r − S)S
n
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To show that the derivative of πT (k) ≡ kϕ
nD+rh

is negative, i.e. that

ϕ

nD + rh

− nkϕ

(nD + rh)2 D′ = ϕ

S
− nkϕ

S2 D′ < 0

we need to show D′ > S/(nk). Using the derivation of D′ above, this inequality
becomes

(L∗ − LN
ℓ )S2(n − 1)(kr − S) > −krh(LT

ℓ − LT
h )(r − S)2

Since r > S this is true whenever k ≥ S/r, i.e. whenever πT (k) ≥ πN(k), which is
true by Lemma 12. Hence πT () and f() are decreasing on [k∗

n, 1].
Step (ii): consider the case k ∈ [0, k′

n].15 By previous arguments, NI-candidate
profiles vary continuously in k; therefore f() is continuous. Hence we can choose

k̃ = arg max
[0,k′

n]
f(k)

We show f(k̃) < f(k∗
n) ≡ k∗

n.
Case 1: πN(k̃) ≥ πT (k̃). A low type receives an organ with probability πN(k̃),

whereas a high type receives an organ with a weakly lower probability of

(1 − pih)πN(k̃) + pihπT (k̃)

where (0, pih) is the NI-candidate for k̃. Since high types receive organs with lower
probability than low types, they collectively receive no more than the (unconditional)
organ allocation rate: f(k̃) ≤ rh

rℓ+rh
< k∗

n, where the second inequality follows from
Lemma 9 (k̄ < k∗

n).
Case 2: πN(k̃) < πT (k̃). We show that f is increasing at k̃. This means k̃ = k′

n,
implying the desired conclusion.

Since the mass of organs allocated to low types is πN(k̃)rℓ, f(k̃) = 1 − πN

ϕ
rℓ. To

show f is increasing we show πN() is decreasing at k̃.
To show the derivative of πN(k) ≡ (1−k)ϕ

rℓ+rh−nE
is negative at k̃, i.e. that

−ϕ

rℓ + rh − nE
+ (1 − k̃)ϕnE ′

(rℓ + rh − nE)2 =
(

−ϕ

rℓ + rh − nE

)(
1 − (1 − k̃)nE ′

rℓ + rh − nE

)
≤ 0

15This case is mostly symmetric to the previous one, except that the possibility that k̄ < k′
n

necessitates additional arguments.
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we need to show
E ′(k̃) ≤ rℓ + rh − nE(k̃)

(1 − k̃)n
(23)

We implicitly differentiate δW (E(k), k) = 0 (Equation 19) w.r.t. k and evaluate
at k̃. Writing E = E(k) and E ′ = E ′(k) we obtain

ϕ
(n − 1)(L∗ − LT

h )
nE

− ϕ(1 − k̃)(n − 1)(L∗ − LN
h )

(rℓ + rh − nE)2 nE ′ + ϕ
rℓ(LN

ℓ − LN
h )

(rℓ + rh − nE)2

− 2ϕ(1 − k̃) rℓ(LN
ℓ − LN

h )
(rℓ + rh − nE)3 nE ′ + ϕ

(n − 1)(L∗ − LN
h )

(rℓ + rh − nE) − ϕk̃
(n − 1)(L∗ − LT

h )
(nE)2 E ′n = 0

Denoting S = rℓ + rh − nE(k̃) and r = rh + rℓ this yields

E′(k̃) = rℓ(LN
ℓ − LN

h )S−2 + (n − 1)(L∗ − LN
h )S−1 + (n − 1)(L∗ − LT

h )(r − S)−1

2(1 − k̃)rℓ(LN
ℓ − LN

h )S−3n + (1 − k̃)(n − 1)(L∗ − LN
h )S−2n + k̃(n − 1)(L∗ − LT

h )(r − S)−2n

Therefore one can show that (23) is equivalent to

(n − 1)(L∗ − LT
h )[(1 − k̃)(r − S) − k̃S] ≤ rℓ(LN

ℓ − LN
h )(1 − k̃)

(
r − S

S

)2

Note that ϕ(1−k̃)
S

= πN(k̃) < πT (k̃) = ϕk̃
r−S

implies that the LHS is non-positive. Since
the RHS is non-negative (23) holds.

Proof of Proposition 4. When k∗
n < 1 and ϕ ≤ rh, Equation 12 takes the form

k∗
n =

(LN
ℓ − LT

ℓ ) + ϕ
rℓ

n−1
n

(L∗ − LN
ℓ )

ϕ
rℓ

n−1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
n−1

n
L∗ + 1

n
LT

h − LT
ℓ

]
=

∆ℓ + ϕ
rℓ

n−1
n

∆∗
ϕ
rℓ

n−1
n

∆∗ + ϕ
rh

[
n−1

n
(∆∗ + ∆ℓ) − 1

n
∆T

]
=

∆ℓ + ϕ
rℓ

n−1
n

∆∗
ϕ
rh

n−1
n

∆ℓ +
(

ϕ
rℓ

+ ϕ
rh

)
n−1

n
∆∗ − ϕ

rh

1
n
∆T

= a∆ℓ + b∆∗

a′∆ℓ + b′∆∗ + c∆T

where a > a′, b < b′, and c < 0. It is clearly decreasing in ϕ and increasing in ∆T .
Differentiating the last expression yields the remaining results since k∗

n < 1.
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6.2.5 Non-inversion equilibrium existence

The proof of Theorem 4 is presented last as it makes use of Proposition 2. We prove a
(technically) stronger result since (8) implies k̄ ≥ k′ (proven in the Online Appendix).

Theorem. Suppose n ≥ 3 and that Assumption 1 holds. If k ≥ max{k′
n, k̄} and (9)

holds then there exists a unique Non-inversion equilibrium.

Proof. Make the assumptions of the theorem and let p∗ be the unique NI-candidate
for k. We first show that TC i’s best response to p∗

−i must be a Non-inversion strategy,
then show p∗

i is optimal among all such strategies.

Claim 1: any best response to p∗
−i satisfies piℓ = 0 or pih = 1.

To prove Claim 1 it is sufficient to show that (13) is positive for any profile (pi, p∗
−i).

Since p∗
−i is fixed throughout let πN(pi) and πT (pi) denote the allocation probabilities

when i uses strategy pi. We want to show that for any pi,

(1 − πN(pi))(∆h + ∆T + ∆ℓ) − (1 − πT (pi))∆T > 0

If πN(pi) ≤ πT (pi) the inequality is immediate; if πN(pi) > πT (pi) we must show

∆T

∆h + ∆ℓ

<
1 − πN(pi)

πN(pi) − πT (pi)
(24)

Since k ≥ k′
n implies p∗

jh = 1 for all j ̸= i, for all pi we have

πN(pi) = (1 − k)ϕ
n−1

n
(1 − p∗

jℓ)rℓ + (1 − piℓ) rℓ

n
+ (1 − pih) rh

n

≤ (1 − k)ϕ
n−1

n
(1 − p∗

jℓ)rℓ

(25)

Separately, k ≥ max{k′
n, k̄} implies

ϕ(1 − k)
(1 − p∗

iℓ)rℓ

= πN(p∗
i ) < πT (p∗

i ) = ϕk

rh + p∗
iℓrℓ

since either k ≥ k∗
n (in which case Lemma 12 applies) or k ∈ [k′

n, k∗
n] (in which case

p∗
iℓ(k) = 0, p∗

ih(k) = 1, and k ≥ k̄ imply the inequality). The inequality can be
rewritten as

p∗
iℓ <

krℓ − (1 − k)rh

rℓ
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With (25) this means that for any pi,

πN(pi) ≤ (1 − k)ϕ
n−1

n
(1 − p∗

iℓ)rℓ

<
(1 − k)ϕ

n−1
n

(
1 − krℓ−(1−k)rh

rℓ

)
rℓ

= ϕ
n−1

n
(rℓ + rh)

Hence (9) implies 1 − πN(pi) > ∆T /(∆H + ∆ℓ), implying (24) and the claim.

Claim 2: p∗
i is a best response to p∗

−i.
By Claim 1 it suffices to compare p∗

i only to other Non-inversion strategies. We
show that ui(·, p∗

−i) is concave across the entire range of such (non-wasteful) strategies,
proving the result (since p∗

i is a local maximizer).
Lemma 5(i) implies ui(pi, p∗

−i) is concave over the range where piℓ = 0 and pih ∈
[0, 1]. Lemma 5(iii) implies ui(pi, p∗

−i) is concave over the range where piℓ ∈ [0, 1] and
pih = 1. Consider their intersection, p′

i = (0, 1). At profile (p′
i, p∗

−i),

∂ui

∂Ei

− ∂ui

∂Di

= (LN
ℓ − LN

h )
(

1 − ϕN
rℓ

n
+ Ci

)
− (LT

ℓ − LT
h )
(

1 − ϕT
rh

n
+ Fi

)
= (LN

ℓ − LN
h )(1 − πN(p′

i)) − (LT
ℓ − LT

h )(1 − πT (p′
i)) (26)

Note also that

πT (p′
i) = ϕT

rh + n−1
n

p∗
jℓrℓ

>
ϕT

rh + p∗
jℓrℓ

= πT (p∗
i )

πN(p′
i) = ϕN

1
n
rℓ + n−1

n
(1 − p∗

jℓ)rℓ

<
ϕN

(1 − p∗
jℓ)rℓ

= πN(p∗
i )

Lemma 12 implies πT (p∗
i ) > πN(p∗

i ), πT (p′
i) > πN(p′

i). Combining with (26) we have
∂ui

∂E
> ∂ui

∂D
, i.e. ui(·, p∗

−i) is concave at p′
i.
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A Online Appendix

(This online appendix will ultimately be separated from the main paper and given
its own title.)

A.1 Payoffs are nowhere-concave
A necessary condition for (weak) concavity of Ui is for the determinant of the Hessian
matrix to be negative. Firstly, one can confirm that

∂2Ui

∂D∂E
= ϕN

−(rℓ + rh − D − E − F )(LN
ℓ − LN

h ) + 2[(rh/n − E)(LN
ℓ − LN

h ) − ((n − 1)(rℓ/n + rh/n) − F )(L∗ − LN
ℓ )]

(rℓ + rh − D − E − F )3

− ϕT

(D + E + F )(LT
ℓ − LT

h ) + 2(−E(LT
ℓ − LT

h ) + F (L∗ − LT
ℓ ))

(D + E + F )3

∂2Ui

∂E2 = −2ϕN

(rℓ/n − D)(LN
ℓ − LN

h ) + [(n − 1)(rℓ/n + rh/n) − F ](L∗ − LN
h )

(rℓ + rh − D − E − F )3 − 2ϕT

D(LT
ℓ − LT

h ) + F (L∗ − LT
h )

(D + E + F )3

∂2Ui

∂D2 = 2ϕN

(rh/n − E)(LN
ℓ − LN

h ) − [(n − 1)(rℓ/n + rh/n) − F ](L∗ − LN
ℓ )

(rℓ + rh − D − E − F )3 − 2ϕT

−E(LT
ℓ − LT

h ) + F (L∗ − LT
ℓ )

(D + E + F )3

The determinant is ∂2Ui

∂E2 · ∂2Ui

∂D2 −
(

∂2Ui

∂D∂E

)2
. Substituting with the above expressions

and rearranging terms, the determinant can be written as

−S2

(D + E + F )4(rh + rℓ − (D + E + F ))4

where (letting r = rℓ + rh)

S = −ϕT (LT
ℓ − LT

h ) (r − (D + E + F ))2 − ϕN(LN
ℓ − LN

h )(D + E + F )2

which is always negative. Therefore the determinant is negative for any parameter
values (setting aside the two degenerate combinations where D + E + F = 0 = k and
where (D + E + F )/r = 1 = k), so Ui is not concave (nor convex) at any point.

A.2 Omitted argument in proof of Lemma 6

The claim is made that “a parallel argument shows that ∂ui/∂Di − ∂uj/∂Dj equals”
the expression given in the proof. To formalize this argument here, recall Ai =
rℓ/n − Di, Bi = rh/n − Ei, and Ci = (n − 1)(rℓ/n + rh/n) − Fi. The derivative of

i



(14) with respect to Di is

(LT
ℓ − LN

ℓ ) + ϕN

A + B + C

(
B

A + B + C
(LN

ℓ − LN
h ) − C

A + B + C
(L∗ − LN

ℓ )
)

+ ϕT

D + E + F

(
E

D + E + F
(LT

h − LT
ℓ ) + F

D + E + F
(L∗ − LT

ℓ )
)

= (LT
ℓ − LN

ℓ ) + ϕN
(rh/n − Ei)(LN

ℓ − LN
h ) − ((n − 1)(rℓ/n + rh/n) − Fi)(L∗ − LN

ℓ )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
−Ei(LT

ℓ − LT
h ) + Fi(L∗ − LT

ℓ )
(Di + Ei + Fi)2 (27)

An analogous expression holds for j,

∂uj

∂Dj

= (LT
ℓ −LN

ℓ )+ϕN
(rh/n − Ej)(LN

ℓ − LN
h ) − ((n − 1)(rℓ/n + rh/n) − Fj)(L∗ − LN

ℓ )
(rℓ + rh − Dj − Ej − Fj)2

+ ϕT
−Ej(LT

ℓ − LT
h ) + Fj(L∗ − LT

ℓ )
(Dj + Ej + Fj)2

Again since Di + Ei + Fi = Dj + Ej + Fj this yields

∂ui

∂Di

− ∂uj

∂Dj

= ϕN
(Ej − Ei)(LN

ℓ − LN
h ) + (Fi − Fj)(L∗ − LN

ℓ )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Ej − Ei)(LT

ℓ − LT
h ) + (Fi − Fj)(L∗ − LT

ℓ )
(Di + Ei + Fi)2

= ϕN
(Ej − Ei)(L∗ − LN

h ) + (Dj − Di)(L∗ − LN
ℓ )

(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Ej − Ei)(L∗ − LT

h ) + (Dj − Di)(L∗ − LT
ℓ )

(Di + Ei + Fi)2

= (Ej − Ei)
[

ϕN(L∗ − LN
h )

(rℓ + rh − Di − Ei − Fi)2 + ϕT (L∗ − LT
h )

(Di + Ei + Fi)2

]

+ (Dj − Di)
[

ϕN(L∗ − LN
ℓ )

(rℓ + rh − Di − Ei − Fi)2 + ϕT (L∗ − LT
ℓ )

(Di + Ei + Fi)2

]

as desired.
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A.3 Assumption 1 implies X < X ′ in proof of Lemma 5.

X − X ′ = B(LN
ℓ − LN

h ) − C(L∗ − LN
ℓ ) + E(LT

ℓ − LT
h ) − F (L∗ − LT

ℓ )

=
(rh

n
− E

)
(LN

ℓ − LN
h ) −

(
n − 1

n
(rℓ + rh) − F

)
(L∗ − LN

ℓ ) + E(LT
ℓ − LT

h ) − F (L∗ − LT
ℓ )

= rh

n
(LN

ℓ − LN
h ) − n − 1

n
(rℓ + rh)(L∗ − LN

ℓ ) + F (L∗ − LN
ℓ − L∗ + LT

ℓ ) − E(LN
ℓ − LN

h − LT
ℓ + LT

h )

<

[
rh

n
(LN

ℓ − LN
h ) − n − 1

n
(rℓ + rh)(LN

ℓ − LN
h )
]

+ F (LT
ℓ − LN

ℓ ) + E((LT
ℓ − LT

h ) − (LN
ℓ − LN

h ))

The inequality follows Assumption 1, and the final expression is the sum of three
negative terms.

A.4 Inequality k̄ ≥ k′
n

Rewriting the expression for k′
n (Equation 11) using the definitions in Equation 10,

the inequality k̄ > k′
n becomes

rh

rℓ + rh

≥
−∆h + ϕ

rℓ

(
∆ − 1

n
∆∗
)

ϕ
rℓ

(
∆ − 1

n
∆∗
)

+ ϕ
rh

n−1
n

(∆ − ∆h)

which is equivalent to

ϕ
n − 1

n
∆ − ϕ

(
∆ − 1

n
∆∗

)
≥ ϕ

n − 1
n

∆h − ∆h(rℓ + rh)

Simplifying and rearranging this expression leads to Equation 8.

A.5 Computational analysis: details

Here we summarize methodology and details of the computational analysis described
in Subsection 4.3. The code is available at http://www.kellogg.northwestern.
edu/faculty/schummer/ftp/research/RTC/RTC-code.zip.

The computations were performed on a workstation equipped with dual Intel
Xeon Gold 5220R processors, each operating at 2.20 GHz, 256 GB of RAM, and two
NVIDIA GV100 GPUs, each with 32 GB memory.

Fixing primitives that satisfy our assumptions, the goal of the computational ex-
ercises is to identify the equilibria that exist for various values of k, identify their
structure, and compare welfare among all of them. The primitives are the pa-
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tient masses (normalized to rℓ + rh = 1), organ mass ϕ < 1, patient welfare levels
L∗ > LN

ℓ > LT
ℓ > LT

h > LN
h , and number of TC’s n. First, to find equilibria for a

given k we find (approximate) best response functions in a discretized strategy space
and their (approximate) fixed points, leveraging some analytical results to simplify
the search. Second, to find the planner’s optimal ration k, we compare welfare un-
der any Inversion equilibrium found in the previous step to welfare obtained at the
Non-inversion equilibrium obtained when k = k∗

n, ignoring all other NI equilibria by
Theorem 5.

The following summary of details gives an overview of the code structure and
additional technical details including how primitives and k are discretized. The result
is one of the “prisms” found in Figure 2.

Step 1: Compute TC i’s best responses (Python/Jax)
• Configure GPUs; Set precision to float64.
• Initialize set of economies.

– Fix n, rℓ, rh = 1 − rℓ, ϕ < 1.
– Normalize LN

h = 0, LN
ℓ = 0.5, L∗ ≥ 1 (Assumption 1).

– Consider values 0 < LT
h < LT

ℓ < 0.5 in increments of 0.02.
– Consider values 0 ≤ k ≤ 1 in increments of 0.01.

• Create grids for best response calculation.
– Determine ‘admissible’ range of profiles p−i (specifically, Fi in the notation

of the paper’s appendix) that gives i a non-empty set of non-wasteful
strategies.

– Discretize domain of Fi (brmesh=100).
• [Parallelized] For each p−i (Fi) and each of the four edges of [0, 1]2 (Lemma 3)

determine an edge-constrained best response. For each edge:
– Find feasibility (non-wastefulness) constraints.
– Find edge-constrained best responses (if edge is feasible).

∗ Optimization method: jaxopt.LBFGSB
∗ Tolerance: 10−10; Max Iterations: 1000

• Choose edge-constrained best response(s) yielding the largest payoff.
Step 2: Construct a best response function (Mathematica)
• Round numerically indistinguishable zeros and ones using a tolerance of Machine

epsilon (≈ 2.22e−16). Filter out repeated edge-constrained best responses.
• For a relatively small number of instances with multiple best response edges:
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1

1

0

Figure 5: The figure depicts all the possible types of violations of probability constraints
allowed by the optimization algorithm. Obviously, since we find one optimum per edge, at
most one violation per edge is possible.

Fi

n−1

D∗
i (Fi) + E∗

i (Fi)

z1
z2

z3

z4
z5

z6

w

y

Figure 6: Masses

– Check for violations of probability constraints (expected in numerical opti-
mization) and correct using analytical properties of the problem. Violation
types are depicted in Figure 5.

∗ Green violations can be removed by limited concavity (Lemma 5).
∗ Red violations: if origin belongs to best responses, ignore the violation

and delete it.
– For all the remaining non-singletons, both best responses in the (pℓ,i, ph,i)

space yield the same mass D + E, so preserve both.
Step 3: Find and classify equilibria (Mathematica)
• To find BR fixed points, find all critical pairs: pairs of consecutive points which

are at opposite sides of the 45◦ line. For example, pairs (z1, z2), (z3, z4), (z5, z6)
in Figure 6) which illustrates i’s best response to the per-capita mass of patients
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i’s opponents send to T (Fi/(n − 1)).
• If both members of a critical pair yield the same (Inversion/Non-inversion) type

of BR, interpolate a fixed point. E.g. if i’s best response is Non-inverting at
both z1, z2, label w as a fixed point, and hence a Non-inversion equilibrium.
Otherwise classify as a jump discard the pair (e.g. (z3, z4)).

• If no equilibrium is found, refine the best response within the critical pair found.
Step 4: Welfare comparisons (in Mathematica)
• Compute welfare for all Inversion equilibria under all considered values of k.
• Explicitly calculate k∗

n (Equation 12) and compute welfare under corresponding
Non-inversion equilibrium.

• Find the welfare-optimal choice of k (and equilibrium) among these candidates
(Theorem 5).
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A.6 Additional computational results

As L∗ increases (fixing other parameters as in the main text), Inversion equilibria are
replaced by Non-inversion equilibria.

Figure 7: L∗ = 1.0

Figure 8: L∗ = 2.0
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Figure 9: L∗ = 1.0

Figure 10: L∗ = 2.0
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As n increases (fixing other parameters as in the main text), Inversion equilibria
are replaced by Non-inversion equilibria.

Figure 11: n = 3

Figure 12: n = 4
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Figure 13: n = 6

Figure 14: n = 10
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