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BEYOND DOMINANCE AND NASH:
RANKING EQUILIBRIA BY CRITICAL MASS

ADAM TAUMAN KALAI AND EHUD KALAI

Abstract. Strategic interactions pose central issues that are not adequately ex-

plained by the traditional concepts of dominant strategy equilibrium (DSE), Nash

equilibrium (NE), and their refinements. A comprehensive analysis of equilibrium

concepts within the von Neumann-Nash framework of n-person optimization re-

veals a decreasing hierarchy of n nested concepts ranging from DSE to NE. These

concepts are defined by the “critical mass,” the number of players needed to adopt

and sustain the play of a strategy profile as an equilibrium. In games with n > 2

players, the n� 2 intermediate concepts explain strategic issues in large social sys-

tems, implementation, decentralization, as well as replication studied in economics,

operations management, and political games.

1. Introduction

For over a half a century, game theory has provided a framework for understanding

strategic interaction across a wide range of disciplines. However, despite the popu-

larity of dominant strategy equilibria (DSE) and Nash equilibria (NE) as tools for

analyzing n-player games, they do not always capture the full range of strategic issues

that arise in practice. While DSE are often touted as the most reliable form of equi-

librium behavior, their nonexistence in many applications has led to the widespread

use of the weaker notion of NE. In this paper, we introduce an extended framework
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of critical mass equilibria that bridges the gap between DSE and NE, and show how

it enhances the strategic analysis of various games. By eliminating shortcomings as-

sociated with DSE and NE, critical mass equilibria o↵er a more robust and accurate

description of strategic behavior with important implications for social, biological,

and computational sciences.

The main theorem in this paper characterizes all the strategic equilibrium concepts

in the von Neumann Nash (vNN) framework of n-player games (n � 2) and reveals

the hierarchy of equilibrium concepts:

{DSE} = C1 ✓ C2 ✓ · · · ✓ Cn = {NE}.

The equilibrium concepts in this hierarchy are defined and arranged according to a

well-defined critical mass index  that specifies the number of players needed for the

adoption of a profile of strategies as equilibrium play. The concept Cm, which we refer

to as equilibrium of critical mass m, consists of all strategy profiles of critical mass

m or less: Cm = {⇡ | profiles of strategies with (⇡)  m}. Equivalently, (⇡) = m if

and only if ⇡ 2 Cm \ Cm�1.

Generalizing the notion of incentive compatibility, one could say that Cm consists

of the strategy profiles ⇡ that are m-incentive-compatible in that the mutual play of ⇡

by any group of m or more players is individually optimal, regardless of the strategies

played by the group outsiders.

The closely related index of resilience against defections ⇢, defined by ⇢(⇡) ⌘

n� (⇡), is dual to the critical mass . Any group of ⇢(⇡) or fewer defectors cannot

disrupt the best response properties of ⇡: First, every member of such a group can

only lose in any group defection. Moreover, if such a group still chooses to defect,

they cannot incentivize any group outsider to defect.
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1.1. Earlier literature. It is not surprising that the equilibrium considerations

above have been the subject of discussion in earlier literature. Going back to stag-

hunt games in the 1700s (prior to the birth of modern game theory), the philosophers

Jean-Jacques Rousseau and David Hume studied the stability issues discussed above

in the context of social decision making (see Skyrms, 2001). Schelling (1973) discusses

an n-player prisoners’ dilemma, centered on equilibria that are stable according to

the resilience index ⇢. Computer scientists’ concerns about faulty computation in

distributed computing, see Goldreich, Goldwasser, and Linail (1998), were important

in motivating economists to study implementation that is robust against defection,

see Eliaz (2002) and Abraham et al. (2006) below.

Eliaz (2002) had the goal of implementing socially e�cient outcomes in environ-

ments in which some of the economic agents are subject to faulty equilibrium behav-

ior. He showed that if an equilibrium ⇡ of an implementation game is k-fault-tolerant

with k  the number of faulty players, then such robust implementation is possible.

It is easy to see that an equilibrium ⇡ is k-fault-tolerant in the sense of Eliaz i↵

k  ⇢(⇡). Similar robust implementations for problems of distributed computing and

guessing games in computer science were presented by Abraham et al. (2006). Ad-

ditional results on fault-tolerant equilibria in large games are presented in Gradwohl

and Reingold (2014); and Deepanshu and Berry (2020) study su�cient conditions

for a Nash equilibria to have low critical mass. In recent preliminary work, Kim,

Min, and Wooders (2022) report on experimental results that show that in stag-hunt

games players are significantly more likely to play equilibria ⇡ with lower critical mass

values, (⇡).

1.2. Illustrative examples.

Example 1. Rebellion tipping point: On a certain day, simultaneously, each

member of a group of n=100,000 citizens must choose one of two strategies: rebel
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(R) or acquiesce (A). The known government policy is to randomly choose and jail

for a day one rebel. We assume that for every citizen i the payo↵ of A is 0, no matter

what the other citizens choose. However, if i chooses R, then the net payo↵s are 2 if i

is not jailed, and �1 if i is jailed. We consider two strategy profiles: full acquiescence

Ā, in which everybody acquiesces, and total rebellion R̄, in which everybody rebels.

Clearly, a lone rebel is sure to be jailed and su↵er the payo↵ of �1, and a rebel

has a positive expected payo↵ ( � 0.5) i↵ the number of rebels � 2. This means that

both Ā, R̄ are NE, and there are no DSE, i.e., Ā, R̄ 2 Cn, and C1 = ;. However, the

intermediate critical-mass concepts reveal a significant di↵erence between Ā and R̄.

The critical mass needed to justify the total rebellion is low: (R̄) = 2. This means

that conditionally on any one citizen rebelling, it is a dominant strategy for every

other citizen to rebel. For this reason we informally think of R̄ as nearly dominant.

This exact reasoning justifies our more general view: in any n-person game, any

profile ⇡ with (⇡) = 2 is a nearly dominant strategy equilibrium.

On the other hand, a citizen prefers to acquiesce only if all the others do; thus,

the critical mass needed for full acquiescence is high: (Ā) = n. Therefore, the

resilience-against-defection index is minimal, ⇢(Ā) = n�(Ā) = 0, which means that

one single defector (a rebel) is enough to motivate others to defect. In this sense, the

full acquiescence profile Ā is fragile and, more generally, in any n-player game we call

any profile ⇡ with resilience ⇢(⇡) = 0 a fragile Nash equilibrium.

We note that despite the drastic di↵erence in adoptability and sustainability of R̄

versus Ā, the standard equilibrium concepts of game theory treat them equally: both

are Nash equilibrium and neither is a dominant strategy equilibrium.

Despite the simplicity of the analysis above, the low critical mass of full rebellion

suggests that tipping into full rebellion may be accomplished by just a few rebels. To

raise the tipping point, the government may consider a tougher punishment policy; for
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example it could arrest up to 100 random rebels, and jail each arrested rebel for one

year. Assume for simplicity that the net payo↵s under the tougher policy are as above,

except that the net payo↵ of an arrested rebel is �365. It is easy to compute that the

new expected payo↵ of any one of r (� 100) rebels is �365 ⇥ 100/r + 2(r � 100)/r,

which is non-negative i↵ r � 18, 350; thus, the critical mass needed for full rebellion

is (R̄) = 18, 350 rebels. This suggests that under the tougher policy tipping into full

rebellion requires many thousands of rebels.

Example 2. Centralized Chip Production: Player 1 is a chip producer, and

players 2, 3, . . . , n, are chip users. Simultaneously, each of the n players must choose

one of two types of chips, hard (H) or soft (S). The producer strictly prefers to

produce H, i.e., u1(✓) = 1 if ✓1 = H, and u1(✓) = �1 if ✓1 = S. Each user i strictly

prefers to match the producer’s choice, i.e., ui(✓) = 1 if ✓i = ✓1 but ui(✓) = �1 at all

other strategy profiles ✓. Consider the profile H̄, in which all the players choose H.

Notice that Cn = {H̄} is the unique Nash equilibrium of this game; in fact, it is the

only profile that survives the sequential elimination of strictly dominated strategies.

It also passes the traditional refinement tests: it is strong (a la Aumann, 1959), perfect

(a la Selten, 1975), proper (a la Myerson, 1978), coalition-proof (a la Bernheim, Peleg

and Whinston, 1987) and stochastically stable (a la Young, 1993; Kandori, Mailath,

and Rob, 1993).

Informally, however, at this equilibrium the chip users are vulnerable in a disturbing

sense: for instance, if due to unforeseen political events or acts of nature (not modeled

in the game), the producer chooses S instead of H, each user is stuck with the wrong

choice, H.

This vulnerability of the equilibrium H̄ is detected formally by the critical mass

analysis: a defection from H to S by a single player (the producer) is enough to
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motivate other players (chip users) to defect from H. This means that H̄ has minimal

resilience ⇢(H̄) = 0 ((H̄) = n) and it is a fragile NE in our terminology.

Strategic analysis of tipping points, decentralization, and other topics discussed

in the body of this paper have been studied by researchers in the social sciences,

operations management, computer science, and other areas. It is important to note

that the critical mass analysis unifies these discussions by addressing them through

the critical mass of the equilibrium of a game, without alluding to further game

modifications. The index of critical mass provides a single parameter that assesses

the reliability of the assumed equilibrium behavior in these various applications.

As the examples above illustrate, our critical mass concepts provide a significant

augmentation for game-theoretic analysis. For example, a large critical mass may

serve as a valuable red flag to researchers who assume that a Nash equilibrium ⇡

presents a reliable description of the outcome of the strategic interaction they study,

because it indicates low resilience to defection. On the other hand, analysts who use

equilibria ⇡ with low critical mass, i.e., high resilience, may be correctly reassured that

their equilibria present reliable descriptions of the possible outcome of the strategic

interactions they study.

1.3. Paper outline. Section 2 focuses on the basic definitions and properties of crit-

ical mass index and equilibrium. It discusses a relationship of the resilience index to

Eliaz (2002) work on implementation. In addition, this section presents the defini-

tion and basic properties of stag-hunt games that are used in the proof of the main

theorem.

Section 3 presents the formal statement and proof of the main theorem of the paper.

It presents a formal definition of the vNN framework used in the main theorem,

including three minimal axioms that are satisfied by DSE and NE.
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Section 4 focuses on additional examples and illustrations of the use of the critical

mass concepts. These include a discussion of the role of the two indices in explaining

equilibria observed in large social systems, equilibrium implementation, and equi-

libria in graph-matching games with implications for issues of decentralization and

replications in operations management and political games.

Section 5 summarizes the contributions of this paper and discusses future work on

alternative notions of critical mass indices within and outside the vNN framework.

2. Critical mass index and equilibrium

2.1. Definitions and basic properties of critical mass. The strategic games

studied in this paper are defined for a set of n players N = {1, 2, . . . , n} with n � 2.

An n-player game is a joint payo↵ function u : ⇥ ! Rn, in which the domain of u

has a product structure ⇥ = ⇥i2N⇥i, with each ⇥i denoting the set of individual

strategies of player i. Elements of ⇥ are referred to as the strategy profiles of u, and

ui(✓) 2 R is the payo↵ to player i when the profile ✓ 2 ⇥ is played. For brevity

and without loss of generality, we may restrict the description of a game to its joint

payo↵ function u alone, with the understanding that the set of profiles of the game is

defined by ⇥(u) ⌘ domain(u), and that the set of strategies of player i is denoted by

⇥i(u) = ⇥i(ui). We assume that the sets of strategies ⇥i include mixed (randomized)

strategies, if available, which removes the notational burden of separately defining

mixed strategies. To formally define the set of all possible games, we consider the set

of n-player games on strategies from a given superset ⇥:

Un(⇥) ⌘ {u : ⇥ ! Rn | ⇥ = ⇥i2N⇥i and ⇥1,⇥2, . . .⇥n ✓ ⇥}.

We assume that ⇥ is fixed and has at least |⇥| � 3 strategies (in fact, it would

typically be infinite). We write Un for Un(⇥).
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Given a profile ⇡, we say that player i is a ⇡-player at a profile ✓ if ✓i = ⇡i; and if

✓i 6= ⇡i, we say that player i is a ⇡-defector. When we have no information about ✓i,

we may refer to player i as a potential defector.

Extending standard game theory conventions, for two profiles ↵, ⇡ 2 ⇥(u) and a

subset of player S ✓ N , we denote by (↵S, ⇡) the profile in which all the players i 2 S

play their ↵i strategies and all the players j /2 S play their ⇡j strategies. For any

game u, a group of players S ✓ N and a profile ⇡ 2 ⇥(u), the game played by S

under ⇡, u⇡
S, is described as follows: The set of players is S, the strategies of every

player i 2 S are the same as their strategies in u (i.e., ⇥i(ui)). When the players i

in S play a strategy profile ↵ their payo↵s are ui(↵S, ⇡). The singleton coalition {i}

may be simply denoted by i.

In any game u we say that ⇡i is a (weak) best response of player i to a profile ✓ if

ui(⇡i, ✓�i) � ui(xi, ✓�i) for all xi 2 ⇥i(ui). A profile ⇡ is best response to a profile ✓

if each ⇡i is best response to ✓.

An equilibrium concept is a correspondence E that assigns to every game u a subset

of its profiles, E(u) ✓ ⇥(u). Elements of E(u) are referred to as E-equilibrium of u, but

when it is clear from the context, we may omit the specification of u. Two familiar

examples are the Nash equilibrium, E(u) = NE(u) ⌘ {⇡ 2 ⇥(u)| each ⇡i is best

response to ⇡}, and the dominant strategy equilibrium, E(u) = DSE(u) ⌘ {⇡ 2 ⇥(u)|

each ⇡i is best response to any profile ✓ 2 ⇥(u)}. There are two trivial equilibrium

concepts: the concept E(u) ⌘ ; for all games u; and the concept E(u) ⌘ ⇥(u) for all

games u.

For any two profiles of individual strategies, ✓ and ⇡, we define the agreement level

of the pair by

(2.1) a(✓, ⇡) ⌘ |{i 2 n | ✓i = ⇡i}|.
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The ball of � k (at least k) agreements around a profile ⇡ is defined by

(2.2) Ak(⇡) ⌘ {✓ 2 ⇥(u) | a(✓, ⇡) � k}.

Thus, Ak(⇡) is the set of profiles with at least k ⇡-players. A useful dual perspective

is that Ak(⇡) is the set of profiles that allow for at most n� k potential ⇡-defectors,

i.e., a Hamming ball of radius n � k. Similarly, for strategy profiles of player i’s

opponents we use Ak(⇡�i) to denote the opponents’ profiles ✓�i that agree with ⇡ for

at least k opponents: Ak(⇡�i) = {✓�i 2 ⇥�i(u) | a(✓�i, ⇡�i) � k}.

Next, we formally introduce the critical-mass concepts.

Definition 1 (m-Incentive-Compatible). For any integer 1  m  n + 1, a profile

⇡ is (uniformly) m�incentive-compatible (m-IC for short) in a game u, if at every

profile ✓ with at least m ⇡-players, ⇡i is a u-best response to ✓ for each ⇡-player.

The term uniformly emphasizes that when ⇡ is m-IC, it is incentive compatible

for all strategy profiles of the remaining n�m potential defectors. To see that 1-IC

is equivalent to dominance note that 1-IC requires ⇡i to be a best response to all

profiles with ✓i = ⇡i. The definition includes the case of a profile being (n+1)-IC for

completeness: all profiles are (n+ 1)-IC because the condition is vacuous.

Definition 2 (Critical Mass). The critical mass of a profile ⇡ in game u, (⇡, u), is

the smallest integer m 2 {1, . . . , n+1} for which ⇡ is m-IC. For m = 1, . . . , n, the set

of equilibria of critical mass at most m, Cm(u) ⌘ {⇡ | ⇡ is m-IC}. Also, C0(u) ⌘ ;

and Cn+1(u) ⌘ ⇥(u).

The trivial solution concepts C0 and Cn+1 are included for completeness. When the

game under consideration u is clear from the context, we write (⇡) for brevity.

It is easy to see that: ⇡ is a DSE i↵ ⇡ is 1-IC, that ⇡ is a NE i↵ ⇡ is n-IC, and

that every profile ✓ is (n+1)-IC. It is also easy to see that ⇡’s incentive compatibility
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is monotonically increasing in m, i.e., for m = 1, . . . , n, ⇡ is m-IC implies that ⇡ is

(m+ 1)-IC. Thus, Cm(u) ✓ Cm+1(u) and Cm(u) = {⇡ | (⇡)  m}.

The observations just made imply the nested progression of critical mass equilibria

discussed in the introduction, i.e., for any game u,

{Dominant strategy eq(u)} = C1(u) ✓ C2(u) ✓ · · · ✓ Cn(u) = {Nash eq(u)}.

Observation 1. The uniformity property in the definition of incentive compatibility

implies that for any m-IC profile ⇡, at any profile ✓ with m � 1 ⇡-players, ⇡ is a

uniform best response for each of the remaining n�(m�1) players. More specifically,

if any group G of m�1 players play their ⇡ strategies, then ⇡j is a dominant strategy

for every group outsider j in the game played by members of Gc under ⇡. This means

that for any profile ✓ in which an entire group of m players play their ⇡ strategies it is

best response for all the players of the game (including the group members themselves)

to play their ⇡ strategies. This leads to the alternative description of m incentive

compatibility below.

Definition 3 (Chain Reaction). For 1  m  n+1, m players incentivize a ⇡ chain

reaction, if every player’s ⇡i strategy is a best response to any profile ✓ 2 ⇥(u) that

has at least m ⇡-players.

Following the observation above, we conclude that incentivizing chain reaction and

(uniform) incentive compatibility are equivalent notions.

Proposition 1. For any game u, profile ⇡, and integer 1  m  n + 1, ⇡ is m-IC

i↵ m players incentivize a ⇡ chain reaction.
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The proposition above means that an alternative definition of (⇡) is the minimum

number of players needed to initiate a ⇡ chain reaction. In the terminology of Ham-

ming balls, (⇡) is the minimal integer m such that every player’s ⇡i strategy is best

response to any profile ✓ 2 Am(⇡).

It is also useful to consider the index ⇢ that is dual to the critical mass index :

Definition 4 (Resilience). The index of resilience (against defections) ⇢ assigns to

every profile ⇡ the value ⇢(⇡) = n� (⇡).

Remark 1. The dual relationship of ⇢ and  follows from the fact that “the profiles ✓

with d or fewer ⇡-defectors” are exactly “the profiles ✓ with n�d or more ⇡-players.”

This duality allows us to translate statements about ⇡-defectors to statements about

⇡-players. Specifically, from the definition of , it follows that:

(1) ⇢(⇡) represents the largest integer d s.t. at any profile ✓ with d or fewer ⇡-

defectors, ⇡i is a best response for every ⇡-player; and

(2) from Proposition 1, ⇢(⇡) represents the largest integer d s.t. at any profile ✓

with d or fewer ⇡-defectors, ⇡i is a best response for every player.

Remark 2. Relationship to Eliaz (2002). From Remark 1 above, it follows that

an equilibrium ⇡ is d-fault-tolerant in the sense of Eliaz (2002) i↵ d  ⇢(⇡). But no-

tice also that Eliaz’s condition of fault-tolerance is significantly stronger: Proposition

1 shows that if the defection of the d faulty players is “tolerated at ⇡,” in the sense

of Eliaz (2002), then each of these d faulty players is “disciplined at ⇡,” i.e., at any

profile ✓ with d  ⇢(⇡) ⇡-defectors, the defection from ⇡j can only lead to a loss to

each defector j.

2.2. Critical mass in stag-hunt games. The simplified stag-hunt games defined

below o↵er insights into the critical-mass notion, which is useful for the proof of the

main theorem. An n-player stag-hunt game is defined for every integer t = 1, . . . , n.
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Definition 5 (Stag Hunt). An n-player stag-hunt game with threshold t, st: Each

player has two strategies: to participate in a hunt, H, or to laze, L. The (safe) payo↵

of an L chooser is 0, regardless of the opponents’ choices; however the (risky) payo↵

of an H chooser is 1 at any profile with at least t H-choosers, but �1 at profiles in

which the number of H-choosers is strictly smaller than t.

Stag-hunt games were studied in the 1700s by the philosophers Jean-Jacques Rousseau

and David Hume. Following this literature, we refer to the Nash equilibrium H̄ in

which all n players choose H as the social contract. In playing H̄, every player chooses

the risky action that would yield them the highest possible payo↵, but only if at least

t�1 of their opponents also choose this risky action. For this reason, stag-hunt games

are sometimes thought of as games of trust. Also, for this reason the stag hunt has

critical mass (H̄, s
t) = t. For a broader view, we refer the reader to Skyrms (2001).

In the proof of the main theorem of this paper, the social contracts of stag-hunt

games serve as benchmarks to all the equilibrium concepts in the vNN framework

(see Section 3.2). An experimental study (Kim, Min, and Wooders, 2022) show, with

statistical significance, that players’ participation in the social contract decreases as

the required critical mass of the equilibrium (the threshold) increases.

3. Characterization of critical mass equilibrium

In this section we present the formal theorem showing that an equilibrium concept

satisfies three minimal properties (axioms) of the von Neumann and Nash (vNN)

optimization framework i↵ it is one of the critical mass concepts Cm described in the

previous section. These axioms are slightly more complex than previous axiomatiza-

tions of NE (Salonen, 1992; Kaneko, 1994). Moreover, since the “if” direction of the

characterization is the more applicable and challenging part, choosing the smallest

number of weakest possible axioms makes the theorem more significant. This does

not mean that properties beyond what is described in this section are of no interest.
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Several such stronger useful properties are satisfied by the Cm’s, and some are not.

But all three axioms are essential for the proof of the theorem.

The chosen axioms describe the properties of the two main solution concepts of

non-cooperative game theory: Dominant strategy equilibrium and Nash equilibrium.

In this sense the application of these axioms is valid on any domain of strategic games

in which the use of DSE and NE is valid. Such domains may specify games with finite

versus infinite number of strategies, may allow pure strategies versus mixes strategies,

etc.

3.1. Three minimal axioms from the vNN framework. To describe the axioms

and the proof that follows, we define the best-response justifications for player i playing

a particular strategy ↵i to be the opponent profiles to which ↵i is a (weak) best

response; more formally,

(3.1) Ji(↵i, ui) ⌘ {✓�i 2 ⇥�i(ui) | ui(↵i, ✓�i) � ui(�i, ✓�i) for all �i 2 ⇥i(ui)} .

These sets were used earlier by Harsanyi and Selten (1988), who referred to them as

the stability sets. We use the term justification to remind the reader of the thinking

of a best-response strategy chooser. Notice also that a profile ⇡ of a game u is m-IC

i↵, for every player i, ✓�i 2 Ji(⇡i, ui) for every profile ✓ with at least m ⇡-players;

equivalently, using the agreement ball defined in Eq. (2.2):

(3.2) (⇡)  m i↵ Am�1(⇡�i) ✓ Ji(⇡i, ui).

3.1.1. Best Response Monotonicity. The first axiom, Best Response Monotonicity

(BRM), states that an equilibrium concept should be monotonic in Ji. In particular,

if the payo↵ of one player i is modified to u
0
i, so that their equilibrium strategy ⇡i is a

best response to even more of their opponents’ profiles, then the equilibrium remains.
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Axiom 1 (BRM). Let u, u0 2 Un with ⇥(u) = ⇥(u0), and let i 2 N such that for all

j 6= i, uj = u
0
j. If ⇡ 2 E(u) and Ji(⇡i, ui) ✓ Ji(⇡i, u

0
i), then ⇡ 2 E(u0).

Clarification: it is important to recognize that the expanded justification at ⇡i , i.e.,

Ji(⇡i, ui) ✓ Ji(⇡i, u
0
i) does not imply expanded justifications at other closely related

strategies. For example, it does not mean that Ji(mi, ui) ✓ Ji(mi, u
0
i) in which mi is

any mixed strategy that assigns positive probability to ⇡i.

The BRM axiom above is applicable to changes in the payo↵s of one player. How-

ever, it is equivalent to simultaneous changes of payo↵s of more than one player. This

follows from the fact that a player’s justification set Ji(⇡i, ui) is a function only of

that player’s payo↵ ui.

Observation 2 (Simultaneous BRM). Let E be an equilibrium concept satisfying

BRM. Let u, u0 2 Un with ⇥(u) = ⇥(u0), and let ⇡ 2 E(u) be such that Ji(⇡i, ui) ✓

Ji(⇡i, u
0
i) for all i 2 N . Then it also holds that ⇡ 2 E(u0).

Proof. Consider intermediate games u = u
0
, u

1
, u

2
, . . . , u

n = u
0, where game u

i is the

same as game u
i�1 except that player i’s payo↵s are updated to u

0
i. These games all

satisfy ⇡ 2 E(ui) by BRM, since Ji(⇡i, u
i�1
i ) = Ji(⇡i, ui) ✓ Ji(⇡i, u

0
i) = Ji(⇡i, u

i
i).

BRM has other important consequences. For instance, it implies a scale invariance

property as well, where we scale all payo↵s by a positive constant.

Observation 3 (Scale Invariance). Consider any constant c > 0 and games u, u0 with

⇥(u) = ⇥(u0) and ui(✓) = cu
0
i(✓) for all i 2 N , ✓ 2 ⇥(u). Then E(u) = E(u0).

Proof. This follows from Simultaneous BRM because rescaling by a positive constant

does not change the justification sets.

3.1.2. Sure Thing Principle. Following common terminology, the axiom below is

called the Sure Thing Principle. It states that if the same profile ⇡ is an equilib-

rium in two di↵erent games u, u
0, then it is also an equilibrium in a game in which
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nature randomizes which of the two games is played. That is to say, if nature flips

a coin with bias � to determine whether game u or u0 is played and players have to

choose a strategy to use in either game, then it is an equilibrium in this random game

for them to choose any equilibrium common to the two component games. However,

as illustrated below, it may be the case that new equilibria are introduced.

Axiom 2 (Sure Thing Principle). For any u, u
0 2 Un with ⇥(u) = ⇥(u0) and any

0  �  1, it must be the case that E(u) \ E(u0) ✓ E(u00), where u
00 : ⇥(u) ! Rn is

defined by u
00(✓) ⌘ �u(✓) + (1� �)u0(✓).

The Sure Thing Principle is also motivated by best response, in the following

sense. Both NE and DSE can be defined as mutual best responses, for di↵erent

notions of optimality. The Sure Thing Principle in Decision Theory states that if

a decision is optimal in the case of an event E as well as its complement ¬E, then

it is optimal in any event (Savage, 1954). Applying this principle separately to the

response optimality of each player yields Axiom 2.

Example 3. New equilibria emerge under uncertainty, but old uniform ones are not

eliminated. Consider the following three games:

Sunny-day game

walk eat

walk 4, 0 0, 0

eat 0, 0 1, 1

Rainy-day game

walk eat

walk 0, 4 0, 0

eat 0, 0 1, 1

50/50-day game

walk eat

walk 2, 2 0, 0

eat 0, 0 1, 1

These two-player games have payo↵s 0 if players do not coordinate on the same action.

Player 1 likes to walk in the sun while player 2 likes to walk in the rain. If the unknown

weather is equally likely to be rain or sun, then the expected payo↵s are those of the

50/50 game. The Sure Thing Principle implies that, if ⇡ = (eat, eat) is an equilibrium

in the Sunny and Rainy games, then ⇡ must also be an equilibrium in the 50/50 game.
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In the 50/50 game, one can imagine (walk,walk) emerging as a new equilibrium. The

Sure Thing Principle, however, says that ⇡ is not eliminated. This is justified by best

response: if each player is motivated by best responses, and eat is an optimal response

in both games, then it must be an optimal response in the 50/50 game. Put another

way, “making deals” is not required for a best-responder. There may be reasonable

equilibrium concepts that exclude (eat, eat) in the 50/50 game, but such concepts must

use reasoning outside of a best response framework.

3.1.3. Anonymity. Under a variety of names, this axiom has been used in cooperative

game theory and in social choice. It states that equilibria should be invariant to the

names of players and to the labels and replication of strategies.

Axiom 3 (Anonymity). Let u 2 Un.

(1) Player anonymity: For permutation ⇢ : N ! N , let ⇢(✓) ⌘
�
✓⇢(1), . . . , ✓⇢(n)

�
,

and let u0 2 Un be the game defined as follows:

u
0
⇢(i)(✓) ⌘ ui(⇢(✓)) for all i 2 N, ✓ 2 ⇥(u) and ⇥⇢(i)(u

0) ⌘ ⇥i(u).

Then E(u0) = {⇡ 2 ⇥(u0) | ⇢(⇡) 2 E(u)}.

(2) Strategy anonymity: Let u0 2 Un and let ⌧i : ⇥i(u0) ! ⇥i(u) for i 2 N be

surjective (onto) functions such that:

u
0(✓) = u

�
⌧1(✓1), . . . , ⌧n(✓n)

�
for all ✓ 2 ⇥(u0).

Then, E(u0) =
�
✓ 2 ⇥(u0) |

�
⌧1(✓1), . . . , ⌧n(✓n)

�
2 E(u)

 
.

The surjective requirement in (2) guarantees that the game u0 is formed by renaming

and possibly replicating strategies. Equivalently, (2) can be written as two separate

properties for any given player i: (2a) renaming its strategies with a bijection between

⇥i(u0) and ⇥i(u), and (2b) duplicating strategies defined as follows:
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Observation 4 (Strategy Duplication). Let E be an equilibrium concept satisfying

Anonymity. Let u, u0 2 Un and ⌧i : ⇥i(u0) ! ⇥i(u) for i 2 N be such that ⇥(u) ✓

⇥(u0) and:

⌧i(✓i) = ✓i for all ✓i 2 ⇥i(u); and

u
0(✓) = u (⌧1(✓1), . . . , ⌧n(✓n)) for all ✓ 2 ⇥(u0).

Then, E(u0) = {✓ 2 ⇥(u0) |
�
⌧1(✓1), . . . , ⌧n(✓n)

�
2 E(u)}.

Proof. This follows trivially as a special case of Strategy Anonymity, because the

above ⌧i are clearly surjective.

Moreover, Anonymity also implies that one can remove redundant strategies, as

shown in Observation 5 below.

Observation 5 (Redundant Strategy Elimination). Let E be an equilibrium concept

satisfying Anonymity. Let u, u0 2 Un and let ⌧i : ⇥i(u) ! ⇥i(u0) for i 2 N be such

that ⇥(u0) ✓ ⇥(u) and:

⌧i(✓i) = ✓i for all ✓i 2 ⇥i(u
0); and

u(✓) = u
0�
⌧1(✓1), . . . , ⌧n(✓n)

�
for all ✓ 2 ⇥(u).

Then, E(u0) = E(u) \⇥(u0).

Proof. One can view the removal of redundant strategies as a duplication going from

u
0 to u. In particular, apply the previous Observation 4, but swap u and u

0. The

observation states that E(u) = {✓ 2 ⇥(u) | (⌧1(✓1), . . . , ⌧n(✓n)) 2 E(u0)}. Hence,

E(u) \⇥(u0) = {✓ 2 ⇥(u0) | ✓ 2 E(u0)} = E(u0),

because ⌧i(✓i) = ✓i for all ✓i 2 ⇥i(u0).
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3.2. Main theorem, statement, and proof. We now proceed with the main the-

orem of this paper. Our analysis includes the trivial equilibrium concepts C0 ⌘ ; and

Cn+1 ⌘ ⇥ because their inclusion paints a complete picture, but of course they could

be excluded by adding an additional axiom which states that the solution concept

cannot be trivial.

Theorem 1. An equilibrium concept E satisfies Best-Response Monotonicity (BRM),

the Sure Thing Principle, and Anonymity i↵ E = Cm for some m 2 {0, 1, 2, . . . , n+1}.

To prove the theorem, we first argue that each Cm satisfies the three axioms and

then, more interestingly, argue that they are the unique equilibrium concepts that

satisfy these axioms.

Lemma 1. The concepts C0, C1, . . . , Cn+1 are distinct and satisfy Axioms 1-3.

Proof. As discussed in the section on stag-hunt games, (Section 2.2), the fact that

H̄ 2 Ct(st) \ Ct�1(st) for the stag-hunt games with t = 1, 2, . . . , n + 1 shows that

C0, . . . , Cn+1 are distinct. Next we argue that Cm satisfies Axioms 1-3 for any m.

Each Cm clearly satisfies BRM because Cm is equivalent to the best-response jus-

tification sets containing an agreement ball (see Eq. 3.2). This certainly remains

true if the justification sets are enlarged. To see that Cm satisfies the Sure Thing

Principle, assume that ⇡ 2 Cm(u) \ Cm(u0), i.e., each ⇡i is a best-response in both u

and u
0 against any profile ✓ that involves at least m � 1 opponents playing ⇡. But

the notion of best-responses satisfies the Sure Thing Principle, implying that for any

0  �  1, each ⇡i is a best response in �u + (1 � �)u0 against any such profile,

and thus ⇡ 2 Cm(�u + (1 � �)u0). Finally, the definition of Cm is clearly symmetric

to player order. Moreover, duplicating or renaming strategies does not a↵ect best

responses; hence, Cm satisfies Anonymity.
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The rest of this section is devoted to proving the other direction of the main the-

orem: that any equilibrium concept E that satisfies Axioms 1-3 must be one of

C0, C1, . . . , Cn+1. In particular, we prove that E = CM(E) for the most fragile equi-

librium M(E) defined by

(3.3) M(E) ⌘ max ({(⇡, u) | u 2 Un, ⇡ 2 E(u)} [ {0}) .

If E(u) is empty for all u, then M(E) = 0.

The proof makes use of two propositions that relate those equilibrium concepts

satisfying the axioms to the social-contract equilibria H̄ (everybody hunts) in the

stag-hunt games with threshold t, st. We will henceforth assume that {H,L} ✓ ⇥

are identified with two possible strategies contained in the superset of all possible

strategies. This is possible since we have assumed that there are at least |⇥| � 3

possible strategies.

Recall that for the game s
t, (H̄, s

t) = t, as argued in Section 2.2. The easier of

the two propositions states that if such an H̄ is an E-equilibrium of st, then all the

profiles ⇡ of games u in which (⇡)  t must be E-equilibria in their games.

Proposition 2. Let E be an equilibrium concept satisfying BRM and Anonymity.

Then for any 1  t  n+ 1, if H̄ 2 E(st), then E(u) ◆ Ct(u) for all u 2 Un.

Proof. Fix any 1  t  n+ 1 and suppose H̄ 2 E(st). For any u 2 Un and ⇡ 2 Ct(u),

we must show that ⇡ 2 E(u). Fix such a ⇡ 2 Ct(u). WLOG, we can assume that

⇥i(u) has at least two strategies for each player i. This follows from Anonymity,

because for any player who has only ⇡i as a strategy, we can duplicate ⇡i to create

a second equivalent strategy without a↵ecting ⇡’s membership in E(u) or Ct(u), by

Observation 4.
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Next, we consider a hybrid game u
0 2 Un between the game s

t and u, with u
0’s

profiles ⇥(u0) = ⇥(u) but whose payo↵ function u
0 “mimics” s

t:

u
0
i(✓) =

8
>>>>><

>>>>>:

1 if ✓i = ⇡i and a(✓, ⇡) � t

0 if ✓i 6= ⇡i

�1 if ✓i = ⇡i and a(✓, ⇡) < t.

The games u0 and s
t are equivalent up to renaming ⇡i to H, and every other strategy

to L. Because we have ensured that each player has at least two strategies, at least

one strategy corresponds to L. Thus, by Anonymity, since H̄ 2 E(st), it follows that

⇡ 2 E(u0).

Next, we claim:

Ji(⇡i, u
0
i) = At�1(⇡�i) ✓ Ji(⇡i, ui).

The first equality holds by definition of u0
i and At�1 (see Eq. 2.2). The second follows

from the definition of Ct and the fact that ⇡ 2 Ct(u). Since ⇡ 2 E(u0), simultaneous

BRM (see Observation 2) implies ⇡ 2 E(u).

A more di�cult direction states involves stating a strong converse to the proposition

above: if ⇡ 2 E(u) for some u, then H̄ is an equilibrium for the game s
(⇡). An

equivalent statement is described in the next proposition.

Proposition 3. Let E be an equilibrium concept satisfying Axioms 1-3. Let m =

M(E) as defined in Eq. (3.3). If m � 1, then H̄ 2 E(sm).

It is not di�cult to see that these two propositions imply the main theorem. Before

we present the proof of Proposition 3, we use it and Proposition 2 to prove the main

theorem.

Proof of Theorem 1. First, if m = 0 so that E(u) = ; for all games u, then E = C0,

and we are done. Otherwise, by Prop. 3, H̄ 2 E(sm) and thus Prop. 2 implies that
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E(u) ◆ Cm(u) for all u. On the other hand, E(u) ✓ Cm(u) by the definition of M ;

otherwise, there would be a more fragile equilibrium.

The remainder of this section is devoted to the proof of Proposition 3. To this

end, it will be helpful to define, for each 1  t  n + 1, the game h
t, which is

somewhat simpler than s
t. As stepping stones for the proof, we use additional games

f
t and g

t. The games are all defined on the same sets of strategies, specifically

⇥(f t) ⌘ ⇥(gt) ⌘ {H,L}n with, for all i 2 N :

h
t
i(✓) ⌘

8
>><

>>:

1 if ✓i = L and a(✓, H̄)  t� 2

0 otherwise

where H̄ ⌘ (H,H, . . . , H);(3.4)

g
t
i(✓) ⌘

8
>><

>>:

1 if ✓i = L and a(✓, H̄) = t� 2;

0 otherwise.

(3.5)

f
t
i (✓) ⌘

8
>><

>>:

1 if i = 1 and ✓ = �
t

0 otherwise

where �
t ⌘ (L,L, . . . , L| {z }

n�t+2

, H,H, . . . , H| {z }
t�2

)(3.6)

Note that for t = 1, the three games are all defined to have identically 0 payo↵s. Also

observe that the hunting equilibrium in h
t and s

t is similar in the sense of Observation

6 below.

Observation 6. Let E be an equilibrium concept satisfying BRM, and let 1  t 

n+ 1. Then H̄ 2 E(ht) if and only if H̄ 2 E(st).

Proof. The two games have identical strategies: ⇥(ht) = ⇥(st) = {H,L}n. We claim

they also have identical justification sets:

Ji(H, h
t
i) = Ji(H, s

t
i) = At�1(H̄i�1).
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To see this for ht, notice that as long as at least t � 1 opponents play H, a player’s

payo↵ will be 0 regardless; hence, H is a best response. On the other hand, if fewer

than t � 2 opponents play H, then H is not a best response. A similar argument

applies for st. Thus, by BRM, H̄ 2 E(st) if and only if H̄ 2 E(ht).

The proof of Proposition 3 is structured as follows. Observation 6 means that to

prove Proposition 3, we need to show only that H̄ 2 E(hm) for m = M(E). We do

this by first showing that H̄ 2 E(f t) for t  m and how this implies that H̄ 2 E(gt)

for all t  m and ultimately that H̄ 2 E(hm).

Lemma 2. Let E be an equilibrium concept satisfying BRM and Anonymity, such

that M(E) � 1. Then H̄ 2 E(f t) for all t 2 {1, 2, . . . ,m}.

Note that the proof of this lemma is the only place where we use the assumption

that there at least |⇥| � 3 strategies on which games can be defined.

Proof. Let m = M(E) 2 {1, 2, . . . , n + 1} and let u and ⇡ 2 E(u) be such that

m = (⇡, u), which must exist by definition of M . By definition of , there must

be some player i and some defection profile � such that ui(�) > ui(⇡i; ��i), with

a(��i, ⇡�i) = m� 2; otherwise, (⇡, u) < m (i.e., ⇡ would not be so fragile).

WLOG, by Anonymity, we can permute players and rename strategies so that i = 1

and

⇡ = H̄ = (H,H, . . . , H| {z }
n

);

� = �
m = (L,L, . . . , L| {z }

n�m+2

, H,H, . . . , H| {z }
m�2

); and

u1(�) > u1(H; ��1).
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WLOG, we can further assume that all players i have at least these two strategies,

{H,L} ✓ ⇥i, among others. Clearly all players have a strategy H, and for each player

who does not already have strategy L 2 ⇥i, one could duplicate strategy H to form

a new strategy named L which would keep H̄ 2 E(u) by Anonymity.

Now, consider the hybrid game v between u and f
m which has the profiles ⇥(v) =

⇥(u) of u but has all payo↵s 0 except v1(�m) = 1. It follows from BRM that H̄ 2 E(v)

because the only situation in which H is not a best response in v is for player 1 at

profile �m, but in that caseH was also not a best response in u. Hence, the justification

sets Ji(H, vi) ◆ Ji(H, ui) for each player, and Simultaneous BRM (see Observation

2) implies that H̄ 2 E(v) because H̄ 2 E(u).

Next, we observe that each player’s strategies in v are equivalent to either H or L,

and thus the game can be reduced down to these two strategies per player, which is

exactly the game f
m. This holds even in the case of infinitely many strategies. This

is simply a matter of eliminating redundant strategies, which preserves equilibrium

H̄ by Observation 5.

We have thus argued that H̄ 2 E(fm) and it remains to show that H̄ 2 E(f t) for

all 1  t  m. To see this, consider any such t. We will create another hybrid game

w between f
t and f

m. Starting with the game f
m, consider the game h formed by

taking f
m and for the m� t players n�m+2  i  n� t+2: first, rename strategy

L to L
0 (which is possible since we have assumed there are at least |⇥| � 3 strategies)

and then create a duplicate strategy of H named L. By Anonymity, H̄ 2 E(w),

and by design w(�t) = 1. Now, we will use an approach similar to the one above

to transform the game w to f
t while preserving H̄ 2 E(f t). Specifically, consider

changing the payo↵s in w so that they are all 0 except w(�t) = 1. It again follows

from BRM that H̄ remains an equilibrium, according to E , because the only situation

in which H is not a best response in this new game is for player 1 at profile �
t, but
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in that case H was also not a best response in w. And again the extra strategy L
0 is

equivalent to L in the new game, so it can be eliminated to form exactly the game

f
t.

Using the Sure Thing Principle, and averaging f
t over permutations of players,

Lemma 3 shows the equivalence of H̄ 2 E(f t) and H̄ 2 E(gt).

Lemma 3. Let E be an equilibrium concept satisfying Axioms 1-3. For each 1  t 

n+ 1, H̄ 2 E(f t) if and only if H̄ 2 E(gt).

Proof. Fix 1  t  n+ 1, and for shorthand define u = f
t. First, by BRM, it is easy

to see that if H̄ 2 E(gt), then H̄ 2 E(u), because H̄ is more justified in u than in g
t.

In particular, H is always a best response in u except for player 1 at �t, but in that

case H is also not a best response in g
t.

Next, suppose that H̄ 2 E(u). It remains to show H̄ 2 E(gt). We consider the game

ū defined by averaging the payo↵s of u over all permutations of players. Formally, let

⇧(N) denote the set of permutations of players. For ⇢ 2 ⇧(N), define the ⇢-permuted

game u
⇢ : {H,L}n ! {0, 1} by

u
⇢
⇢(i)(✓) ⌘ ui(✓⇢(1), ✓⇢(2), . . . , ✓⇢(n)) for all ✓ 2 ⇥(u⇢) = {H,L}n.

By Player Anonymity, H̄ 2 E(u⇢) for each ⇢ 2 ⇧(N). Let ū be the average payo↵ in

these games which are all on strategy profiles {H,L}n, more formally:

ūi(✓) =
1

n!

X

⇢2⇧(N)

u
⇢
i (✓) for all i 2 N, ✓ 2 {H,L}n.

By the Sure Thing Principle, H̄ 2 E(ū). It is easy to see by symmetry that, for some

constant c > 0:

ūi(✓) =

8
>><

>>:

c if ✓i = L and a(✓, H̄) = t� 2,

0 otherwise.
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This is because a constant fraction of the permutations will result in player i being

mapped to player 1 and the H-players being the last t�2 players. Since ū is simply a

factor-c rescaling of gt, Scale Invariance (Observation 3 using BRM) implies H̄ 2 E(gt)

as well.

With these lemmas, we can now prove Proposition 3. The best-response structure

of gt and h
t di↵er; in particular, H is not a best response in the game when any t� 2

or fewer players play H while, in g
t, H is only suboptimal when exactly t� 2 players

play H. We use the Sure Thing Principle to average the payo↵s over g
1
, . . . , g

t to

prove Proposition 3.

Proof of Proposition 3. Let m 2 M(E) 2 {1, 2, . . . , n + 1}. By Lemma 2, H̄ 2 E(f t)

for all t 2 {1, 2, . . . ,m}. By Lemma 3, we also have H̄ 2 E(gt) for t 2 {1, . . . ,m}.

Consider the average of these games:

ḡ ⌘ 1

m
(g1 + g

2 + . . .+ g
m).

By the Sure Thing Principle, H̄ 2 E(ḡ). Observe that ḡ = 1
mh

m is equivalent to the

game hm with its payo↵s scaled down by a factorm. By Scale Invariance (Observation

3), it follows that H̄ 2 E(hm). Finally, by Observation 6, this in turn implies that

H̄ 2 E(sm).

3.3. Violations of the vNN axioms: Many equilibrium concepts violate the Anonymity

axiom. A simple example is an equilibrium concept that is dictatorial, e.g., ⇡ is an

equilibrium i↵ u1(⇡) � u1(✓) for every profile ✓. It is important to note the di↵erence

between a dictatorial equilibrium concept and a game with a dictator. The critical

mass concept introduced in this paper, which is a non-dictatorial solution concept, is

still applicable to games in a community that is controlled by a dictator, as in our

Centralized Chip Production game, Example 2 in the introduction.



26 ADAM TAUMAN KALAI AND EHUD KALAI

To illustrate a violation of the best response monotonicity axiom, consider the

notion of 0.1-Nash equilibrium (0.1-NE), and the two 2⇥2 pure strategy games

u ⌘
0.95,0 1,0

1.00,0 0,0
and u

0 ⌘
0.85,0 1,0

1.00,0 0,0
. The justification set of the top strategy of

the row chooser consist of right side strategy of the column chooser in both games,

yet the top left profile (T,L) is a 0.1-NE in the first game but not in the second.

Notice however that games may exhibit a di↵erence in the justification sets if they

include mixed strategies.

The best response monotonicity axioms imply that we restrict ourselves to ordinal

considerations when deciding whether a profile is an equilibrium. As an example, the

cardinal considerations needed for the identification of "-NE (for any fixed " > 0)

profiles rule out "-NE as a possible equilibrium concept within the standard von

Neumann-Nash framework.

The following example illustrates a limitation of the BRM axiom, like all ordinal

concepts including NE and DS.

Example 4. Let g = 10100 be the number googol. Consider the following two games:

0, 0 0,�"

g, 0 g, g

0, 0 0,�g

", 0 ", "

The two games have identical best-response structure and identical justification

sets. However, the NE profile (B,R) is more compelling in the LHS game because

the column chooser stands to lose at most " or gain g by playing R, whereas R in

the RHS game may cost the column chooser more than g while it can lead to a gain

of at most ". Thus, “playing it safe” by playing L is more tempting in the RHS

game. BRM, however, implies that if (B,R) is an equilibrium in LHS then it also

must be an equilibrium in the RHS game. Such ordinal reasoning, which disregards

the magnitudes of di↵erences, is a weakness of BRM axiom. However, it is also

a limitation of NE, which has nonetheless proven to be a useful solution concept.
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The same issue arises with dominant strategies, as can be seen in the following two

prisoner’s dilemma games, where the DSE (B,R) is again arguably more compelling

the LHS game:

3,3 0,4

4,0 1,1

3,3 �g � ✏,3 + ✏

3 + ✏,�g � ✏ �g,�g

The well-known “trembling hand” perfect equilibrium (PE) of Selten is an equilib-

rium concept that violates the Sure-Thing Principle, as shown next.

Consider first the two-player 2 ⇥ 3 game � in which the payo↵s of player 2 are

identically zero and the payo↵s of player 1 are described by the following table:

L M R

T .5 1 .5

B 1 1 1

" 1� "� � �

It is clear that, under any trembles of player 2 (i.e., positive " or � in the bottom

row), T is a dominated strategy. Thus, the profile (T,M) is not a perfect equilibrium.

Now consider two component games �L and �R described by the tables below, in

which player 2 payo↵s are zero again.

L M R

T 1 1 0

B 0 1 2

4" 1� 5" "

L M R

T 0 1 1

B 2 1 0

" 1� 5" 4"

The trembles described in the bottom rows of these component games show that

the profile (T,M) is a perfect equilibrium in both component games. This exhibits a

violation of the Sure-Thing Principle since the game � = .5�L + .5�R.

The violation above suggests a type of deficiency of perfect equilibrium as a so-

lution concept. Determining whether a profile is a perfect equilibrium depends on

information outside the data of the game under consideration (i.e., the payo↵s of the
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players). More specifically, it depends on imaginary trembles that an analyst may

assign to component games to fit situations in which the game is played.

4. Applications and further illustrations

This section elaborates on the notions of critical mass and their applicability by

examining their performance on both theoretical and actually observed games. We

start with broadly applicable families of games in which the critical mass concepts

have immediate natural interpretations.

The first family illustrates the fragility of mixed strategies, used in many applica-

tions. As illustrated in the game below, whenever mixed strategies are meaningful,

the mixed strategy equilibrium is fragile.

4.1. A Game with mixed strategies. Consider three competitive sellers s = 1, 2, 3.

Simultaneously each has to choose to participate in one of two possible markets, Mx,

with x = 1 or 2. Whatever market is chosen by s, s’s payo↵ is us = 1/Nx, where Nx

is the number of the sellers (including s) who participate in the market Mx. Thus, if s

is the only seller in a market then her payo↵ is 1, if she is in a market with one other

seller then her payo↵ is 1/2, and if she is in a market with the two other sellers then

her payo↵ is 1/3. We consider the symmetric mixed strategy Nash equilibrium of

this market choice game described by the profile ⇡ in which every seller s = 1, 2, ...3

randomizes, ⇡s(M1) = ⇡s(M2) = 0.5.

It is easy to check that if seller 1 change her mixed strategy to be ⇡0
1(M1) = 0.5+ ✏

for any positive ✏ and seller 2 stays with ⇡
0
2(M1) = 0.5, then the best response of

seller 3 is to choose M2 with certainty, i.e. ⇡
0
3(M2) = 1. Thus, the mixed strategy

is (very) fragile since a change of probabilities (no matter how small) by one player

incentivizes another seller to defect.

The next family of games provide natural interpretations for the critical mass index,

.
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4.2. Participation games. An n-person participation game is described by two

parameter profiles (s, t) = (si, ti)i=1,...,n. Every player i has two strategies: a risky

strategy P that describes participation in a certain group activity, and a safe strategy

A that means avoid participation. In any profile ✓ with ✓i = A player i’s payo↵ is

ui(✓) = si, where si is a real number referred to as i’s safe payo↵. On the other hand,

in any profile ✓ with ✓i = P , player i’s payo↵ depends on the number of participants

in ✓ (including player i), defined by #P (✓) ⌘ |{j 2 N : ✓j = P}|: For the integer

ti = 1, 2, ..., n, referred to as player i’s participation threshold : if #P (✓) � ti, then

ui(✓) > si; but if #P (✓) < ti, then ui(✓) < si.

The social contract is the profile of full participation P . For t ⌘ maxi(ti), it is easy

to see that (P ) = t; in other words, the critical mass needed for full participation is

the participation threshold of the most reluctant participant(s).

The stag hunt games s
t defined in Section 2.2 are participation games in which

P denotes participation in the joint stag hunt and L denotes nonparticipation. The

minimal number of hunters needed for a successful hunt of the particular stag being

hunted, t, is the common threshold of all the hunters, i.e., ti = t for all i. The safe

payo↵ is zero. For t = 1, 2, ..., n, the n social contracts (P
t
)t=1,...n (P ’s of the games

s
t), represent n distinct profiles in the n corresponding equilibrium concepts Ct. The

proof of the main theorem is based on this representation.

The Rebellion game in the introduction (see Example 1) is a participation game

in which the risky strategy is to rebel and the safe strategy is to acquiesce. The safe

payo↵ is zero, and ti = 2 for all i. Thus, full participation has critical mass 2. Similar

simple games are illustrated next.

Party RSVP games. Every player may choose P as a positive response to a

party invitation, or choose H as a negative response. Every player strictly prefers P

to H in any profile in which she is not the only P chooser, but strictly prefers H to

P if she is the only P chooser. These are participation games in which P is the risky
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strategy, all ti = 2, and si denotes the payo↵ of a player who chooses to stay home.

It is easy to see that all invitees attending the party has critical mass (P ) = 2: thus,

P is a nearly dominant strategy equilibrium. Notice also that the other pure strategy

equilibrium H, in which everybody chooses H, is a fragile Nash equilibrium: One

defector from H to P incentivize the others to defect from H to P .

A Bonus game exemplifies a game in which full participation is a fragile equilib-

rium. In this game, each member of an n-person production team may exert extra

e↵ort, E, or play the lazy strategy, L. If all play E, they each receive a valuable

bonus in addition to their regular paychecks. Assuming that exerting e↵ort is costly,

we may view E as the risky strategy and L as the safe strategy. The safe payo↵ is the

value of the regular paycheck of a player who exerts no e↵ort and receives no bonus.

However, due to the bonus condition, all ti = n and (E) = n. So in this game E is

a fragile equilibrium; ⇢(E) = 0 because if one worker fails to exert e↵ort, then it is a

best response of the others to not exert e↵ort.

The next family of games provide natural interpretations for the resilience index,

⇢.

4.3. Graph matching games. These games describe a large variety of situations in

which the players’ payo↵s depend on the number of their neighbors that their choice

matches. In communication games, players may wish to match the language choice

of their neighbors, while in political games they may wish to match the political

system advocated by their neighbors, as is the case in many other interactions in

which players wish to match the standards, conventions, and mores of their neighbors

(See Jackson (2008)).

Formally, a graph matching game � is described as three tuple � = (N,A,C),

in which N = {1, 2, . . . , n} is a set of players, or nodes in the underlying directed

graph; A ✓ {(j, i) 2 N ⇥N : j 6= i} is a set of arcs that describe payo↵ implications
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(i.e., (j, i) 2 A indicates that player j’s strategy a↵ects player i’s payo↵); and C

is a set of choices, available to all the players. In the illustrations that follow we

assume that C contains at least two distinct elements denoted by H and S. The set

Ni ⌘ {j 2 N : (j, i) 2 A} denotes the set of neighbors of player i. For every profile

of choices ✓ (with each ✓i 2 C), ui(✓) = |{j 2 Ni : ✓j = ✓i}| (if Ni = ;, ui(✓) ⌘ 0).

Next, we follow an indirect method to compute the resilience ⇢(H) of the agreement

profile H in which all the players choose H. First, for every player i we define

si = (|Ni|/2) + 1, if |N |i is even; si = (|Ni/2|) + 1/2, if |Ni| is odd; and si ⌘ n,

if Ni = ;. Notice that si is the minimal number of neighbors of player i who can

strictly incentivize player i to defect from H. That is: at any profile ✓ in which si of

i’s neighbors choose S, S is a best response of player i. We consider a player v to be

most vulnerable, if sv = mini si.

Proposition 4. The resilience of H is given by ⇢(H) = mini si � 1.

Proof. First notice that by the definition of si, if d  mini si�1, then at any profile ✓

with d or fewer H-defectors, H is a best response for every player. Thus by Remark

1, mini si � 1  ⇢(H). To see the converse, consider a most vulnerable player v and

any profile ⌘ in which H is chosen by all the players except for sv of v’s neighbors

who choose S. By the definition of si it is clear that H is not ⌫’s best response to ⌘;

thus, mini si > ⇢(H).

From the proposition above we conclude that for any graph �, (H,�) = n + 1�

mini2N si.

4.4. Decentralization, operations management, and political interactions.

In this section, we use critical-mass analysis in graph-matching games to provide sim-

ple explanations for well-known issues of stability in economics, political science and

operations management. More specifically, for the agreement profile H, we discuss
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the critical mass and resilience values, (H,�) and ⇢(H,�), for the five well-known

n-node graphs � listed below. Then, we discuss the implications of these values to

specific issues of stability.

(1) In the fully disconnected graphz in whichNi = ; for every player i: (H,z) =

1 and ⇢(H,z) = n� 1, i.e., H is a dominant strategy equilibrium.

(2) In the complete graph � in which Ni = N�i for every player i: ⇢(H,�) ⇡

n/2 ⇡ (H,�), with the precise values depending on whether n is even or

odd.

(3) In the star-shaped graph ⇤ in which N1 = ;, and Ni = {1} for i = 2, . . . , n:

(H,⇤) = n and ⇢(H,⇤) = 0, i.e. H is a fragile equilibrium.

(4) In the three-stars graph 3⇤ in which Ni = ; for i = 1, 2, 3, and Ni = {1, 2, 3}

for i = 4, . . . , n: (H, 3⇤) = n � 1 and ⇢(H, 3⇤) = 1, i.e., H is not as fragile

when � = 3⇤ as it is when � = ⇤.

(5) In the linear graph ⌃, in which N1 = ;; and Ni = {i � 1} for i = 2, . . . , n :

(H,⌃) = n and ⇢(H,⌃) = 0, i.e., H is a fragile equilibrium.

In item 1 above, it is not surprising that for players who are fully indi↵erent to

each other H (or any other profile) is a dominant strategy equilibrium.

In item 3 above, the fragility expressed by (H,⇤) = n and ⇢(H,⇤) = 0 was illus-

trated in our chips game, see Example 2 in the introduction. In addition to the chips

situation presented there, this type of fragility is present in other strategic interac-

tions in which all the players’ choices are guided by one central decision maker.

Examples include other decisions made in centralized production and distribution

systems, in social systems controlled by a dictator, in monetary systems controlled

by one central bank, etc.

Item 2 above, illustrates the higher stability attained at fully unguided decentral-

ized decisions, as modeled by the fully connected graph � = � with (H,�) ⇡ n/2
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and ⇢(H,�) ⇡ n/2 ; in comparison with the lower stability of centrally guided deci-

sions, as modeled by the star shaped graph � = ⇤, with (H,⇤) = n and ⇢(H,⇤) = 0.

This di↵erence is clearly illustrated language choice game below.

Example 5. Language choice: Each person in a country of 300 milion people has

to choose a language from a set of languages that includes H. Consider two countries:

a centralized one C, and a decentralized one D. In C, every player want to choose the

language that matches the choice of one specific player, say player #1; whereas in D,

every player wants to choose a language that maximized the number of matches with

any people in the country.

Consider the resilience of the profile H, in which everybody chooses the language

H. A defection by a single player, in particular #1, is of concern to the H choosers

in C. On the other hand H choosers in country D have only small concerns about

defections. As long as the number of defectors is smaller than 150 million players,

the choice of H is optimal.

Item 4 above illustrates that player replications may serve as a mean to improve

the resilience of agreement profiles in guided strategic interaction. For example, in

the chip production game, if players 1, 2, 3 are chip producers and the remaining n�3

players are chip users (each wishing to match the majority of producers), then the

replication of producers raises the resilience level from ⇢(H,⇤) = 0 to ⇢(H, 3⇤) = 1.

Similar increases in resilience are obtained if a decision guided by one star player

is replaced by a decision guided by a group. For example, we may use the graph

3⇤ to describe a political environment in which a dictator was replaced by a three-

member politburo: players {1, 2, 3} are the politburo members, and each of the

subordinate players, 4, . . . , n, wants to match the choice of a maximal number of

politburo members.
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Item 5 above illustrates another type of fragile equilibria in production-distribution

games defined by a linear graph ⌃. Just-in-time production and supply-chain

games may be described by such graph-matching games.

4.5. Equilibrium Adoption and Sustainability. The uniformity property in the

definition of m-incentive-compatibility, implies that any group L of m � 1 ⇡-players

(strongly) incentivizes all the group outsiders to play their ⇡ strategies. More specif-

ically, at every profile ✓ with a group L of m� 1 ⇡-players, ⇡j is a best response for

any player j 2 L
c (no matter what the other n�m� 2 outsiders in L

c play).

In particular, since (⇡) is defined to be the minm for which ⇡ is m-incentive

compatible, it is easy to see that (⇡)�1 is the smallest group size that can incentivize

the adoption of ⇡ by all the group outsiders. Thus, adoption of profiles ⇡ with a

small (⇡) values is easy, since it can be accomplished by recruiting a small number

of players ((⇡)� 1) to play their ⇡ strategies.1

The resilience index, ⇢(⇡) (= n � (⇡)) provides useful information about the

resilience of profiles ⇡ to defection. Recall that a defection by any group of up to

⇢(⇡) players is not su�cient to incentivize any additional players to defect. Thus, to

bring about defections from ⇡ with a large ⇢(⇡) values, one would have to recruit the

participation of a large number of defectors.

The observations above help to explain the presence of two groups of equilibria

often observed in large social systems:

Group 1: Equilibria ⇡ with small (⇡) values and large ⇢(⇡) values. These equi-

libria are relatively easy to form and are highly stable against defections. Examples

include the large number of academicians who subscribe to Zoom and teenagers who

subscribers to Instagram.

1
At any profile in which a group G of �1 players play ⇡, it is a best response of all the G-outsiders

to play ⇡. But if G consists of  ⇡-players, ⇡ is best response of all the players, including both

G-outsiders and G-insiders.
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Group 2: Equilibria ⇡ with large (⇡) values and large ⇢(⇡) values.2 These

equilibria may be di�cult to adopt, because of their large (⇡) values. But if they

are formed by historical, legal, or other reasons, their large ⇢(⇡) values means that

they are sustainable. Many equilibria that involve the social matching of conventions,

standards, and mores are typical of this group. Examples include populations in whch

all the people speak the same language, all use the same measurement system, all use

the same currency, and all the men wear ties to job interviews.

Profiles ⇡ with small ⇢ values are rarely observed in social systems, apparently due

to their low resilience against defection. An often discussed illustration is the honest

ranking of candidates in the Beauty Contest Game, H, (see Nagel (1995)}. In such

games the only Nash equilibrium H is fragile (it is easy to show that ⇢(H) < 1) .

Indeed, laboratory experiments show that players often do not play this unique Nash

equilibrium; rather, they end up playing a nonequilibrium profile of strategies.

4.6. Equilibrium implementation and switching. The intermediate equilibrium

concepts, C2,. . . , Cn�1, enable a broader set of social implementation concepts. We

first illustrate this in a subtle multiperson Prisoners Dilemma game.

4.6.1. Information revelation.

Example 6. Conspiracy of Silence. Simultaneously, each of 100 conspirators

may reveal a shared secret, R, or not reveal it (stay silent), S. If everybody chooses

S, everybody is paid 0. But if some play R, then every R chooser is paid �1, and

every S chooser is paid �3.

Consider the mixed-strategy extension of the game, in which every conspirator may

play the mixed strategies R�, for 0  �  1: choose R with probability � and choose

S with probability 1��. It is easy to see that R, in which all reveal with probability

2
Both  and ⇢ may be large when n is large.
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one, is the only nearly dominant strategy equilibrium, and that all the other Nash

equilibria are fragile. These fragile equilibria include S, in which everybody stays

silent with probability 1. We note that the fragility of S holds, despite the fact

that in the game-theoretic language of equilibrium refinements, S is a strong and

coalition-proof Nash equilibrium.

Indeed, as illustrated in movies about crime syndicates, syndicates are typically

concerned about the play of the nearly dominant strategy equilibrium R. To reduce

the likelihood of the play of R, syndicates change the game: they drastically “lower

the payo↵s” of R choosers, so players cannot be incentivized to choose R.

4.6.2. Nearly dominant strategy implementation. Consider n (� 3) bidders about to

bid on a government oilfield of $Q (> 1) net-worth of oil. Each of the bidders knows

the value Q, but the government does not. Conducting the auction in values rounded

down to billions of dollars, the net-value of the field is q
⇤ billion dollars. In a first-

price sealed-bid auction (FPSBA) every bidder i = 1, 2, . . . , n is asked to submit an

integer bid bi = 0, 1, 2, . . .. The government will identify the highest submitted bid,

b
⇤; choose at random one of the highest bidders j

⇤, i.e. bj⇤ = b
⇤; and award j

⇤ the

exclusive use of the oilfield in exchange for the payment of b⇤ billion dollars.

Consider the profile of honest bids, q⇤, in which every bidder bids q⇤ = the largest

rounded-down integer value of Q. How reliable is the honest-bid profile q⇤? It is easy

to see that q
⇤ is not a dominant strategy equilibrium, yet q

⇤ seems to be a highly

reliable equilibrium since it is a nearly dominant strategy equilibrium, i.e., (q⇤) = 2.

Thus, q⇤ is incentive compatible for any two or more bidders. In other words, the

belief that at least one opponent bids q⇤ makes the bid q
⇤ a dominant strategy for all

the others.
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4.6.3. Eliaz Implementation. The results of Eliaz and the current paper reinforce

each other. From the mathematical definitions, a player who participate in an im-

plementation scheme is faulty in Eliaz terminology i↵ the player is an (unrestricted)

defector from the implementor’s equilibrium in the terminology of the current paper.

So based on the properties of the resilience index discussed in the current paper, for

an implementing equilibrium of high resilience, the implementor may count on the

incentives of the non-faulty players to play the equilibrium despite the presence of

the faulty players.

Consider the first-price sealed-bid auction above, in which the honest bid equi-

librium q
⇤ has the critical mass (q⇤) = 2. This means that the resilience index

⇢(q⇤) = n� 2. For larger values of n, the relatively large ⇢ value gives rise to another

appealing property of the FPSBA above. Suppose, as assumed by Eliaz (2002), that

the number of faulty bidders (i.e., ones with imperfect information about the value

of Q or ones who use incorrect computation methods) is at most n � 2. Because

n � 2  ⇢(q⇤), we conclude that, regardless of the presence of the faulty bidders, it

is still a best response for any nonfaulty bidder to bid q
⇤. Thus, the FPSBA should

yield the government a payo↵ of at least $q⇤.

4.6.4. Equilibrium switch in a ride-share game. Each of 12 passengers has to choose

one of two options: sign up for a private taxi ride (T ) at the cost of $100, or sign up

for a shared van ride (V ) that can comfortably accommodate any number of them.

The cost of the van, $180, will be shared equally by all the van choosers.

Consider an existing NE, T , in which all 12 passengers choose private taxis; and

the potentially competing equilibrium V , in which all 12 choose the van. It is easy

to see that T is a fragile equilibrium, with (T ) = 12. On the other hand, V is a

nearly dominant-strategy equilibrium, (V ) = 2; thus, one player signing up for the
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van makes V a dominant strategy for all the others. This low (V ) value leads to

highly plausible switching mechanisms, as illustrated below.

A van company voucher scheme: The van company o↵ers one passenger - say

number 3 - a voucher that will cover any of her van costs in excess of $50. Passenger

3 accepts the voucher and signs up for the van. With one passenger choosing V ,

it is a dominant strategy for each of the 11 remaining passengers to also choose it.

Assuming that they all follow their conditionally dominant strategy, the van company

succeeds in switching everybody to the van. Each van chooser pays 180/12=$15, and

the voucher is actually not used.

Passenger-initiated schemes: Figuring out the logic of the voucher scheme above,

one strategically minded passenger signs on to the van without the voucher, the rest

of the passengers follow, and everybody pays $15 for the van ride.

The easy adoptions of V above, which are due the low value (V ) = 2, are com-

plemented by V ’s high resilience to defection, which are due the high resilience index

⇢(V ) = 10. In particular, no players gain by defecting from the van, unless all the 11

van choosers co-defect with them.

To emphasize the importance of the low (V ) value, consider a modified version

of the Ride Share game above, in which the cost of the van is modified to be $1000

instead of $180. It is easy to see that now (V ) = 1000/100 = 10, and (V )� 1 = 9.

Thus, in an appropriately modified voucher scheme, the van company would have

to o↵er 9 passengers vouchers that cover any van costs, in excess of, say $90. This

modified voucher scheme is based on the mutual trust that all 9 passengers would

accept the voucher and sign up for the van, and that the remaining 3 passengers

would be aware of this and sign up for the van too. If there is su�cient mutual trust

to make this work, then every passenger would end up paying 1000/12=$83.33, and

the $90 vouchers would not be used. But the required high level of mutual trust

makes the voucher scheme significantly less plausible now.
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The passenger-initiated schemes are also significantly less plausible in the modi-

fied game. Instead of one strategically minded passenger initiating a switch to the

van (without a voucher), in the modified scenario 9 such passengers must choose

to participate in a mutually coordinated incentive-compatible van-choosing scheme

based on mutual trust among all 9, and the remaining passengers have to trust that

9 strategically minded ones did so.

Cardinal computations of critical mass. The comparison of equilibria when

the cost of the van is changed from $1000 to $180, with the corresponding change of

the equilibria from V $1000 2 C10 to V $180 2 C2 brings up an important observation

about the Ck equilibria and the axioms that characterize them. A reader who views

the reduction of the van cost as an increase in the payo↵ functions of all the van

choosers can take a shortcut through the payo↵ monotonicity axiom to conclude that

since V $1000 2 C10, V $180 should remain in C10. While this is correct (C2 ✓ C10), the

actual cardinal computations done above lead to the stronger conclusion V $180 2 C2.

As computed above, the number of passengers needed to justify the choice of the van

is actually (V $180) = 2.

4.6.5. The Swedish equilibrium switch, Dagen H. In contrast to the easy switch of 12

passengers from the taxi to the van in the example above, explained by the indices 

and ⇢, these same indices provide an explanation for why switching a large number

of drivers n from all driving on the left side of the road (L̄) to all driving on the

right side (R̄) is di�cult. Indeed, it took a great e↵ort by the Swedish government to

bring about this switch, which was implemented in Sweden on Dagen H, September

3, 1967.

Consider cases in which the values (L̄), ⇢(L̄), and of (R̄), ⇢(R̄), are all large,

for example one half of the number of Swedish drivers. If players think of the switch

from L̄ to R̄ as being made in two steps, then the reasoning outlined in Section 4.5
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suggests that each step would be di�cult: In the first step, one has to convince the

drivers to stop following their L strategy, which is di�cult due to the large resilience

value, ⇢(L̄). In the second step, convincing them to adopt the R strategy is also

di�cult due to the large critical mass value, (R̄).

The Dagen H project in Sweden involved a large and extensive government cam-

paign that relied on informational, educational, and legal instruments.

5. Conclusions and future research

5.1. A perspective on equilibrium concepts. Equilibrium concepts for n-person

strategic games are some of the oldest and most studied topics in game theory. Dis-

cussions on this topic deal mostly with n-person generalizations of optimization by a

single decision maker. The most immediate generalization is the dominant strat-

egy equilibrium (DSE). Importantly, DSE is immune to faulty opponents’ strategies,

i.e., a player’s dominant strategy is an optimal choice no matter what strategies are

chosen by the opponents. Unfortunately DSE fail to exist even for most elementary

games. The nonexistence of DSE motivated the development of other, less ambitious

equilibrium concepts.

Themaxmin equilibrium of von Neumann overcomes the non-existence di�culty

of DSE, but it su↵ers two shortcomings. First and foremost, this equilibrium concept

is restricted to two-person zero-sum games. But a second serious shortcoming re-

gards faulty opponents’ strategies: When player i plays a maxmin strategy against

a nonmaxmin opponent j, i’s strategy is most likely a suboptimal response to j’s.

This is so despite the fact that i’s payo↵ is bounded below by the payo↵ i would have

received against a maxmin playing opponent.

The Nash Equilibrium concept overcomes the first shortcoming as illustrated by

the Nash existence theorem: under relatively mild assumptions on the payo↵ functions

associated with the mixed-strategy extension of the game, Nash equilibria (in mixed
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strategies) exist. However, the concern about faulty opponents’ behavior becomes

even more sever. A Nash player’s strategy can be unboundedly suboptimal against

faulty opponents.

The critical mass equilibria studied in this paper, Cm, constitute a decreasing hi-

erarchical progression of equilibrium concepts, arranged by increasing concerns about

faulty opponents behavior. The strategy of a Cm-player remains optimal against faulty

opponents as long as (the number of faulty opponents)  n �m. Thus, for m = 1,

a C1-player (i.e., a dominant strategy chooser) is unconcerned about the strategies

chosen by the opponents. At the other end of the progression, a Cn-strategy chooser

(i.e., a chooser of an arbitrary NE strategy) can find that the chosen strategy is

unboundedly suboptimal against faulty opponents.

Researchers who wish to use an equilibrium concept that is optimal against any

faulty opponents must assume some bounds on the possible faulty behavior; other-

wise, they would be led back to the use of dominant strategy equilibrium and its

nonexistence issues. One bound used in the equilibrium refinement literature is the

assumption that faulty opponents choices can only be made with “trembling hands,”

and thus the faulty choices must be arbitrarily close to the perfect equilibrium choices.

Despite such minimal faulty behavior, this approach still leads to significant improve-

ment in the analysis of strategic interactions. The critical mass equilibrium in this

paper assumes that faulty opponents may play any game-feasible strategies (even ones

that are far from the equilibrium), but it places a bound on the possible number of

such faulty opponents. The critical-mass view leads to an equilibrium ranking of all

strategic equilibria. The examples in this paper deal with strategic interactions stud-

ied in a variety of di↵erent disciplines. In these examples, the critical-mass ranking

is significantly stronger than that of the Nash equilibrium and its refinements.
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5.2. Summary and future research. Critical mass analysis addresses a variety of

strategic issues that are hard to explain or even identify by means of the commonly

used equilibrium concepts and their refinements. By bringing such issues down to

the fundamental equilibrium concepts, the intermediate critical mass equilibria o↵er

a unified and simple way of explaining them. The definitions and ranking of these

equilibria follow from three axioms: two are standard axioms commonly used in

decision theory and other conventional areas of economics and one that addresses

concerns about faulty opponents.

In this paper, the critical mass equilibrium concepts, that follow from the three

axioms referred to above, are defined and ranked by the critical mass index of stability

. In exactly the same manner, one may define and rank the critical mass equilibrium

concepts by any index of stability � that preserves (or reverses) the order over strategy

profiles imposed by  (e.g., � = 100/n or � = 1/). Such indices may be useful in

more general future research, such as situations in which the number of players n is

not fixed.

Regardless of the index we use to describe the critical mass equilibria, a mathe-

matical question of interest is a generalization of the Nash existence theorem from

Cn, to Cm’s with m < n. What are natural conditions on the utility functions ui

(beyond continuity and convexity) of a game u that would imply that Cm(u) 6= ;?

Given the substantial mathematical arguments presented by John Nash to establish

the nonemptyness Cn(u) 6= ; for a broad general class of payo↵ function u’s, this

seems to be a di�cult problem that should be left for future mathematical research.

The di�culty in proving the existence of the Cm equilibria, seems to be in contrast

to the prefect and proper equilibrium concepts of Selten and Myerson, see Fudenberg

and Tirole (1991, pp. 355-7). A key di↵erence is that perfect and proper equilibrium

require stability against infinitesimal deviation from equilibrium by any of the players.

As such, their existence can be established by subtle refinements of the fixed point
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arguments of Nash. The stability of the Cm equilibrium, on the other hand, requires

stability against unbounded deviations from the equilibrium by a bounded number of

players. This expands the applicability of the Cm’s but makes the analysis of existence

more di�cult.

This paper studies the critical mass index in strategic (static normal form) games

and leaves out important models designed to deal with long run play, dynamic play,

Markovian play, Bayesian analysis, and so forth. An important first step to deal with

these more advanced issues is the extension of the critical mass analysis, presented

here, to extensive form games. In a similar manner to the development of perfect equi-

librium by Selten, one may define the critical mass of an equilibrium in an extensive

game to be the critical mass of the equilibrium in the associated static strategic game.

However, in this association one encounters at least two competing options: Asso-

ciate to the extensive game the “standard normal form” or the “agent normal form.”

This is especially important for the notion of critical mass, which counts the number

of defections from equilibrium. For example, the standard normal form game would

allow cumulative addition in the counted number of defection as the game progresses,

increasing the fragility of long-run equilibria. On the other hand, the agent normal

form would restart the count of number of defections from equilibrium in every new

stage of the game, which may be more proper for Markovian long run analysis. We

feel that at this initial stage, it is best to study the issues above in specific examples

that may lead to a later general model.

A related but di↵erent direction of research would be a study of bolder alternatives

of equilibrium stability indices that are more refined and go beyond the order imposed

by . For example, one may assign di↵erent weights to di↵erent players, which may

be useful for modeling games such as the heterogeneous investor implementation of

Halac, Kremer, and Winter (2020). Such equilibrium concepts would have to violate
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some of the axioms used in this paper, but they may still be useful, similar to concepts

in the equilibrium refinement literature.
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