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Abstract

We study the optimal execution problem in a principal-agent setting. A client contracts to

purchase from a dealer. The dealer hedges, buying from the market, creating temporary and

permanent price impact. The client chooses a contract, which specifies payment as a function

of market prices; hidden action precludes conditioning on the dealer’s hedging trades. We show

the first-best benchmark is theoretically achievable with an unrestricted contract set. We then

consider weighted-average-price contracts, which are commonly used. In the continuous-time

limit, the optimal weighting entails a constant density at interior times and discrete masses at

the extremes.
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1 Introduction

When trading large volumes in financial markets, two frictions play important roles: price impact

and agency conflicts. Owing to price impact, it is typically desirable to split a larger ‘parent order’

into a number of smaller ‘child orders’ rather than to trade all at once. Determining precisely

how to create that split is a complex problem, as one must consider how each child order will

affect prices obtained for future child orders. A literature on optimal execution considers that

problem, addressing how an institution ought to proceed if handling execution in house. Yet,

pension funds and other institutions often outsource execution, in which case agency conflicts also

arise. Although these agency conflicts are deeply appreciated by practitioners and regulators, they

have so far received little attention in the literature. Analyzing a setting with both price impact

and agency conflict, we show that these frictions interact in important and subtle ways.

Specifically, we model a situation in which an institution (‘the client’ henceforth) contracts with

a dealer, agreeing to conduct a block trade: a single, large off-market transaction. The complexities

of execution are thus shifted to the dealer, who would then pursue offsetting trades on the market.

All that remains is to determine how the block trade between the client and dealer will be priced.

In practice, many trading arrangements use some weighted average of the market prices prevailing

over the execution window. For example, it is common for block trades to be priced at the time-

weighted average price (TWAP) prevailing on the market, as in a guaranteed TWAP contract,

or at the price prevailing at the end of the execution window, as in a guaranteed market-on-close

(MOC) contract.1 Because these contracts transfer some of the price risk burden onto the client, one

economic justification for them is risk aversion on the part of the dealer. Indeed, it is appropriate to

account for risk aversion because these trades are often large, and because dealers may be reluctant

to take on risk due to regulation requiring them to hold capital in amounts corresponding to their

exposure. Yet, questions remain: Are either of these common contracts optimal for the client—or

at least optimal in some class? If not, how could she do better for herself?

To answer these questions, we formulate the general arrangement as a problem of contracting

under moral hazard, with the client as the principal and the dealer as the agent. The friction is

that the client cannot directly observe the offsetting on-market trades that the dealer makes, but

only the realized time series of market prices. Because the dealer’s trading creates price impact,

market prices are signals of the dealer’s actions, but only noisy ones. We first solve the model in

discrete time, then characterize the continuous-time limit. Although the contract that we derive

is in general neither of the commonly-used contracts mentioned above, interestingly and perhaps

surprisingly, it does incorporate features of both: in the continuous-time limit, the optimal contract

puts discrete weights on the initial and terminal prices, and it weights interior prices according to

a constant density.

1In practice, it is sometimes more common to use the volume-weighted average price (VWAP). Our analysis does
not consider this, however, as we do not have market volumes in our model. The reason is that, while we build on a
canonical, off-the-shelf model of price impact, there is no analogously canonical model to specify how market volumes
are determined. Within our model, TWAP is the closest analogue to VWAP.
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These results apply to situations faced by pension funds, mutual funds, endowments, or other

institutions when outsourcing execution of their large trades in fixed income, foreign exchange, or

equity blocks. These large trades typically entail large transactions costs: for example, Nasdaq

(2022) and SIFMA (2021) estimate institutional transaction costs for U.S. equities of around $70
billion per year, nearly all of which are attributable to price impact. Given the complexities of order

execution and the sums involved, this setting is rife with potential conflict between the interests of

dealers and clients. Cognizant of this, FINRA Rule 5270 prohibits dealers from trading on “non-

public market information concerning an imminent block transaction,” also called “front-running.”

However, that same rule provides an exemption “for the purpose of fulfilling, or facilitating the

execution of, the customer block order” (FINRA, 2013), leaving ample scope for conflict regarding

the timing of trades made for this purpose. The potential for conflict is also recognized by um-

brella agreements between dealers and their institutional clients.2 Furthermore, ample anecdotal

evidence highlights that these conflicts of interest have real and sizable implications for transaction

costs (e.g., Traders Magazine, 2005a,b; Bloomberg, 2020, 2022a,b, 2024a,b; WSJ, 2022a, 2024).

These transaction costs might be reduced if prevailing arrangements were modified to more closely

resemble the contractual arrangements that we derive.

Model. The client seeks to buy a fixed amount of some security. (Symmetric results apply for

selling.) At time zero, the client offers a contract to the dealer. A contract is an agreement that

the client and dealer will conduct an off-market trade at time T + 1, the price of which will be a

function of market prices (p1, . . . , pT )
⊤. If the dealer accepts the offered contract, then he hedges

with offsetting trades on the market during the trading periods {1, . . . , T}. In modeling how these

trades affect the dynamics of prices, we assume a canonical market model: essentially the baseline

version of Almgren and Chriss (2001), with additive price shocks and linearity in both permanent

and temporary price impact.

Mathematically, the client’s problem is to choose a contract and a recommended trading strategy

for the dealer to pursue subject to individual rationality and incentive compatibility constraints.

The first-best benchmark is what would be optimal in lieu of the hidden-action friction, that is,

if the dealer’s on-market trades were observable to the client. In that case, the problem in fact

reduces to a well-known optimal execution problem whose classic solution entails trading an equal

amount in each period. Our main results highlight how outcomes change due to agency conflicts,

as well as which contracts perform well in light of them.

Results. What is an optimal contract? Our main analysis optimizes over contracts that are

weighted averages of market prices. This is for both analytical tractability and realism. Indeed, as

a benchmark, we consider the situation without any restrictions on the contract’s functional form.

2For example, regarding orders of institutional equities clients, HSBC Securities Inc. (HSI) states that “[p]rior to
the execution of a guaranteed price order, HSI may establish a hedge through single or multiple trades that serve
to offset HSI market risk associated with facilitating these transactions. This hedge will usually involve principal
trades (possibly throughout the day) in the same security. . . such activity may ultimately affect the agreed guaranteed
benchmark price” (HSBC, 2022). Such disclosures are standard (e.g., Goldman Sachs, 2017; Morgan Stanley, 2022).
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In that case, the client would be able to approximate her first-best payoff arbitrarily closely via

contracts that impose very large penalties with very low probability. Such contracts, however, seem

impractical and especially vulnerable to model misspecification. Weighted-average-price contracts,

in contrast, seem more realistic. In fact, many contracts used in practice are in this class. What is

not obvious, however, is whether these commonly-used contracts are optimal in this class—and if

not, what the optimum is.

Our main result for the discrete-time formulation characterizes the optimal weighted-average-

price contract in terms of the parameters of the model: the market parameters that govern price

impact and the dealer’s degree of risk aversion. We denote this contract τ ∗ = (τ∗1 , . . . , τ
∗
T )

⊤, where

τ∗t represents the weight on the period-t price. Although in closed form, the general formula for

τ ∗ is complicated and difficult to analyze. Nevertheless, numerical experimentation suggests a

great deal of interesting structure (all of which is consistent with what we subsequently prove

to hold in the continuous-time limit). It suggests that the optimal contract is U-shaped (i.e.,

τ∗1 ≥ τ∗2 ≥ · · · ≥ τ∗⌈T/2⌉ ≤ · · · ≤ τ∗T−1 ≤ τ∗T ), with a severity that is strengthened by permanent price

impact, weakened by temporary price impact, and weakened by the dealer’s risk aversion. We also

show formally that the optimal contract is symmetric (i.e., τ∗t = τ∗T+1−t for all t). Finally, we derive

a closed-form solution for the trading behavior that the dealer selects in response to the optimal

weighted-average-price contract τ ∗. It is described by a vector of trades x∗ = (x∗1, . . . , x
∗
T )

⊤, where

x∗t is the volume traded in period t.

To understand the intuition for these patterns, consider first the dealer’s trading incentives.

His profit is the difference between what he receives from the client (specified by the contract)

and the costs of his on-market trades. So, given an offered weighted-average-price contract, he can

guarantee himself a profit of zero by selecting trading weights that perfectly mirror the contract

weights. But he can do better by shifting some trading volume from periods with high expected

prices to periods with low expected prices. Permanent price impact raises later prices relative to

earlier ones and consequently generates a frontloading motive for the dealer—an incentive to select

a trading strategy that differs from the offered contract by weighting early periods more heavily.

This incentive to frontload is consistent with dealer behavior observed in various asset classes,

including foreign exchange (Bloomberg, 2016), interest rates swaps (Risk.net, 2021), and options

(Bloomberg, 2019).

Turning now to the client’s problem, the optimal contract reflects a balance between two forces.

On the one hand, permanent price impact leads prices to rise over the trading interval. Thus, if the

dealer’s trading strategy—and hence price dynamics—were fixed, the client would prefer weighting

earlier periods in her contract. On the other hand, the dealer’s trading strategy is endogenous.

Moreover, permanent price impact means that frontloaded trading strategies raise all prices. The

client would therefore prefer for the dealer to use a less frontloaded strategy, but, given the dealer’s

aforementioned frontloading motive, this requires the client to weight later periods in her contract.

The combination of these incentives to weight early and late periods leads to a symmetric and

U-shaped optimal contract. Moreover, because permanent price impact drives these incentives, it
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tends to strengthen the severity of both the U-shape and the dealer’s ultimate frontloading. In

contrast, temporary price impact and risk aversion induce other motives for the dealer and opposite

effects.

Finally, we turn to the continuous-time limit of our discrete-time model. In this limit, the

optimal contract takes a strikingly simple form, which can be seen as an extreme U-shape: atoms

of equal mass at the two extreme times and a constant density at interior times. The dealer’s best

response is similarly simple: it entails the same constant density at interior times, as well as atoms

at the extreme times where, reflecting his frontloading motive, the initial atom is three times the

terminal atom. We also prove comparative statics for this continuous-time limit that are consistent

with the aforementioned numerical experimentation for the discrete-time model. The mass at the

extreme times—and hence the severity of the optimal contract’s U-shape and the severity of the

dealer’s frontloading—is increasing in permanent price impact and decreasing in the dealer’s risk

aversion. Interestingly, temporary price impact does not affect the solution in this limit, because

two opposing forces offset each other: on the one hand, temporary price impact raises prices and

hence the client’s costs (if the dealer’s trades are held fixed), but on the other hand, temporary

price impact also partially counteracts the dealer’s frontloading motive, reducing the client’s costs.

To quantify our findings, we perform a back-of-the-envelope calculation in which we compare

our optimal contract against the two commonly-used contracts mentioned before. We argue that,

for realistic parameters, transaction costs (as measured by implementation shortfall) under our

optimal contract are 9.8 percent lower than those under the guaranteed TWAP contract and 40.1

percent lower than those under the guaranteed MOC contract. For a trade valued at $100 million,

the cost savings could be hundreds of thousands of dollars. While we hesitate, in this paper, to

precisely quantify these gains, this analysis highlights potential for substantial improvement upon

the status quo, even while staying within the class of weighted-average-price contracts.

Related literature. A long tradition of models study contracting in financial settings. Often

studied are delegated portfolio management, where the agent selects a financial portfolio (e.g., Bhat-

tacharya and Pfleiderer, 1985; Carpenter, 2000; Buffa, Vayanos and Woolley, 2022), and delegated

asset management, where the agent manages capital invested in a risky asset and can secretly divert

returns (e.g., DeMarzo and Fishman, 2007; Di Tella and Sannikov, 2021). In this paper, the agent

performs a different financial task—namely, scheduling the execution of a large trade. The agent’s

actions are unobserved by the client, and, therefore, this problem belongs to the large literature on

moral hazard. 3

Another connection is to principal-agent models in which the agent controls when an action is

taken. For example, this is the case if the agent makes an irreversible stopping decision (e.g., Kruse

and Strack, 2015; Grenadier, Malenko and Malenko, 2016) or chooses the timing of a disclosure

(e.g., Curello and Sinander, 2024) or report (e.g., Madsen, 2022). Such problems also arise in

3Particularly related are models set in continuous time (e.g., Holmström and Milgrom, 1987; Sannikov, 2008) and,
especially, analyses of the continuous-time limits of discrete-time models (e.g., Hellwig and Schmidt, 2002; Biais,
Mariotti, Plantin and Rochet, 2007).
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the literature on revenue management (e.g., Board and Skrzypacz, 2016; Garrett, 2016), in which

consumers decide when to buy.

The trading aspects of our model closely relate to the literature on optimal execution (e.g., Bert-

simas and Lo, 1998; Almgren and Chriss, 2001; Obizhaeva and Wang, 2013). In that literature, a

trader solves how to optimally work an order across time, taking as given an exogenously-specified

‘market model’ that governs how her trades affect price dynamics. Solving for the first-best bench-

mark of our model is equivalent to such an optimal execution problem. Moreover, our specification

of the market model follows the baseline cases of some of those classic models. Our derivation of

the first-best trading strategy therefore replicates classic results from that literature. Nevertheless,

we depart from that literature in that our primary focus is on the second-best problem, where the

key friction is that the dealer’s on-market trades are actions hidden to the client.

The most related paper is Baldauf, Frei and Mollner (2022).4 It begins with a certain commonly-

used contract (the guaranteed VWAP contract, cf. footnote 1), then derives conditions on the

market model that would rationalize this contract as optimal. Among the conditions required for

that contract’s optimality is that price impact has no permanent component. This paper takes the

opposite approach: it begins instead with a canonical market model that allows for both permanent

and temporary price impact, then derives the optimal weighted-average-price contract. Outside of

special cases, this optimum is not a commonly-used contract in itself—nevertheless, it suggests

simple and useful modifications to prevailing arrangements. The key innovation is allowing for a

permanent component of price impact. This makes the problem conceptually different: it becomes

genuinely dynamic in the sense that the ordering of time periods matters. Allowing for permanent

price impact is also valuable because of its prominent role in theoretical models (e.g., Kyle, 1985)

and because of its empirical importance (Biais, Glosten and Spatt, 2005).

Outline. The remainder of the paper is organized as follows. Section 2 formulates the model in

discrete time. Section 3 solves for the first-best benchmark. Section 4 provides a general discrete-

time solution for the second-best, discusses its comparative statics, and considers several special

cases. Section 5 analyzes the continuous-time limit. Section 6 concludes.

2 Model

Roughly speaking, our model combines a canonical model of price impact (à la Bertsimas and Lo,

1998; Almgren and Chriss, 2001) with a canonical model of contracting with hidden actions (à la

Holmström, 1979). A client (the principal) offers her dealer (the agent) a contract regarding a trade

4Edelen and Kadlec (2012) study a related problem involving delegated trading. The primary difference is that
they study agency trading (where the client pays the realized execution costs). The friction is that effort, which can
lead to a better execution price, is unobservable to the client. In contrast, we study principal trading (where the
payment is contracted in advance and need not equate to realized execution costs). The friction is that the on-market
trades, which influence the contracted payment, are unobservable to the client.
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between them.5 If the dealer accepts, he prepares for the trade by acquiring an offsetting position

from the market. The main friction is hidden action: the client cannot observe the dealer’s precise

sequence of on-market trades.

2.1 Contracting environment

Client. The client needs to trade a fixed quantity of a particular security, which we normalize to

a purchase of one share. She is risk-neutral.

Dealer. The dealer has constant absolute risk aversion (CARA), with coefficient λ. To simplify

notation, we use u(w) = −exp(−λw) for the dealer’s utility function. In addition to the usual

sources, the dealer’s risk aversion might also originate from leverage/margin constraints or from

constraints on equity capital, as in the literature on limits to arbitrage (surveyed by Gromb and

Vayanos, 2010).

Time. At time 0, the client offers a contract, which the dealer either accepts or rejects. The

contract specifies a price at which the client will purchase one share from the dealer at time T +1.

In between are a discrete number of trading periods t ∈ {1, . . . , T}, where pt denotes the market

price in period t.

Contracts. The client can contract only on market prices.6 In particular, she cannot contract

directly on the dealer’s trades. This assumption reflects the fact that on-market trading is anony-

mous in most settings. Moreover, the client could not reasonably ask the dealer to disclose a

complete record of his trading, as that would expose the dealer’s unmodeled trade secrets and trad-

ing relationships.7 Formally, T will denote a (possibly strict) subset of the measurable real-valued

functions with argument p = (p1, . . . , pT )
⊤. And τ ∈ T will denote a typical contract. We discuss

several candidates for T in Section 2.4.

5In modeling only a single dealer and a single client, we abstract away from the possibility that, in practice, a
dealer could receive potentially offsetting orders from separate clients. We also abstract away from the question of
how the client should select a dealer. See Baldauf and Mollner (2024) for an analysis of the latter issue.

6We therefore assume that the client can observe the full time series of market prices. This is appropriate for
modeling asset classes that are transparent, with publicly available trading data (e.g., equities). But other asset
classes are more opaque, with less accessible data (e.g., foreign exchange), which precludes contracting on prices in
arbitrary ways. Nevertheless, a third party with access to data—perhaps a platform or regulator—could compute a
pricing benchmark and make it available for contracting. For such asset classes, our analysis can be reinterpreted to
have implications for the design of those benchmarks. See Section 5.1 of Baldauf, Frei and Mollner (2022) for a more
detailed discussion of the connection.

7In principle, the client might ask the dealer to disclose a redacted record of his trading. However, the client
should not expect this to help, as the dealer could costlessly generate any disclosure. To make this formal, suppose
the trades that the dealer discloses must sum to the one share that he sells to the client, i.e.,

∑T
t=1 x

disclose
t = 1. And

he can disclose only trades that he actually conducted. But he need not disclose a complete record of all trades he
conducted. As claimed, the dealer can costlessly generate any disclosure. Indeed, suppose he wishes to pursue trading
strategy x, yet disclose a trading record xdisclose. He can do this by making three child trades in each period t: (i) buy
xt shares, (ii) buy xdisclose

t shares, and (iii) sell xdisclose
t shares. He would then disclose only the components (ii). Yet,

because components (ii) and (iii) offset, price dynamics and the dealer’s net trading are equivalent to those under x.
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2.2 Market model

On-market trades. If the dealer accepts the contract, then he must purchase the required share

on the market. Effectively, the dealer will intermediate between the client and the market. Letting

xt denote the number of shares purchased by the dealer in period t, we therefore require
∑T

t=1 xt = 1.

Price dynamics. Recalling that pt denotes the market price in period t, we assume the dynamics

pt = p0 + γxt + θ
t∑

s=1

xs +
t∑

s=1

εs.

Thus, θ ≥ 0 parametrizes permanent price impact,8 γ ≥ 0 parametrizes temporary price impact,

and p0 parametrizes the initial price level. Finally, εs represents the price shock in period s, which

we assume is an independent draw from N(0, σ2), where σ > 0. To avoid degenerate solutions, we

assume throughout that at least one of θ and γ is strictly positive.

Remark 1. This type of specification is widely-used by practitioners, mainly because it is simple,

tractable, and because it captures many empirical facts about markets (e.g., that liquidity is limited

over the trading horizon, even when trade is for reasons other than information). This specification

is, furthermore, canonical and standard in the literature. For example, it nests the basic case of

Bertsimas and Lo (1998), it is nested by Gârleanu and Pedersen (2013), and it closely relates to

the linear case of Almgren and Chriss (2001). Finally, although these price dynamics are taken

as exogenous for purposes of our analysis, both these and related dynamics can be readily micro-

founded (as in, e.g., Gârleanu and Pedersen, 2016; Kyle, Obizhaeva and Wang, 2018).9

Trading strategies. We denote by Ft the σ-algebra generated by the price shocks ε1, ε2, . . . , εt.

A trading strategy is a random vector x = (x1, . . . , xT )
⊤ such that xt is Ft−1-measurable for all t

and
∑T

t=1 xt = 1 almost surely. We denote the set of trading strategies by X . As a consequence of

the measurability assumption on x, Ft is also the σ-algebra generated by p1, p2, . . . , pt and therefore

corresponds to the dealer’s information at period t available from the prices realized in previous

periods.

Remark 2. A special class of trading strategies are those in which the dealer does not use any

information in selecting his on-market trades, so that the entire trajectory of trades is determined

ex ante. Such a trading strategy can also be thought of as a vector x ∈ RT . We refer to these as

the deterministic trading strategies.

8As is common in the literature, we intend “permanent” to refer to whatever price impact does not revert over
the trading horizon. For example, if the trading horizon is one day, then price impact that reverts the next morning
can be called permanent for our purposes, even though it does not literally last forever.

9Other models micro-found only the permanent component of price impact (e.g., Kyle, 1985). Accordingly, purely
permanent price impact is a relevant special case (which we analyze in Section 4.3). As we will see, this special case
is a theoretically interesting one also, because permanent price impact is what underlies the primary economic forces
of our model.
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Remark 3. The requirement
∑T

t=1 xt = 1 precludes any net change in the dealer’s inventory. The

dealer merely intermediates between the client and the market, neither trading with the client out

of his own inventory nor taking on a proprietary position of his own. We therefore shut down certain

dealer misbehavior: the dealer’s trading in our model does not meet the definition of illegal front-

running, but rather that of permitted transactions for the purpose of fulfilling a client block order,

under FINRA Rule 5270. This also distinguishes our model from the literature on dual trading (e.g.,

Röell, 1990; Fishman and Longstaff, 1992; Bernhardt and Taub, 2008), which considers dealer-client

conflicts that arise if the dealer can either front-run or trade alongside a client order. Instead, our

analysis focuses on conflicts pertaining to timing of the dealer’s hedging trades.

2.3 The client’s problem

The client’s problem is to choose a contract and a recommended trading strategy for the dealer to

pursue subject to individual rationality and incentive compatibility constraints.10 There is hidden

action in that the client cannot directly observe the dealer’s trades; hence, the contract must

make the recommended trading strategy incentive compatible. Although the client observes prices,

they constitute only a noisy signal of the dealer’s trades because they are also affected by shocks.

Mathematically, the client solves the following program

min
τ∈T ,x∈X

E[τ(p)] subject to

E[u(τ(p)− x · p)] ≥ u(0), (IR)

x ∈ argmax
x̂∈X

E[u(τ(p)− x̂ · p)]. (IC)

The form of the (IR) and (IC) constraints follow from the facts that the dealer’s revenue (from the

client) is τ(p) and his cost (from on-market trading) is x · p.11

2.4 The contract set

All that remains is to specify the set of contracts over which the client optimizes.

Unrestricted set. A potential baseline is the setting in which a contract can be any mea-

surable, real-valued function of market prices. We denote this contract set T all. Although this

unrestricted set may be interesting from a theoretical perspective, it would permit contracts that

are unrealistic, either in their complexity or in the severity of the punishments they impose for

10In allowing the client to recommend a trading strategy to the dealer, this formulation follows classical models
of moral hazard (e.g., Holmström, 1979). Effectively, it assumes that the client can break the dealer’s indifference
however she likes. This assumption is, however, irrelevant for our analysis. In particular, the dealer will have a unique
best response to most contracts we consider (cf. Lemma 3).

11Alternatively, we can define a dynamic incentive compatibility constraint: for all t = 1, 2, . . . , T and A ∈ Ft−1

with P [A] > 0, x ∈ argmax
x̂∈Xx

t

E[u(τ(p)− x̂ · p)|A] where Xx
t = {x̂ ∈ X : x̂s = xs for s < t}. This is equivalent to (IC).

For details, see Online Appendix B.
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certain price-path realizations. Indeed, Mirrlees has observed that in classic moral hazard settings

with normally-distributed noise and no restrictions on the contract’s functional form, the agency

friction essentially disappears, in the sense that the first-best outcome can be approximated ar-

bitrarily closely using contracts that prescribe massive punishments for very low realizations of

output (Bolton and Dewatripont, 2004, Sec. 4.3). Given the structure of our model, similar issues

arise here when optimizing over an unrestricted set of contracts. See Section 3.2 for details.

Weighted-average-price contracts. Motivated by the unrealistic contracts that emerge when

optimizing over an unrestricted contract set, it seems appropriate to impose some restrictions. In

particular, our main analysis will optimize over contracts that are weighted averages of the market

prices. Although these weights will be nonnegative in the optimum, we do not constrain them to

be. Thus, a contract can be thought of as a vector τ ∈
{
(τ1, . . . , τT )

⊤ ∈ RT
∣∣∑T

t=1 τt = 1
}
, which

stipulates that the client will pay the dealer
∑T

t=1 τtpt. We denote this contract set T wa.

Although it is restrictive to focus only on contracts that are weighted averages of market prices

(rather than on arbitrary functions), this does nest some important examples of commonly-used

contracts: special cases include τTWAP =
(
1
T , . . . ,

1
T

)⊤
and τMOC = (0, . . . , 0, 1)⊤, which correspond

to what are known in practice as a guaranteed TWAP contract and a guaranteed MOC contract.

We interpret our analysis as a search for the best contract among those comparable in complexity

to those already in use.

Affine contracts. Whereas our baseline analysis optimizes over the set of weighted-average-price

contracts, an alternative would have been to instead optimize over the set of affine functions of

the market prices, which is a superset. We do this in Online Appendix A. We denote this contract

set T affine. One reason it is interesting is that it contains fixed-price contracts (i.e., contracts

specifying a payment that is constant in the market prices). And fixed-price contracts are interesting

because, in the special case where the dealer is risk neutral, some fixed-price contract achieves the

client’s first-best payoff. This is for the same reason that, in classic models of contracting under

moral hazard, a ‘sell-the-firm’ contract can achieve the principal’s first-best when the agent is

risk-neutral. Nevertheless, the optimal affine contract is qualitatively similar in many ways to the

optimal weighted-average-price contract.

3 First-Best Benchmark

3.1 First-best entails trading at a constant rate

Before solving the client’s problem itself, we begin with the first-best benchmark. To that end, we

remove the friction of hidden action—that is, we assume the client observes the dealer’s trades. We

also exclude any frictions that might arise from restrictions on the contract’s functional form. Math-

ematically, a contract is—for this section only—a measurable real-valued function with argument

9



(p,x) ∈ RT × RT for
∑T

t=1 xt = 1.12

In this setting, the client can implement any trading strategy she desires with a ‘forcing contract’

that imposes a large penalty if the dealer deviates from the recommended trading strategy. And

given concavity of u, it is optimal to satisfy (IR) by choosing τ(p,x) = x · p when the dealer

does follow the recommendation. Plugging τ(p,x) = x · p into her objective, the client’s problem

becomes

min
x∈X

E[x · p].

In short, solving for the first-best trading strategy reduces to a problem of optimal execution.

In fact, because our market model is essentially the baseline case considered by Almgren and

Chriss (2001), their results apply to this problem. The first-best solution corresponds to what they

would derive as the optimal trading strategy in the case where all weight is put on minimizing the

mean of implementation shortfall (and no weight on the variance). The classic result (also obtained

by others, e.g., Bertsimas and Lo, 1998) is that under these baseline conditions, the optimal strategy

is to trade an equal amount in each period. We therefore have the following result:

Proposition 1. The first-best trading strategy is

xFB =

(
1

T
, . . . ,

1

T

)⊤
.

In the first best, the client’s expected costs of execution are p0 +
γ
T + θ(T+1)

2T .

For completeness, we also include a proof of this classic result in the appendix.

Remark 4. Note that this first-best trading strategy is deterministic; that is, the entire trajectory

of trades is determined ex ante. As we will see with Lemma 3 in the next section, an analogous

result holds for the second-best problem.

Remark 5. In the same way that canonical contracting models take it as an exogenous constraint

that the principal cannot herself perform the agent’s action, we assume that the client cannot access

the market and directly implement xFB.13 Several considerations might motivate this approach.

First, the client might lack the dealer’s infrastructure, including market access, order-handling

capabilities, low-latency trading technology, subscriptions to exchange direct data feeds, risk man-

agement, trade reporting, and compliance—all of which require substantial fixed-cost investments.

The client might also lack the dealer’s qualification for volume-based discounts on exchange fees.

12For situations where the second-best analysis entails optimizing over a restricted contract space T ⊊ T all, a
perhaps more appropriate benchmark would be to remove the friction of hidden action while preserving any frictions
due to restrictions on functional form. Mathematically, a contract (for this benchmark only) would be a measurable
real-valued function with argument (p,x) ∈ RT × RT for

∑T
t=1 xt = 1, where for any fixed x, τ(·,x) ∈ T .

If T ⊇ T wa, then this benchmark coincides with what we derive below. One way to achieve the first-best in this
setting is with a contract that, for any x, simply pays the dealer a weighted average of the market prices p with
weights that exactly mirror x. Under such a contract, τ(p,x) = x · p for all x and p, meaning that (IC) is satisfied
(albeit only with equality) by rendering the dealer indifferent over all trading policies.

13For models of endogenous choice between trading on the market and trading with a dealer, see, e.g., Seppi (1990);
Lee and Wang (2023).
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Second, on-market trading might be more complex than its reduced-form representation in our

model (e.g., it might entail order splitting across multiple venues in each period), so that optimal

trading might not be as simple as the expression for xFB suggests. Rather, optimal trading might

depend on specialized knowledge of market structure, which the dealer is more likely to possess.

Relative to a typical dealer, a typical client simply will not have invested nearly as many resources

into developing or fine-tuning smart-order routers and trading algorithms. One way to cast this

idea within the language of the model is to suppose that when the dealer trades, he creates price

impact according to the dynamics described above (with price impact coefficients γ and θ), but if

the client were to trade directly on the market, she would do so less efficiently (with price impact

coefficients γclient > γ and θclient > θ).

3.2 First-best is achievable with an unrestricted contract set

Having solved for the first-best benchmark, we now turn to the second-best problem (as formulated

in Section 2.3). Our first observation is that when the contract set is T all, the client can approximate

her first-best payoff arbitrarily well. However, doing so may require contracts that are complex,

impractical, and unrealistic.

A special case. To illustrate the idea, consider the special case of γ = 0, θ = 1, σ = 1, and

T = 2 periods. In this special case, we have p1 − p0 = x1 + ε1, which is normally distributed

with mean x1 and unit variance. This suggests a contract scheme inspired by arguments Mirrlees

has made in settings of classic moral hazard: (i) pay the dealer the TWAP, 1
2(p1 + p2), (ii) pay

also a flat commission δ, but (iii) also impose a penalty of K if p1 − p0 exceeds a threshold ζ. As

derived above, first-best entails a choice of x1 =
1
2 . Without the penalty, the dealer would frontload

his trading by choosing x1 > 1
2 . (Proposition 4 will show this formally.) The penalty, however,

counteracts this frontloading motive. Of course, a dealer who does not frontload is also exposed

to the penalty—which is why δ > 0 is needed to ensure that x1 = 1
2 is compatible with (IR). But

the key is that normal distributions have the property that extreme right-tail realizations are much

more likely under a higher mean relative to a lower mean. Consequently, by setting ζ and K both

very large, the penalty can be designed to deter frontloading by imposing a relatively large risk on

a dealer who frontloads by choosing x1 >
1
2 yet at the same time virtually no risk on a dealer who

chooses x1 =
1
2 (which permits δ to be set very close to zero).

Formally, we would proceed as follows in this special case. Consider a class of contracts indexed

by (ζ, δ,K), specifying payment

τ(p) = δ +
1

2
(p1 + p2)−K1[p1 − p0 > ζ].

11



Using x2 = 1− x1, the dealer’s monetary payoff is

τ(p)− x · p = δ +

(
1

2
− x1

)
(p1 − p2)−K1[p1 − p0 > ζ]

= δ +

(
1

2
− x1

)
(x1 − 1− ε2)−K1[ε1 > ζ − x1].

We then compute the dealer’s expected utility, differentiate with respect to x1, and evaluate at

x1 =
1
2 to obtain

d

dx1
log
(
− E

[
u
(
τ(p)− x · p

)])∣∣∣∣
x1=1/2

= −λ

2
+

ϕ(ζ − 1/2)
1

1−exp(−λK) − Φ(ζ − 1/2)
,

where Φ and ϕ denote the standard normal CDF and pdf. See Online Appendix C for details.

For this contract to induce first-best trading, x1 = 1
2 must satisfy (IC), hence this derivative

must equal zero. For all sufficiently large ζ, there exists a K that does this. Formally, choose ζ̄ to

ensure ϕ(ζ̄−1/2)

1−Φ(ζ̄−1/2)
> λ

2 ; this is possible because the inverse Mills ratio ϕ(x)
1−Φ(x) grows without bound

as x increases. Let ζ ≥ ζ̄. Setting the above derivative equal to zero and solving for K, we obtain

K =
1

λ
log

(
1 +

λ/2

ϕ(ζ − 1/2)− λ
2

[
1− Φ(ζ − 1/2)

]) , (1)

which is well-defined because ζ ≥ ζ̄ ensures that ϕ(ζ−1/2)
1−Φ(ζ−1/2) ≥

ϕ(ζ̄−1/2)

1−Φ(ζ̄−1/2)
> λ

2 . Given this value for

K, choosing x1 =
1
2 leaves the dealer with expected utility

E
[
u
(
τ(p)− x · p

)]∣∣∣∣
x1=1/2

=− exp (−λδ)

1− λ
2
1−Φ(ζ−1/2)
ϕ(ζ−1/2)

.

Again, see Online Appendix C for details.

For this contract to satisfy (IR), the dealer’s expected utility must be at least u(0) = −1.

Choosing δ to make this constraint hold with equality, we obtain

δ = − 1

λ
log

[
1− λ

2

1− Φ(ζ − 1/2)

ϕ(ζ − 1/2)

]
. (2)

Finally, we note that the client can approximate her first-best payoff arbitrarily closely by setting

ζ ≥ ζ̄ sufficiently large, setting K according to (1), and setting δ according to (2). Indeed, because

δ is set to satisfy (IR), the dealer accepts such a contract. The client’s expected costs of execution

E
[
τ(p)

]
are bounded above by E

[
δ + 1

2(p1 + p2)
]
= δ + p0 +

1
2(x1 + 1). Because K is set so that

x1 =
1
2 satisfies (IC), this bound becomes δ+ p0+

3
4 . Applying Proposition 1, the client’s first-best

costs are exceeded by at most δ. However, according to (2), δ can be made arbitrarily close to zero

by setting ζ sufficiently large.

As we demonstrate in the proof of the following result, this construction can be extended to
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accommodate the model in its full generality.

Proposition 2. When the set of feasible contracts is T all, the client’s expected costs of execution

can be made arbitrarily close to her first-best costs of p0 +
γ
T + θ(T+1)

2T .

Discussion. Although we have derived contracts that, within this model, permit the client to

approximate her first-best payoff arbitrarily closely, we do not view these contracts as realistic or

practical. One issue is that the penalty size K and penalty threshold ζ must be fine-tuned to the

economic environment with an extraordinary degree of accuracy, leaving these contracts extremely

susceptible to model misspecification.14 Moreover, to our knowledge, these contracts do not bear

even a remote resemblance to arrangements used in practice, which suggests that they might be

prohibitively complex to write or to enforce.

We therefore think it more meaningful to search for the optimum within a restricted contract

set. As to how, precisely, to restrict the contract set, it may be useful to return to the question of

which arrangements are used in practice. Many contracts use some weighted average of the market

prices within the execution window. As mentioned earlier, the guaranteed TWAP contract and the

guaranteed MOC contract are two such examples. This motivates us to optimize over weighted-

average-price contracts, to see if we can improve on contracts that are in use while staying within

this class of relatively simple contracts.15

4 Discrete-Time Solution

We now turn to the optimal weighted-average-price contract. Although we are predominantly

interested in the continuous-time limit, we find it helpful to begin by deriving the general discrete-

time solution and discussing its features. To that end, we consider several special cases, which

illuminate the economic forces underpinning the comparative statics of this general solution.

4.1 The dealer’s best response

Our first step in solving the client’s problem is to note that the (IR) constraint can be eliminated.

Indeed, an attractive feature of the set of weighted-average-price contracts is that for any such

contract τ ∈ T wa, the dealer can guarantee himself the payoff u(0) by selecting the deterministic

14Discussing essentially the same point, Holmström and Milgrom (1987) write:

[These] near-optimal [contracts] are disturbing. In practice, one feels, schemes that adjust compensation
only when rare events occur are not likely to provide correct incentives for the agent in ordinary,
high probability circumstances. Moreover, to construct the scheme, the principal requires very precise
knowledge about the agent’s preferences and beliefs, and about the technology that he controls. The
[. . . ] scheme performs ideally if the model’s assumptions are precisely met, but can be made to perform
quite poorly if small deviations in the assumptions about the variance or (especially) about the agent’s
ability to control the probability of rare events are introduced. (p. 305)

15Studying a different problem—how to formulate a manipulation-resistant benchmark price from a set of
transactions—Duffie and Dworczak (2021) take a related approach, restricting attention to benchmarks that are
weighted averages of transaction prices.
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trading strategy x = τ . Intuitively, under this choice of x, the dealer’s costs (his on-market trades)

are the same weighted average of market prices that determines his revenue (his payment from the

client). He would then obtain a profit of zero—regardless of the realized price shocks. Because the

dealer can in this way always guarantee himself his outside option, it follows that (IC) actually

implies (IR).

Our second step is to characterize the (IC) constraint. Lemma 3 states that, for any contract

τ ∈ T wa, the dealer has a unique best response. Thus, (IC) simply requires that the recommended

trading strategy be this best response.

Lemma 3. For any contract τ ∈ T wa, the dealer has a unique best response in X , which is the

deterministic trading strategy x = FA−1Eτ , where A, E, and F are T ×T matrices explicitly given

in terms of the parameters λ, θ, γ and σ, as stated in equation (A.16) of the appendix.

For the special case of T = 2 periods, Lemma 3 simplifies considerably. Using τ2 = 1− τ1, the

dealer’s best response is

x1 = τ1 +
(1− τ1)θ + (1− 2τ1)γ

λσ2 + 2θ + 4γ
,

and x2 = 1 − x1. We can see the following in this special case: (i) limθ→∞ x1 = 1
2(τ1 + 1),

which for τ1 ∈ [0, 1] exceeds τ1, which we interpret to mean that permanent price impact creates

a frontloading motive for the dealer; (ii) limγ→∞ x1 = 1
2(τ1 +

1
2), which we interpret to mean that

temporary price impact creates a smoothing motive for the dealer; and (iii) limλ→∞ x1 = τ1, which

we interpret to mean that risk aversion creates a mirroring motive for the dealer. Sections 4.3–4.5

will demonstrate that these forces generalize beyond the special case of T = 2.

According to the lemma, the dealer’s best response is in fact a deterministic trading strategy.

To see the intuition, suppose that after accepting a contract τ ∈ T wa, the dealer makes a tentative

plan to pursue a particular deterministic trading strategy x. After implementing x1, the dealer

observes p1, which reveals the realized ε1. Would he want to re-optimize (x2, . . . , xT )? The answer

is no. The intuition is that ε1 affects not only p1 but also every future price. Then, given that the

dealer’s revenue τ ·p and costs x ·p are both weighted averages of the prices, ε1 does not affect his

terminal wealth, so learning it is irrelevant. More generally, suppose that after implementing xt,

the dealer learns εt. Would he want to re-optimize (xt+1, . . . , xT )? Again, the answer is no. This

is because εt shifts the dealer’s terminal wealth by the constant εt
∑t−1

s=1(xs − τs):

T∑
t=1

(τt − xt)pt =

T∑
t=1

(τt − xt)

(
p0 + γxt + θ

t∑
s=1

xs +

t∑
s=1

εs

)

=

T∑
t=1

εt

T∑
s=t

(τs − xs)︸ ︷︷ ︸
=
∑t−1

s=1(xs−τs)

+
T∑
t=1

(τt − xt)

(
p0 + γxt + θ

t∑
s=1

xs

)
.

And because the dealer has CARA utility, this constant shift in the distribution of his terminal

14



wealth does not affect his preferences over his remaining choices (xt+1, . . . , xT ).
16

One implication of Lemma 3 is that the (IC) constraint generally renders the first-best unachiev-

able. Indeed, it follows from the analysis in Section 3 that if the client could choose a contract and

a recommended trading policy free of the (IC) constraint, then she would select τTWAP and xFB,

both of which are the equally-weighted vectors
(
1
T , . . . ,

1
T

)⊤
. These choices implement the efficient

action, while also leaving the dealer perfectly insured and with zero surplus. Unfortunately for the

client, it is not generally true that FA−1EτTWAP = xFB, so that by Lemma 3, these choices are

inconsistent with (IC). In particular, inequality obtains whenever θ > 0, and the departure from

equality has a particular structure: it is frontloaded in the sense of first-order stochastic dominance.

Definition. Given two T -dimensional vectors a and b, each of whose elements sum to one, a is

frontloaded relative to b if
∑t

s=1 as ≥
∑t

s=1 bs for all t.

Proposition 4. FA−1EτTWAP is frontloaded relative to xFB, with equality iff θ = 0.

Proposition 4 implies that permanent price impact creates a frontloading motive for the dealer,

in the sense that if θ > 0, then the client cannot obtain her first-best payoff. The intuition is

as follows. Suppose the dealer is offered τTWAP. If he selects xFB, then his trading costs and his

payment from the client are both a simple average of prices, so that regardless of the realized prices,

he is guaranteed a profit of zero. But he can do better by frontloading his trading. Suppose the

dealer deviates from xFB by shifting a small amount of volume from a period t′′ to a period t′ < t′′.

The direct effect of this deviation (i.e., holding prices fixed) is to reduce his expected costs at the

rate E[pt′′ ]−E[pt′ ] = θ
∑t′′

t=t′+1 x
FB
t +γ(xFBt′′ −xFBt′ ) = θ t′′−t′

T . And the indirect effect (through price

changes) is vanishing, because as we have noted, xFB insures the dealer against price fluctuations.

Moreover, the effect on the variance of his profit is second-order for small deviations. It follows that

when θ > 0, some sufficiently small deviation from xFB allows the dealer to make himself better

off. In general, the dealer’s best response trades off this incentive to frontload against increased

exposure to price shocks and excess temporary-impact costs.

In the special case of θ = 0, this incentive to frontload does not arise, and the proposition

implies that the first-best outcome is in fact achieved via τTWAP, the (IC) constraint notwith-

standing.17 Hence, our model predicts that τTWAP might yield reasonably good outcomes when

applied to settings or securities for which permanent price impact is relatively small. However,

when permanent price impact is a major factor then τTWAP ought not be expected to perform as

well, which is what motivates the subsequent analysis.

16Several model components therefore combine to imply optimality of a deterministic trading policy. For example,
the dealer’s best response might not be deterministic if he had non-constant absolute risk aversion, if he were facing
a nonlinear contract, or if the random walk component of the price process were instead an AR(1).

17This aspect of the result and the economic forces behind it are similar to why the guaranteed VWAP contract—
under which the client pays the dealer at the market’s volume-weighted average price (VWAP)—is optimal in the
setting of Baldauf, Frei and Mollner (2022). One subtlety is that in that paper, each trading period has an associated
‘market condition,’ about which the dealer has superior information. The optimal contract weights prices by market
volume so as to incentivize the dealer to properly trade on his information about market conditions. In contrast, this
paper uses a canonical market model in which such market conditions do not feature (or do not differ across periods).
Hence, the optimal contract need not weight by volumes, and a simple average of prices achieves the optimum.
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4.2 The general solution

Having eliminated the (IR) constraint and characterized the (IC) constraint, the client’s problem

reduces to

min
τ∈T wa

E[τ · p] subject to x = FA−1Eτ .

Our next result concerns the solution to this problem. It provides explicit formulas for the optimal

weighted-average-price contract τ ∗ (henceforth, simply the “optimal contract”) and the incentive-

compatible trading strategy x∗ = FA−1Eτ ∗ that the client recommends to the dealer. The formulas

are complicated, but they are fully explicit and easy to compute.

Proposition 5. The weights of the optimal contract and the dealer’s best-responding trading strat-

egy are given by τ ∗ = 1
1⊤M−11

M−11 and x∗ = 1
1⊤M−11

FA−1EM−11, where 1 = (1, 1, . . . , 1)⊤

denotes a T -dimensional vector of ones and

M = θA−1E + θE⊤(A−1)⊤ + γFA−1E + γE⊤(A−1)⊤F⊤. (3)

The client’s expected costs of execution are p0 +
1

21⊤M−11
.

To establish this as the optimal contract, the proof shows that the client’s expected payment

under a contract τ ∈ T wa can be expressed as 1
2τ

⊤Mτ . By symmetry of M , the optimal contract

weights satisfy Mτ ∗ = µ1, where µ is the Lagrange multiplier on the constraint τ⊤1 = 1. The

constraint then implies τ ∗ = 1
1⊤M−11

M−11, as the proposition says. Applying Lemma 3, we obtain

x∗ = 1
1⊤M−11

FA−1EM−11.

The problem and its solution are mathematically complex, and so it is difficult to provide

intuition for the precise form of the general solution exhibited in Proposition 5. Nevertheless, the

logic of the solution can be explained through three special cases: (i) when permanent price impact

is the only influence (i.e., θ → ∞), (ii) when temporary price impact is the only influence (i.e.,

γ → ∞), and (iii) when price risk is the only influence (i.e., λ → ∞).18 We next consider each

of these special cases in turn, then build upon them to explain the features and the comparative

statics of the general solution.

4.3 When permanent price impact is the only influence

For the case in which permanent price impact is the only influence, assume there is no temporary

price impact, and make the dealer risk-neutral.

18Case (i) is equivalent to what obtains if θ > 0 and γ = λ = 0. Likewise, case (ii) is equivalent to what obtains
if γ > 0 and θ = λ = 0. Because the exposition is simpler if limits are avoided, this is what Sections 4.3 and 4.4
consider. On the other hand, Section 4.5 does treat the limiting case of λ → ∞. Although λ > 0 and θ = γ = 0
leads to the same dealer’s best response, it does not lead to a unique optimal contract, as without price impact, all
contracts lead to identical outcomes for the dealer. Mathematically, if θ = γ = 0, the matrix M in (3) is the zero
matrix so that the inverse (needed in the formula for τ ∗ in Proposition 5) is not well defined. Thus, Section 4.5
maintains the assumption that at least one of θ and γ is strictly positive, instead considering the limit as λ → ∞.
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Corollary 6. Assume that there is no temporary price impact (γ = 0) and that the dealer is

risk-neutral (λ = 0).

(i) For any τ ∈ T wa, the dealer’s best response is xt =
1
T −

∑T
s=1

s
T τs +

∑T
s=t τs.

(ii) The weights of the optimal contract are τ ∗ = (12 , 0, . . . , 0,
1
2)

⊤, so that the dealer’s best-

responding trading strategy is x∗ = (T+1
2T , 1

2T , . . . ,
1
2T )

⊤. The client’s expected costs of execu-

tion are p0 +
θ(3T+1)

4T .

Let us highlight two differences relative to the first-best solution given by Proposition 1. First,

the client must now respect the (IC) constraint, which implies a particular relationship between

the contract and the dealer’s trading strategy that in this case is given by Corollary 6(i). Second,

the client must now sacrifice some rent to the dealer. As a result, her expected costs increase from

p0 +
θ(T+1)

2T to p0 +
θ(3T+1)

4T .

For the discussion below, let us assume that both contract weights τ and the dealer’s trading

strategy x are restricted to entail nonnegative weights. This is only for simplicity of the exposition.

Indeed, given Corollary 6(ii), this restriction does not bind, and in fact, many of the arguments

below could be formulated in reverse to rule out putative solutions entailing negative weights. With

this in hand, we proceed by backward induction:

The dealer’s problem. Consider how the dealer would respond to an arbitrary contract τ ∈
T wa. Beginning from any deterministic trading strategy x, consider a perturbation that shifts

volume from xt+1 to xt. The dealer’s expected profit E[τ · p− x · p] is affected in two ways:

• Direct effect (holding prices fixed). The direct effect is positive: E[pt+1] − E[pt] = θxt+1.

Intuitively, prices tend to increase over time because of permanent price impact of the dealer’s

trades. Thus, if prices were held fixed, the dealer would reduce the cost of his on-market

trading by shifting volume to earlier periods.

• Indirect effect (through price changes). Of course, prices will not hold fixed. In particular, this

shift affects E[pt], creating the following indirect effect: (τt−xt)
(

∂E[pt]
∂xt︸ ︷︷ ︸
=θ

− ∂E[pt]
∂xt+1︸ ︷︷ ︸
=0

)
= (τt−xt)θ.

19

Note that if xt = τt, then the indirect effect is zero—intuitively, the dealer is perfectly insured

with respect to pt if xt = τt—leaving the positive direct effect to dominate. It follows that the

optimal xt must exceed τt. This argument applies for any t < T , implying that the dealer has a

frontloading motive in this case: his best response is to choose an x that is frontloaded relative to

the offered τ .20

Summing both effects, the total derivative is θ[xt+1 + τt − xt]. Thus, if x best responds to

τ , we must have xt+1 = xt − τt for all t < T . Having assumed all entries of τ are nonnegative,

19There are no other indirect effects: (i) this shift does not affect the earlier prices p1, . . . , pt−1; and (ii) because
price impact is purely permanent, it also does not affect the later prices pt+1, . . . , pT .

20This is for any τ and is therefore a stronger conclusion than that of Proposition 4, which applies only if the offered
contract is τTWAP. On the other hand, Proposition 4 holds for general parameters, whereas this section specializes
to the case of γ = λ = 0.
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we conclude from these first-order conditions that (xt)
T
t=1 is a weakly decreasing sequence. These

conditions moreover imply

xt =
1

T
−

T∑
s=1

s

T
τs +

T∑
s=t

τs, (4)

as claimed by Corollary 6(i).

The client’s problem. For intuition into why τ ∗ = (12 , 0, . . . , 0,
1
2)

⊤ is optimal in this case of a

risk-neutral dealer and no temporary price impact, we first explain why the optimal contract puts

weight only on the extremal prices. Starting from an arbitrary τ , consider a perturbation that

implements a mean-preserving spread of the contract weights. Both the direct and indirect effects

of this perturbation benefit the client:

• Direct effect (holding prices fixed). As mentioned while analyzing the dealer’s problem, (xt)
T
t=1

is a weakly decreasing sequence. As a positive affine transformation of the partial sums of

(xt)
T
t=1, (E[pt])Tt=1 is therefore a weakly concave sequence. Thus, if the prices were held fixed,

the client’s payment would be weakly lower under a mean-preserving spread of τ .

• Indirect effect (through price changes). Of course, prices will not hold fixed, as a change in τ

changes the dealer’s best response x, affecting price dynamics. Using (4), we compute

t∑
s=1

xs =
t

T
+

t∑
s=1

s

(
1− t

T

)
τs +

T∑
s=t+1

t
(
1− s

T

)
τs. (5)

Observe that for all t, the coefficients on (τ1, . . . , τT )
⊤ in this expression form a weakly concave

sequence.21 Thus, a mean-preserving spread of τ leads the dealer to backload his trading,

in the sense of first-order stochastic dominance (i.e., reduce
∑t

s=1 xs for all t). Given that

E[pt] = p0+ θ
∑t

s=1 xs, such backloading weakly reduces each price, which benefits the client.

The client therefore unambiguously benefits from mean-preserving spreads of the contract weights.

It follows that τ∗2 = · · · = τ∗T−1 = 0, so that the optimal contract is a U-shape.22 To see that it is

also symmetric, begin from an arbitrary contract whose interior weights are all zero and consider a

perturbation that shifts weight from period T to period 1. Unlike the mean-preserving perturbation

considered above, here the direct and indirect effects have opposite signs:

21More precisely, the coefficients on (τ1, . . . , τT )
⊤ constitute an inverted-V , which is maximized at the coefficient

on τt. The intuition is that
∑t

s=1 xs is increasing in each of (x1, . . . , xt), and given the dealer’s frontloading motive,
an increase in τt leads each of (x1, . . . , xt) to increase. Let us contrast that with τt−1 and τt+1. An increase in τt−1

leads (x1, . . . , xt−1) to increase but does not lead xt to increase. An increase in τt+1 also leads (x1, . . . , xt) to increase,
but the effect is more muted because τt+1 also works to increase xt+1.

22That the optimal contract puts relatively less weight on prices of interior periods is also intuitive because these
prices are the easiest for the dealer to manipulate, in the following sense. Fixing any deterministic trading strategy x̄
as a baseline, imagine that in choosing his trading strategy x, the dealer is constrained not only by

∑T
s=1 xs = 1 but

also by xt ∈ [x̄t−δ, x̄t+δ] for all t. This means that
∑t

s=1 x̄s−δmin{t, T −t} ≤
∑t

s=1 xs ≤
∑t

s=1 x̄s+δmin{t, T −t},
so that the dealer can manipulate pt by θδmin{t, T − t} in either direction.
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• Direct effect (holding prices fixed). On the one hand, owing to permanent price impact, prices

are expected to rise over the trading interval. Thus, if the dealer’s trading strategy—and hence

price dynamics—were fixed, the client would put full weight on the first period.

• Indirect effect (through price changes). On the other hand, price dynamics will respond to

the contract. All else equal, the client prefers low prices. Owing to permanent price impact,

each price is lowest when the dealer backloads his trading as much as possible. Given the

contract’s influence on the dealer’s trading strategy (i.e., that his trading will be frontloaded

relative to the contract), prices are lowest when the client puts full weight on the last period.

The optimal contract must balance these two considerations. Due to the linearity of price impact,

these two effects offset when τ1 = τT = 1
2 .

23

4.4 When temporary price impact is the only influence

For the case in which temporary price impact is the only influence, assume there is no permanent

price impact, and make the dealer risk-neutral. In this case, the client optimally offers the guaran-

teed TWAP contract, which weights each period equally. It induces the dealer to use the first-best

trading strategy, which similarly puts equal weight on each period. And in this case, the client

obtains her first-best payoff.

Corollary 7. Assume that there is no permanent price impact (θ = 0) and that the dealer is

risk-neutral (λ = 0).

(i) For any τ ∈ T wa, the dealer’s best response is x = 1
2τ + 1

2

(
1
T , . . . ,

1
T

)⊤
.

(ii) The weights of the optimal contract are τ ∗ =
(
1
T , . . . ,

1
T

)⊤
, so that the dealer’s best-responding

trading strategy is x∗ =
(
1
T , . . . ,

1
T

)⊤
. The client’s expected costs of execution are p0 +

γ
T .

Claim (i) says that the dealer has a smoothing motive in this case: his best response is to

choose an x that partially smooths the offered τ . To understand this, suppose that the dealer did

not smooth at all, selecting the trading strategy x = τ . His trading costs and his payment from

the client would both therefore be the same weighted average of the prices, so that he would be

guaranteed a profit of zero. But he can do better by smoothing his trading. Suppose the dealer

deviates from x = τ by shifting volume from a period t′′ to a period t′ where τt′ < τt′′ . The direct

effect of this deviation is to reduce his expected costs at the rate E[pt′′ ] − E[pt′ ] = γ(xt′′ − xt′) =

23Indeed, we have E[pt] = p0 + θ
∑t

s=1 xs = p0 + θ
[

t
T
+

(
1− t

T

)
τ1
]
, using equation (5) and τ2 = · · · = τT−1 = 0.

Thus, the direct effect of perturbing τ = (τ1, 0, . . . , 0, τT )
⊤ so as to shift weight from period T to period 1 is

E[p1]− E[pT ] = θ

[
1

T
+

(
1− 1

T

)
τ1 − 1

]
= −θ

(
1− 1

T

)
(1− τ1).

And the indirect effect is

τ1

(
dE[p1]
dτ1

− dE[p1]
dτT︸ ︷︷ ︸
=0

)
+ τT

(
dE[pT ]
dτ1︸ ︷︷ ︸
=0

− dE[p1]
dτT︸ ︷︷ ︸
=0

)
= τ1θ

(
1− 1

T

)
.
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γ(τt′′ − τt′) > 0. And the indirect effect (through prices) is vanishing, because as we have noted,

x = τ insures the dealer against price fluctuations. That a risk-neutral dealer optimally smooths

precisely one half of the variation in τ is due to the linearity of price impact.

In particular, if offered the guaranteed TWAP contract τTWAP =
(
1
T , . . . ,

1
T

)⊤
, the dealer selects

x = ( 1
T , . . . ,

1
T )

⊤, which is in fact the efficient action (i.e., xFB). This outcome also leaves the dealer

with zero surplus. It follows that τTWAP gives the client her first-best payoff. Clearly, nothing can

do better than that, and this contract must be optimal.

4.5 When price risk is the only influence

For the case in which price risk is the only influence, fix θ and γ, and consider the limit as λ → ∞.

According to claim (ii) of the following result, the outcome resembles the case in which temporary

price impact is the only influence: the guaranteed TWAP contract is optimal, it induces the dealer

to use the first-best trading strategy, and the client obtains her first-best payoff. But it is for a

different reason, as according to claim (i), there is a difference in the dealer’s best response function.

Corollary 8. Consider the limit as the dealer becomes infinitely risk averse (λ → ∞).

(i) For any τ ∈ T wa, the dealer’s best response converges to x = τ .

(ii) The weights of the optimal contract converge to τ ∗ =
(
1
T , . . . ,

1
T

)⊤
, so that the dealer’s best-

responding trading strategy converges to x∗ =
(
1
T , . . . ,

1
T

)⊤
. The client’s expected costs of

execution converge to p0 +
γ
T + θ(T+1)

2T .

Claim (i) says that the dealer has a mirroring motive in this case: his best response is to

choose an x equal to the offered τ . The intuition is the following. As the dealer becomes more risk

averse, he places greater emphasis on insuring himself against price shocks. In fact, he can perfectly

insure himself by selecting a deterministic trading strategy with weights that mirror the contract

he is offered. In the limit of infinite risk aversion, this is exactly what he does. In particular,

τTWAP =
(
1
T , . . . ,

1
T

)⊤
induces the dealer to select the efficient action xFB =

(
1
T , . . . ,

1
T

)⊤
. This

outcome moreover leaves the dealer perfectly insured and with zero surplus. It follows that τTWAP

gives the client her first-best payoff, and must therefore be optimal.

This result reflects an interesting contrast relative to classical models of moral hazard (e.g.,

Holmström, 1979). Those classical models feature an insurance-incentives tradeoff: the agent can

be induced to take the efficient action (i.e., high effort) only if he is exposed to risk. And if the

agent is very risk averse, then he must be paid a significant risk premium for that. The principal’s

payoff then typically declines as the agent becomes more risk averse. In contrast, given the special

structure of our setting, inducing the efficient action (i.e., xFB) does not always require exposing

the dealer to risk. In fact, in this limit of an infinitely risk averse dealer, τ = ( 1
T , . . . ,

1
T )

⊤ induces

the dealer to select xFB without exposing him to any risk at all. In consequence, the client’s payoff

is not monotonically decreasing in λ.
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4.6 Discussion of the general solution

The general model can be viewed as a combination of the three aforementioned special cases.

Accordingly, the general formula for the dealer’s best response reflects a mixture of the frontloading,

smoothing, and mirroring motives respectively discussed in the previous sections. Likewise, the

general formula for the optimal contract combines the features of the optimal contracts from those

special cases. One notable feature shared by all three special cases is that the optimal contract is

symmetric, in the sense that τ∗j = τ∗T+1−j for all j. In fact, such symmetry holds in general.

Corollary 9. The optimal contract weights are symmetric: τ∗j = τ∗T+1−j for all j = 1, . . . , T .

The intuition for why symmetry obtains in general can be thought of as a combination of the

various reasons for why it obtains in each of the three special cases discussed before.

To illustrate the general solution provided by Proposition 5, Figures 1–3 display τ ∗ and x∗ for

various choices of the parameters θ, γ, and λ.24 The left panels of these figures depict the optimal

contract weights; consistent with Corollary 9, they are indeed symmetric. The right panels depict

the dealer’s best-responding trading strategy.
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Figure 1: The optimal contract weights and best-responding trading strategy for different levels
of permanent price impact. Without permanent price impact (θ = 0), both the optimal weights
and the trading strategy are constant over time. As permanent price impact grows, the optimal
weights become more U-shaped, and the dealer’s trading strategy becomes more frontloaded. The
other parameters are γ = 1, λ = 1, σ = 0.5, and T = 20.

Figures 1–3 suggest that the general solution exhibits several additional qualitative patterns.

First, the optimal contract weights are U-shaped: τ∗1 ≥ τ∗2 ≥ · · · ≥ τ∗⌈T/2⌉ ≤ · · · τ∗T−1 ≤ τ∗T .
25

24Note that λ and σ affect the solution only through the quantity λσ2. Hence, Figure 3, which depicts how the
solution changes with λ, speaks also to how the solution changes with σ.

25In fact, a stronger property appears to hold. The figures suggest that the optimal contract weights are convex
in the sense that τ∗

1 − τ∗
2 ≥ τ∗

2 − τ∗
3 ≥ · · · ≥ τ∗

T−2 − τ∗
T−1 ≥ τ∗

T−1 − τ∗
T . Given that the weights are symmetric (cf.

Corollary 9), this convexity condition implies the U-shape condition τ∗
1 ≥ τ∗

2 ≥ · · · ≥ τ∗
⌈T/2⌉ ≤ · · · τ∗

T−1 ≤ τ∗
T .
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Figure 2: The optimal contract weights and best-responding trading strategy for different levels of
temporary price impact. Without temporary price impact (γ = 0), the optimal weights are the same
for all periods except for the first and last periods, and the dealer’s trading strategy is frontloaded.
As temporary price impact grows, the curves for the optimal weights become smoother, and the
dealer’s trading strategy becomes less frontloaded. The other parameters are θ = 1, λ = 1, σ = 0.5,
and T = 20.
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Figure 3: The optimal contract weights and best-responding trading strategy for different levels of
risk aversion. As risk aversion grows, the optimal weights become less U-shaped, and the dealer’s
trading strategy becomes less frontloaded. The other parameters are θ = 1, γ = 1, σ = 0.5, and
T = 20.

Second, the dealer responds with a trading strategy that is frontloaded relative to the contract:∑t
s=1 x

∗
t ≥

∑t
s=1 τ

∗
s for all t = 1, . . . , T . Third, the severity of both this U-shape and this frontload-

ing is strengthened by θ (the coefficient of permanent price impact), weakened by γ (the coefficient
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of temporary price impact), and weakened by λ (the dealer’s coefficient of absolute risk aversion).

These patterns can be understood through the aforementioned special cases. With permanent

price impact as the only influence, we have τ ∗ = (12 , 0, . . . , 0,
1
2)

⊤, which is the maximally-severe

U-shape, and x∗ = (T+1
2T , 1

2T , . . . ,
1
2T )

⊤, which is strictly frontloaded (relative to the contract).

With either temporary price impact or price risk as the only influence, we have τ ∗ = ( 1
T , . . . ,

1
T )

⊤,

which is the minimally-severe U-shape, and x∗ = ( 1
T , . . . ,

1
T )

⊤, which represents minimally-severe

frontloading. The intuition for why the U-shape in τ ∗ and frontloading in x∗ (weakly) obtain in

general can be thought of as a combination of the different reasons for why they obtain in each of

the three special cases discussed before. The comparative statics can also be understood in these

terms. An increase in θ moves us toward the limiting case of Section 4.3, so it increases both the

severity of the U-shape and the severity of the frontloading. Increases in γ and λ reduce those

severities because they move us toward the limiting cases of Sections 4.4 and 4.5, respectively.

We stress that these observations about the U-shape of the optimal contract and the frontloading

of the dealer’s trading come only from numerical experimentation and do not correspond to any

formal result that we have been able to derive from our closed-form solution to the general discrete-

time model. We do, however, prove analogues of these observations for the continuous-time limit

analyzed in the next section.

5 Continuous-Time Limit

In light of ambiguity regarding what precisely a trading period represents, as well as recent trends

toward progressively high-frequency trading, we are motivated to study the continuous-time limit

of our discrete-time model. For this limit, we consider a sequence of models, indexed by k. Along

this sequence, we let the number of periods diverge (i.e., Tk → ∞). At the same time, the distance

between consecutive periods should vanish, so as to hold the execution horizon constant. To capture

this, we shrink the variance of price shocks to zero (i.e., σ2
k → 0) in such a way that Tkσ

2
k remains

equal to a constant, which we denote Tσ2.26

5.1 The optimal contract

To illuminate the underlying patterns, we state the following result in terms of cumulative values

through quantiles q of the execution period:
∑⌈qT ⌉

t=1 τ∗t and
∑⌈qT ⌉

t=1 x∗t . To ensure that the convergence

is well behaved, we focus on the case of a strictly risk-averse dealer.

Proposition 10. Consider a sequence of execution horizons (Tk)
∞
k=1 and a sequence of price-shock

variances (σ2
k)

∞
k=1 such that limk→∞ Tk = ∞ and Tkσ

2
k = Tσ2 for all k. For each k, let τ ∗k be the

associated optimal contract, and let x∗k be the dealer strategy that best responds to τ ∗k. Assume

26This type of limit is classical in the study of continuous-time limits of discrete-time models, going back to Cox,
Ross and Rubinstein (1979).
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also that the dealer is strictly risk-averse (λ > 0). For all q ∈ [0, 1],

lim
k→∞

⌈qTk⌉∑
t=1

τ∗kt =


0 if q = 0

1−a
2 + aq if q ∈ (0, 1)

1 if q = 1

and lim
k→∞

⌈qTk⌉∑
t=1

x∗kt =


0 if q = 0

3(1−a)
4 + aq if q ∈ (0, 1)

1 if q = 1

where a = 1
1+ 4θ

λTσ2

. The client’s expected costs of execution converge to p0 +
3−a
4 θ.

The optimal contract in the continuous-time limit takes a surprisingly simple form, which can

in fact be viewed as an extreme U-shape: interior times are weighted with a constant density of

a, and the two boundary instants are weighted with atoms of 1−a
2 each.27 For the dealer’s best

response, interior times are also weighted with a constant density of a, but there is frontloading in

terms of the boundary weights: the initial atom is three times the terminal atom.

Comparative statics. This density a is increasing in (λ, Tσ2) and decreasing in θ. As a relates

inversely to the severity of the optimal contract’s U-shape, these relationships accord with what

the earlier numerical experimentation suggests holds in general. To explain the intuition, note

that permanent price impact generates an expected gap between the initial and terminal prices,

creating a frontloading motive for the dealer: by frontloading, the dealer expects to buy low and

sell high. A larger θ implies a larger expected gap, hence a larger frontloading motive. On the

other hand, frontloading exposes the dealer to price risk owing to variance in this gap. Larger Tσ2

implies a larger variance, hence a smaller frontloading motive. Larger λ means less risk-bearing

capacity, hence a similarly smaller frontloading motive. Finally, to see the connection between the

frontloading motive and a, consider what would happen if the frontloading motive were to disappear

entirely so that the dealer’s trades perfectly mirrored the weights of the offered contract. In that

case, the client obtains her first-best payoff from a guaranteed TWAP contract (i.e., with a = 1).

Analogously, smaller (larger) frontloading motives imply larger (smaller) values of a.

Temporary price impact. If trading were everywhere sufficiently diffuse, then temporary price

impact would vanish in the limit. Indeed, temporary price impact costs are γ
∑Tk

t=1(x
k
t )

2, which,

for example, vanish under the first-best trading policy, xFB,k =
(

1
Tk
, . . . , 1

Tk

)
. More generally, a

sufficient condition for vanishing temporary price impact is that max1≤t≤Tk
|xkt | is o(1/

√
Tk).

However, under the best response to the optimal contract, trading is not everywhere diffuse in

this sense (unless θ = 0), and temporary price impact does not vanish. So it is for subtle reasons

that γ does not affect the limit characterized by Proposition 10. This invariance obtains because

temporary price impact creates two effects. On the one hand, if the dealer’s trading schedule were

held fixed, then an increase in γ would raise prices and hence the client’s payment. But on the

27Studying an optimal execution problem, Obizhaeva and Wang (2013) derive a very similar form for the optimal
trading strategy: interior times weighted with a constant density and boundary instants weighted with equal atoms.
But the similarity is only coincidental. They solve a different problem (a problem of optimal execution rather than
one of optimal contracting) under a different set of assumptions.
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other hand, an increase in γ creates a smoothing motive for the dealer, which reduces the extent of

the dealer’s frontloading and hence the client’s payment. In the continuous-time limit, these two

considerations offset under the optimal contract.

Convergence. Although temporary price impact has no effect on the continuous-time limit, it

does affect convergence to this limit. Without temporary price impact, the first and last contract

weights converge to the atoms of the continuous-time limits so that

lim
k→∞

τ∗k1 = lim
k→∞

τ∗kTk
=

1− a

2
and lim

k→∞
τ∗kj+1 = lim

k→∞
τ∗kTk−j = 0 for any fixed j ≥ 1.

In contrast, with temporary price impact, we have a sequence of discrete weights

lim
k→∞

τ∗kj+1 = lim
k→∞

τ∗kTk−j =
θγj

(θ + γ)j+1

1− a

2
for any fixed j ≥ 0.

Note that the sum of each of the two sequences equals

∞∑
j=0

θγj

(θ + γ)j+1

1− a

2
=

θ

θ + γ

1

1− γ
θ+γ

1− a

2
=

1− a

2
,

which coincides with what Proposition 10 specifies for the jumps of limk→∞
∑⌈qTk⌉

t=1 τ∗kt at q = 0

and q = 1. Figure 4 illustrates this convergence.28

Interestingly, the optimal trading strategy has a different form: a sequence of discrete weights

only at the beginning, but not at the end of the trading times. Without temporary price impact,

only the first element of the trading strategy converges to a nonzero value

lim
k→∞

x∗k1 =
1− a

2
, lim

k→∞
x∗kj+2 = 0, lim

k→∞
x∗kTk−j = 0 for any fixed j ≥ 0.

With temporary price impact, we have

lim
k→∞

x∗kj+1 =
θγj

(θ + γ)j+1

1− a

2
, lim

k→∞
x∗kTk−j = 0 for any fixed j ≥ 0. (6)

However, the jumps of limk→∞
∑⌈qTk⌉

t=1 x∗kt at q = 0 and q = 1 are not determined only by these

sequences of discrete weights. As stated in Proposition 10, the jump at q = 0 is 3(1−a)
4 , consisting of

not only
∑∞

j=0
θγj

(θ+γ)j+1
1−a
2 = 1−a

2 from (6), but also another infinite sum whose terms individually

converge to zero but whose sum converges to 1−a
4 . This is illustrated in Figure 5, where we see

both the sequence of discrete weights at zero and a piece of the curve near zero that converges to

28Although λ affects a, and hence the total amount of weight in these sequences, it does not affect how this total is
divided across the elements of the sequences (in the limit). This is intuitive because when the time periods become
shorter, price fluctuations between consecutive periods become smaller, so that for purposes of these periods around
the boundary times, the dealer behaves in the limit as if he were risk-neutral (regardless of λ). The role of γ is exactly
the opposite: it affects the division of weight across the sequences, but not the weight assigned to the sequences in
total.
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Optimal cumulative contract weights 

Figure 4: The optimal contract for a large k (such that Tk = 2,000). There are two sequences
of discrete weights at the beginning and end, while the weights are smooth for interior times.
Parameters are θ = 1, γ = 1, λ = 1, and Tσ2 = 1. The limit features a constant density at interior
times of a = 1

1+ 4θ
λTσ2

= 0.2, as well as initial and terminal atoms of 1−a
2 = 0.4 each.

a vertical line as k → ∞. Likewise, the jump at q = 1 is 1−a
4 , which comes entirely from an infinite

sum of terms that individually all converge to zero.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The dealer’s best-responding trading strategy for a large k (such that Tk = 2,000). There
is a sequence of discrete weights at the beginning, while the weights are smooth for interior times
and towards the end (although part of the smooth curve converges to a vertical line). Parameters
are γ = 1, θ = 1, λ = 1, and Tσ2 = 1. The limit features a constant density at interior times of
a = 1

1+ 4θ
λTσ2

= 0.2, an initial atom of 3(1−a)
4 = 0.6, and a terminal atom of 1−a

4 = 0.2.
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Supplemental material. See Online Appendix D for supplemental details on this continuous-

time limit, including an overview of our strategy for proving Proposition 10 and a discussion of the

wedge between the first-best and second-best.

5.2 Discussion of outcomes under common contracts

Although not optimal in our model, two contracts that are nevertheless commonly used are τTWAP

and τMOC. Natural questions include: What trading behavior is induced by these contracts? By

how much do they underperform the optimal contract? Under what situations, if any, do they

deliver outcomes close to the client’s second-best payoff? The following result provides answers.

Proposition 11. Consider a sequence of execution horizons (Tk)
∞
k=1 and a sequence of price-shock

variances (σ2
k)

∞
k=1 such that limk→∞ Tk = ∞ and Tkσ

2
k = Tσ2 for all k. Assume also that the dealer

is strictly risk-averse (λ > 0).

(i) For each k, let xTWAP,k be the dealer strategy that best responds to τTWAP,k. For all q ∈ [0, 1],

lim
k→∞

⌈qTk⌉∑
t=1

xTWAP,k
t =


0 if q = 0

θ
λTσ2 + q if q ∈ (0, 1)

1 if q = 1

(7)

The client’s expected costs of execution converge to p0 +
1
2θ +

θ2

λTσ2 .

(ii) For each k, let xMOC,k be the dealer strategy that best responds to τMOC,k. For all q ∈ [0, 1],

lim
k→∞

⌈qTk⌉∑
t=1

xMOC,k
t =

0 if q ∈ [0, 1)

1 if q = 1
(8)

The client’s expected costs of execution converge to p0 + θ + γ2

θ+2γ .

According to part (i) of the proposition, τTWAP leads the dealer to frontload his trading so

much that he actually overbuys, before selling a discrete amount at the terminal instant. The

client can deter this overbuying—and consequently do better—by collecting contract weights from

interior times near the end of the window into an atom on the terminal instant. Hence, its terminal

atom is one way by which the optimal contract improves upon τTWAP. According to part (ii) of the

proposition, τMOC leads the dealer to concentrate all his trading at the terminal instant, behavior

sometimes termed ‘banging the close.’ Such extraordinarily concentrated trading is inefficient, and

one way by which the optimal contract improves upon τMOC is to deter it.

Back-of-the-envelope calculation. To quantify our findings, we consider a reasonable parametriza-

tion for our model’s continuous-time limit. Consider a client who desires to trade a position, cur-

rently valued at V = $100 million, in a certain stock. Let the parameters be p0 = $100, θ = 2×10−6,
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γ = 0, λ = 2 × 10−6, T = 1, and σ2 = 6.1.29 Under these parameters, the optimal contract puts

19.8 percent of its weight on the opening price, 19.8 percent on the closing price, and 60.4 percent

on the intraday time-weighted average price.

We then use our results to compute model-implied transaction costs under various scenarios.

Our metric is implementation shortfall: the client’s expected costs net of what it would have cost to

trade her entire volume at p0 per share. Whereas our theoretical analysis normalized trade size to

one share, we are now contemplating a trade of V/p0 = 1 million shares. In our model, transaction

costs grow with the square of volume, so we therefore scale up by a factor of one trillion. Doing

so, we find the following. First-best transaction costs are 1012
(
1
2θ
)
= $1 million, or 100 bps of the

value of the trade, which is the correct order of magnitude for trades of block sizes (e.g., SEC, 2005;

Abel Noser, 2021; WSJ, 2022a,b). Second-best transaction costs are 1012
(
1
2θ +

θ2

4θ+λTσ2

)
= $1.2

million (or 120 bps). Under τTWAP, transaction costs are 1012
(
1
2θ +

θ2

λTσ2

)
= $1.33 million (or

133 bps). Under τMOC, they are 1012
(
θ + γ2

θ+2γ

)
= $2 million (or 200 bps).

The calculations reported in the previous paragraph indicate that switching to the optimal

contract from τTWAP would reduce transaction costs by 13 bps. Gains of a switch from τMOC

would be even larger, 80 bps. In either case, such a switch closes a sizable portion of the gap

relative to the first-best and represents a cost saving on the order of hundred(s) of thousands

of dollars per trade. Scaling up by the market-wide volume of such trades, these cost savings

extrapolate to billions of dollars per year.30 Of course, additional savings might be possible with

more complex contracts (e.g., the set of affine contracts as in Online Appendix A, or the fully

general set as in Section 3.2). Nevertheless, it is striking that such substantial cost savings can be

obtained, even while staying within the relatively simple class of weighted-average-price contracts.

6 Conclusion

This paper formulates a contracting problem in which a client (the principal) contracts to purchase

a position from a dealer (the agent) at some future time. In the interim, the dealer acquires the

position from the market. The friction is hidden action, in that the client cannot observe the dealer’s

on-market trades, but only the evolution of market prices, so that the dealer has an incentive to

frontload his trading. Eliminating this friction and solving for the first-best benchmark, the problem

becomes a classic one of optimal execution. Indeed, our analysis of the first-best problem recovers

29These parameter values are consistent with the following facts. Abel Noser (2021) describes a dataset of portfolio
transitions, with a median size of $145 million. The median S&P 500 stock price was $112 as of April 27, 2022.
Cartea and Jaimungal (2016, Tables 7 and 8) estimate the coefficient of permanent price impact for 17 stocks, with
results ranging from 0.63×10−6 to 2.03×10−4. Choosing γ = 0 is to be maximally conservative, biasing our analysis
in favor of finding a small difference between the performance of τMOC and our optimal contract. Campo, Guerre,
Perrigne and Vuong (2011, Table 2) estimate a coefficient of absolute risk aversion of 2 × 10−6. T = 1 reflects an
execution window of one day. Avramov, Chordia and Goyal (2006, Table 1) find that the standard deviation of daily
returns is 2.47%, which for a $100 stock equates to a variance of 6.10.

30A conservative estimate of institutional transaction costs is $70 billion per year (Nasdaq, 2022; SIFMA, 2021).
Assuming that this figure represents 133 bps (200 bps) of the traded value and that a switch to our optimal contract
would save 13 bps (80 bps) of that value implies total cost savings of $6.8 billion ($28 billion) per year.
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classic results from that literature about optimality of trading at a constant rate.

However, we depart from the optimal execution literature by analyzing the implications of these

agency conflicts. Focusing on contracts that are weighted averages of market prices, we characterize

the second-best solution in discrete time, then take the continuous-time limit. The optimal contract

in this limit is an extreme U-shape: atoms of equal mass at the two extreme times and a constant

density at interior times. The mass at the extreme times—and hence the severity of the U-shape—

is increasing in permanent price impact, decreasing in the dealer’s risk aversion, and constant in

temporary price impact.

These results shed light on the interplay between price impact and agency conflicts in financial

markets. They could also aid in reducing the transaction costs of pension funds, endowments, or

other institutional traders who sometimes outsource the execution of large trades. In particular,

guaranteed TWAP contracts (and similar guaranteed VWAP contracts) are common in practice.

Although our results rationalize the practice of putting equal weight on interior prices, they also

indicate that these contracts themselves are unlikely to be optimal unless price impact is predom-

inantly temporary or the dealer is highly risk averse. Guaranteed MOC contracts, which put full

weight on the closing price, are also commonly used. Although our results rationalize the practice

of putting substantial weight on the closing price, they also recommend that the opening price

receive equally substantial weight, so that the contract more closely resembles the U-shape that

is optimal in the model. As regulators review best practices in relation to over-the-counter block

trading, they may revisit the wisdom of various pricing benchmarks in light of our analysis.
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Appendix: Proofs of Results Stated in the Main Text

How the parameter σ is handled in the proofs. Except for the proofs of Propositions 10

and 11, where σk depends on k, we assume for all proofs that σ = 1 without loss of generality.

Indeed, any parametrization of the model with σ ̸= 1 is economically-equivalent to an alternative

parametrization in which the price-shock variance is 1 (instead of σ2) and in which the dealer’s risk

aversion is λσ2 (instead of λ).

Proof of Proposition 1

Lemma 12. For any trading strategy x ∈ X ,

E

[
T∑
t=1

xt

t∑
s=1

εs

]
= 0.

Proof of Lemma 12. We start by writing

E

[
T∑
t=1

xt

t∑
s=1

εs

]
= E

[
T∑
t=1

xt

(
T∑

s=1

εs −
T∑

s=t+1

εs

)]
= E

[
T∑
t=1

xt

T∑
s=1

εs

]
− E

[
T∑
t=1

xt

T∑
s=t+1

εs

]
.

We complete the proof by showing that each of these two terms evaluates to zero

E

[
T∑
t=1

xt

T∑
s=1

εs

]
= E

[
T∑

s=1

εs

T∑
t=1

xt

]
= E

[
T∑

s=1

εs

]
= 0,

E

[
T∑
t=1

xt

T∑
s=t+1

εs

]
= E

[
T∑
t=1

xt

T∑
s=t+1

E [εs|xt]

]
= 0.

Proof of Proposition 1. Given an arbitrary trading strategy x ∈ X , the expected costs of execution

are

E

[
T∑
t=1

xtpt

]
= E

[
T∑
t=1

xt

(
p0 + γxt + θ

t∑
s=1

xs +

t∑
s=1

εs

)]

= p0E

[
T∑
t=1

xt

]
+ γE

[
T∑
t=1

x2t

]
+ θE

[
T∑
t=1

xt

t∑
s=1

xs

]
+ E

[
T∑
t=1

xt

t∑
s=1

εs

]
.

The first term evaluates to p0. The last term evaluates to zero by Lemma 12. Observe that ε has

fallen out of the expression. Thus, the first-best trading strategy, which minimizes this expression,

will not be a function of ε—in other words, it will be deterministic. This first-best trading strategy
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solves the program

min
(x1,...,xT )⊤∈RT

p0 + γ
T∑
t=1

x2t + θ
T∑
t=1

xt

t∑
s=1

xs subject to
T∑
t=1

xt = 1.

Taking the Lagrangian (with µ as the multiplier on the constraint), we obtain

2γxFBt + 2θxFBt + θ
∑
s ̸=t

xFBs = µ for all t = 1, . . . , T.

These imply xFB1 = · · · = xFBT . And from the constraint, we must therefore have xFB1 = · · · =
xFBT = 1

T . To obtain the expected costs of execution under this strategy, we compute

E

[
T∑
t=1

xFBt pt

]
= p0 + γ

T∑
t=1

(
1

T

)2

+ θ

T∑
t=1

1

T

t∑
s=1

1

T
= p0 +

γ

T
+

θ(T + 1)

2T
.

Proof of Proposition 2

Proof. Consider a class of contracts indexed by (ζ, δ,K1, . . . ,KT−1), where the payment is

τ(p) = δ +
1

T

T∑
t=1

pt −
T−1∑
t=1

Kt1[pt − pt−1 > ζ].

The dealer’s monetary payoff is

τ(p)− x · p = δ +

T∑
t=1

pt

(
1

T
− xt

)
−

T−1∑
t=1

Kt1[pt − pt−1 > ζ].

The dealer’s expected utility is therefore

E
[
u
(
τ(p)− x · p

)]
= E

[
u

(
δ +

T∑
t=1

pt

(
1

T
− xt

)
−

T−1∑
t=1

Kt1
[
pt − pt−1 > ζ

])]

= −E

[
exp

(
−λδ − λ

T∑
t=1

pt

(
1

T
− xt

)
+ λ

T−1∑
t=1

Kt1[pt − pt−1 > ζ]

)]

= −E

[
exp

(
− λδ − λ

T∑
t=1

(
p0 + γxt + θ

t∑
s=1

xs +
t∑

s=1

εs

)(
1

T
− xt

)

+ λ
T−1∑
t=1

Kt1[γ(xt − xt−1) + θxt + εt > ζ]

)]
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= −exp

(
− λδ − λ

T∑
t=1

(
p0 + γxt + θ

t∑
s=1

xs

)(
1

T
− xt

))
E

[
E

[
exp

(
− λ

T∑
t=2

εt

(
t−1∑
s=1

xs −
t− 1

T

)

+ λ

T−1∑
t=1

Kt1[γ(xt − xt−1) + θxt + εt > ζ]

)∣∣∣∣∣FT−1

]]

= −exp

(
− λδ − λ

T∑
t=1

(
p0 + γxt + θ

t∑
s=1

xs

)(
1

T
− xt

)
+

λ2

2

(
T−1∑
s=1

xs −
T − 1

T

)2)

× E

[
exp

(
− λ

T−1∑
t=2

εt

(
t−1∑
s=1

xs −
t− 1

T

)
+ λ

T−1∑
t=1

Kt1[γ(xt − xt−1) + θxt + εt > ζ]

)]

= −exp

(
− λδ − λ

T−1∑
t=1

(
p0 + γxt + θ

t∑
s=1

xs

)(
1

T
− xt

)

− λ

(
p0 + γ

(
1−

T−1∑
s=1

xs

)
+ θ

)(
1

T
− 1 +

T−1∑
s=1

xs

)
+

λ2

2

(
T−1∑
s=1

xs −
T − 1

T

)2)

×
T−1∏
t=1

E

[
exp

(
− λεt

(
t−1∑
s=1

xs −
t− 1

T

)
+ λKt1

[
γ(xt − xt−1) + θxt + εt > ζ

])]

= −exp

(
− λδ − λ

T−1∑
t=1

(
p0 + γxt + θ

t∑
s=1

xs

)(
1

T
− xt

)

− λ

(
p0 + γ

(
1−

T−1∑
s=1

xs

)
+ θ

)(
1

T
− 1 +

T−1∑
s=1

xs

)
+

λ2

2

T∑
t=1

(
t−1∑
s=1

xs −
t− 1

T

)2)

×
T−1∏
t=1

(
exp(λKt)− (exp(λKt)− 1)Φ

(
ζ − γ(xt − xt−1)− θxt + λ

(
t−1∑
s=1

xs −
t− 1

T

)))
,

using for the last equality that εt is normally distributed with standard deviation one and mean

−λ
(∑t−1

s=1 xs−
t−1
T

)
under the probability measure Qt given by dQt

dP = exp
(
−λεt

(∑t−1
s=1 xs−

t−1
T

)
−

λ2

2

(∑t−1
s=1 xs −

t−1
T

)2)
. Taking the logarithm and the derivative with respect to xj at xs = 1/T for

all s gives

λ

(
p0 + γ

1

T
+ θ

j

T

)
− λ

(
p0 + γ

1

T
+ θ

)
−

T−1∑
t=1

d
dxj

Φ
(
ζ − γ(xt − xt−1)− θxt + λ

(∑t−1
s=1 xs −

t−1
T

)))∣∣
xs=1/T ∀s

1
1−exp(−λKt)

− Φ(ζ − γ/T1[t = 1]− θ/T )

= λθ
j − T

T
+

(γ + θ)ϕ(ζ − γ/T1[j = 1]− θ/T )
1

1−exp(−λKj)
− Φ(ζ − γ/T1[j = 1]− θ/T )

− (γ + λ)ϕ(ζ − θ/T )
1

1−exp(−λKj+1)
− Φ(ζ − θ/T )

1[j < T − 1]

−
T−1∑
t=j+2

λϕ(ζ − θ/T )
1

1−exp(−λKt)
− Φ(ζ − θ/T )

.
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We set these expressions to zero and solve for Kj iteratively for j = T − 1, T − 2, . . . , 1. To this

end, we write

an =
(γ + θ)ϕ(ζ − γ/T1[n = T − 1]− θ/T )
1

1−exp(−λKT−n)
− Φ(ζ − γ/T1[n = T − 1]− θ/T )

(A.9)

for n = 1, 2, . . . , T − 1, and find

a1 =
λθ

T

a2 =
λθ

T

(
2 +

γ + λ

γ + θ

)
a3 =

λθ

T

(
3 +

γ + λ

γ + θ

(
2 +

γ + λ

γ + θ

)
+

λ

γ + θ

)
an =

λθ

T
n+

γ + λ

γ + θ
an−1 +

λ

γ + θ

n−2∑
j=1

aj

an−1 =
λθ

T
(n− 1) +

γ + λ

γ + θ
an−2 +

λ

γ + θ

n−3∑
j=1

aj .

Combining the last two formulae yields

an =
λθ

T
n+

γ + λ

γ + θ
an−1 +

λ

γ + θ
an−2 + an−1 −

λθ

T
(n− 1)− γ + λ

γ + θ
an−2

=
λθ

T
+

2γ + λ+ θ

γ + θ
an−1 −

γ

γ + θ
an−2, (A.10)

which we can write as(
an

an−1

)
=

(
λθ
T

0

)
+

(
2γ+λ+θ
γ+θ − γ

γ+θ

1 0

)(
an−1

an−2

)

=
n−3∑
j=0

(
2γ+λ+θ
γ+θ − γ

γ+θ

1 0

)j (
λθ
T

0

)
+

(
2γ+λ+θ
γ+θ − γ

γ+θ

1 0

)n−2(
λθ
T

(
2 + γ+λ

γ+θ

)
λθ
T

)
.

This shows that an is uniquely defined in terms of n, T , λ, γ, and θ. Note that an is strictly positive

and increasing in n, which follows from (A.10) by induction.

Let ζ̄ be such that ϕ(ζ̄−γ/T−θ/T )

1−Φ(ζ̄−γ/T−θ/T )
>

aT−1

γ+θ ; this is possible because the inverse Mills ratio ϕ(x)
1−Φ(x)

grows without bound as x increases. It implies ϕ(ζ̄−θ/T )

1−Φ(ζ̄−θ/T )
> an

γ+θ for all n = 1, 2, . . . , T − 1. Let

ζ ≥ ζ̄. Solving (A.9) for KT−n gives

KT−n =
1

λ
log

(
1 +

an

(γ + θ)ϕ(ζ − γ/T1[n = T − 1]− θ/T )− an
(
1− Φ(ζ − γ/T1[n = T − 1]− θ/T )

)) .

(A.11)
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This choice leaves the dealer with expected utility

E
[
u
(
τ(p)− x · p

)]∣∣∣∣
xs=1/T ∀s

= −exp(−λδ)
T−1∏
t=1

1

1− aT−t

γ+θ
1−Φ(ζ−γ/T1[t=1]−θ/T )
ϕ(ζ−γ/T1[t=1]−θ/T )

.

For this contract to satisfy (IR), this must be at least u(0) = −1. Choosing δ to make this constraint

hold with equality, we obtain

δ = − 1

λ

T−1∑
t=1

log

(
1− aT−t

γ + θ

1− Φ(ζ − γ/T1[t = 1]− θ/T )

ϕ(ζ − γ/T1[t = 1]− θ/T )

)
. (A.12)

Finally, we argue that the client can approximate her first-best payoff arbitrarily closely by setting

ζ ≥ ζ̄ sufficiently large, settingKT−n according to (A.11), and setting δ according to (A.12). Indeed,

because δ is set to satisfy (IR), the client accepts such a contract. Hence, the client’s expected costs

of execution E
[
τ(p)

]
are bounded above by E

[
δ+ 1

T

∑T
t=1 pt

]
= δ+p0+

γ
T +

θ
T

∑T
t=1

∑t
s=1 xs. Because

K1, . . . ,KT−1 are set so that x =
(
1
T , . . . ,

1
T

)⊤
satisfies (IC), this bound becomes δ+p0+

γ
T + θ(T+1)

2T .

Applying Proposition 1, the client’s first-best costs are exceeded by at most δ. However, according

to (A.12), δ can be made arbitrarily close to zero by setting ζ sufficiently large.

Proof of Lemma 3

Proof. The dealer’s expected utility equals

E[u(τ · p− x · p)] = −E

[
exp

(
λ

T∑
t=1

(xt − τt)pt

)]

= −E

[
exp

(
λ

T∑
t=1

(xt − τt)

(
t∑

j=1

(θxj + εj) + γxt

))]

= −E

[
exp

(
λ

T∑
t=1

(xt − τt)

(
t∑

j=1

θxj + γxt

)
+ λ

T∑
j=1

εj

T∑
t=j

(xt − τt)

)]
.

Instead of maximizing this expression over xt subject to
∑T

t=1 xt = 1, we set Xj =
∑j

t=1 xt with

X0 = 0 and XT = 1, and minimize

−E[u(τ ·p−x·p)] = E

[
exp

(
λ

T∑
t=1

(Xt−Xt−1−τt)
(
θXt+γ(Xt−Xt−1)

)
−λ

T∑
t=1

εt

(
Xt−1−

t−1∑
j=1

τj

))]
(A.13)

over X1, X2, . . . , XT−1. Because Xt needs to be chosen before the price in period t is observable,

Xt is Ft−1-measurable. We start by conditioning (A.13) on FT−1 and will then go backward
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subsequently. From the law of iterated expectations, we obtain

− E[u(τ · p− x · p)]

= E

[
E

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−1∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))∣∣∣∣∣FT−1

]]

= E

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× E

[
exp

(
− λεT

(
XT−1 −

T−1∑
j=1

τj

))∣∣∣∣∣FT−1

]]

= E

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

)

+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]

= E

[
exp

(
λ

T−2∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× exp

(
λ

T∑
t=T−1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+

λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]
,

where we used that XT−1 is FT−2-measurable and thus also FT−1-measurable, along with the fact

that εT is independent of FT−1. We note that XT−1 appears only in the last line, but not in the

penultimate line, and the dependence on XT−1 is quadratic. Therefore, the optimal XT−1 is given

by the first-order condition

− λ
(
θXT + γ(XT −XT−1)

)
− λγ(XT −XT−1 − τT ) + λ(θXT−1 + γXT−1 − γXT−2)

+ λ(θ + γ)(XT−1 −XT−2 − τT−1) + λ2

(
XT−1 −

T−1∑
j=1

τj

)
= 0,

which we rewrite as

−
(
θ + 2γ

)
XT +

(
λ+ 2θ + 4γ

)
XT−1 − (θ + 2γ)XT−2 = −γτT + (θ + γ)τT−1 + λ

T−1∑
j=1

τj , (A.14)
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This implies thatXT−1 is FT−3-measurable because so isXT−2 and all other terms are deterministic.

Next, we condition on FT−2 to obtain

E

[
exp

(
λ

T−2∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× exp

(
λ

T∑
t=T−1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+

λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]

= E

[
E

[
exp

(
λ

T−2∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))∣∣∣∣∣FT−2

]

× exp

(
λ

T∑
t=T−1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+

λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]

= E

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−3∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× exp

(
λ2

2

(
XT−2 −

T−2∑
j=1

τj

)2

+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]
.

The terms within the exponential function that depend on XT−2 are

λ

T−1∑
t=T−2

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+

λ2

2

(
XT−2 −

T−2∑
j=1

τj

)2

so that the first-order condition implies

−(θ + 2γ)XT−1 + (λ+ 2θ + 4γ)XT−2 − (θ + 2γ)XT−3 = −γτT−1 + (θ + γ)τT−2 + λ
T−2∑
j=1

τj .

Because XT−1 is a function of XT−2 in the optimum by (A.14) and XT−3 is FT−4-measurable while

all other terms are deterministic, this implies that XT−2 is FT−4-measurable. And, using again

that XT−1 is a function of XT−2, this implies that XT−1 is FT−4-measurable as well. Continuing

this procedure, we obtain in the end that all Xt are deterministic and satisfy

−(θ+2γ)Xt+1+(λ+2θ+4γ)Xt−(θ+2γ)Xt−1 = −γτt+1+(θ+γ)τt+λ

t∑
j=1

τj , t = 1, 2, . . . , T −1.

(A.15)

This linear system of equations can be written as AX = Eτ , hence x = FX = FA−1Eτ , using

the T ×T matrices A, E, and F (written here with general σ, for reference in the main text) given
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by

A =



λσ2 + 2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)

0 · · · 0 1


,

E =



θ + γ + λσ2 −γ 0 0 0 · · ·
λσ2 θ + γ + λσ2 −γ 0 0 · · ·
λσ2 λσ2 θ + γ + λσ2 −γ 0 · · ·
...

...
. . .

. . .

λσ2 λσ2 θ + γ + λσ2 −γ

1 · · · 1 1


,

F =



1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...

. . .
. . .

0 · · · −1 1


.

(A.16)

Proof of Proposition 4

Proof. We can write A = ĨÃ, where

Ã =



λσ2 + 2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)

0 · · · 0 λσ2 + 2θ + 4γ


,

Ĩ =



1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1
λσ2+2θ+4γ


.
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Note that Ã is a Z-matrix (i.e., a square matrix where all off-diagonal entries are nonpositive). In

fact, Ã is an M-matrix. Indeed, we can express Ã = (λσ2 + 2θ + 4γ)I − B̃, where

B̃ =



0 θ + 2γ 0 0 · · ·
θ + 2γ 0 θ + 2γ 0 · · ·

0 θ + 2γ 0 θ + 2γ
...

. . .
. . .

. . .

θ + 2γ 0 θ + 2γ

0 · · · 0 0


is a matrix whose eigenvalues (i.e., ±(θ + 2γ)

√
2 and 0) are bounded in magnitude by λσ2 + 2θ +

4γ. Because Ã is an M-matrix, its inverse is a nonnegative matrix. Hence, A−1 = Ã−1Ĩ−1 is

also nonnegative. Next, observe that EτTWAP = 1
T (θ + λσ2, θ + 2λσ2, . . . , θ + (T − 1)λσ2, T )⊤,

and AF−1xFB = 1
T (λσ

2, 2λσ2, . . . , (T − 1)λσ2, T )⊤, so EτTWAP ≥ AF−1xFB (where ≥ is in the

component-wise sense). Using the fact that A−1 is nonnegative,

F−1FA−1EτTWAP = A−1EτTWAP ≥ F−1xFB,

which is precisely what it means for FA−1EτTWAP to be frontloaded relative to xFB. For the final

claim, note that all the inequalities can be replaced with equalities if and only if θ = 0.

Proof of Proposition 5

Proof. The client’s expected cost of a contract τ · p is

E[τ · p] = E

[
T∑
t=1

τtpt

]
= E

[
T∑
t=1

τt

(
p0 +

t∑
j=1

(θxj + εj) + γxt

)]
= p0 +

T∑
t=1

τt

(
t∑

j=1

θxj + γxt

)

= p0 + θ
T∑
t=1

τtXt + γ
T∑
t=1

τt(Xt −Xt−1) = p0 + θτ⊤A−1Eτ + γτ⊤FA−1Eτ

= p0 +
1

2
τ⊤Mτ (A.17)

where F andM are defined in (A.16) and (3), respectively. Therefore, we minimize 1
2τ

⊤Mτ subject

to τ⊤1 = 1, where 1 = (1, 1, . . . , 1)⊤ denotes a T vector of ones. From the Lagrange method (and

using the symmetry of M), it follows that

Mτ ∗ − µ1 = 0,

hence τ ∗ = µM−11 and 1⊤τ ∗ = µ1⊤M−11 = 1. We obtain µ = 1
1⊤M−11

and thus τ ∗ =
1

1⊤M−11
M−11 and x∗ = FA−1Eτ ∗ = 1

1⊤M−11
FA−1EM−11, using Lemma 3. We can compute the
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client’s expected costs of execution under τ ∗ = 1
1⊤M−11

M−11 as

p0 +
1

2
(τ ∗)⊤Mτ ∗ = p0 +

1

2
(1⊤M−11)−21⊤(M−1)⊤MM−11 = p0 +

1

21⊤M−11
.

Proof of Corollary 6

Proof. Claim (i): It follows from (A.15) with γ = λ = 0 that

−xt+1 + xt = τt for t = 1, 2, . . . , T − 1,

which implies

xt = xt+1 + τt = xt+2 + τt + τt+1 = . . . = c+
T∑
s=t

τs

for some constant c and all t. To determine c, we use that
∑T

t=1 xt = 1, hence

c =
1

T
− 1

T

T∑
t=1

T∑
s=t

τs =
1

T
−

T∑
s=1

s

T
τs.

Claim (ii): Define G as the T × T matrix whose first column and last row are all 1, and otherwise

the ij entry is i(T +1− j)/T for j ≥ i and i(T +1− j)/T − i+ j for j < i. In this case of γ = λ = 0,

it can be checked that E = AG. It follows that A−1E = G. Note that for all t:

Gt1 +G⊤
t1 +GtT +G⊤

tT = Gt1 +G1t +GtT +GTt = 1 + (T + 1− t)/T + t/T + 1 = 3 + 1/T.

Next, define v = (12 , 0, . . . , 0,
1
2)

⊤. We compute

Mv = θ(A−1E + E⊤(A−1)⊤)v = θ(G+G⊤)v =
θ

2
(3 + 1/T )1.

This implies that M−11 = 2T
θ(3T+1)v and 1⊤M−11 = 2T

θ(3T+1) . Thus, τ ∗ = 1
1⊤M−11

M−11 = v, as

claimed. We also compute

x∗ = FA−1Ev = FGv =
1

2
F (1 + 1/T, 1 + 2/T, . . . , 2)⊤ =

1

2
(1 + 1/T, 1/T, . . . , 1/T )⊤,

as claimed. Finally, the client’s expected costs of execution are p0 +
1

21⊤M−11
= p0 +

θ(3T+1)
4T , as

claimed.
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Proof of Corollary 7

Proof. Claim (i): It follows from (A.15) with θ = λ = 0 that

−2xt+1 + 2xt = −τt+1 + τt for t = 1, 2, . . . , T − 1,

which implies

xt = xt+1 −
1

2
τt+1 +

1

2
τt = xt+2 −

1

2
τt+2 +

1

2
τt = · · · = c+

1

2
τt

for some constant c and all t. To determine c, we use that
∑T

t=1 xt = 1, hence

c =
1

T
− 1

2T

T∑
t=1

τt =
1

2T
.

Claim (ii): For additional generality in this part of the proof, we deliberately do not use the

assumption that λ = 0. To prove τ ∗ =
(
1
T , . . . ,

1
T

)⊤
, it is enough to show that 1 is an eigenvector

of M because Mτ ∗ = 1
1⊤M−11

1 by Proposition 5. To aid in showing that, we first define

v1 =
(
λ, 2λ, . . . , (T − 1)λ, T

)⊤
, v2 = (0, . . . , 0, 1)⊤ and v3 = (1, 2, . . . , T )⊤.

In this case of θ = 0, observe that v1 = Av3, which implies A−1v1 = v3. Observe also that

v⊤
2 = v⊤

2 A, which implies (A−1)⊤v2 = v2. We then compute

M1 = γFA−1E1+γE⊤(A−1)⊤F⊤1 = γFA−1v1+γE⊤(A−1)⊤v2 = γFv3+γE⊤v2 = γ1+γ1 = 2γ1,

(A.18)

establishing that 1 is an eigenvector of M , as required. For the dealer’s trading strategy, we deduce

from Proposition 5 that

x∗ =
1

1⊤M−11
FA−1EM−11 =

2γ

T
FA−1E

1

2γ
1 =

1

T
1,

where the second equality uses (A.18) to obtain 1
1⊤M−11

= 2γ
T and M−11 = 1

2γ1. Finally, we

compute the client’s expected costs of execution as p0 +
1

21⊤M−11
= p0 +

γ
T .

Proof of Corollary 8

Proof. Claim (i): Dividing (A.15) by λ and then letting λ go to infinity gives Xt =
∑t

j=1 τj for

t = 1, 2, . . . , T − 1, hence xt = τt for all t = 1, 2, . . . , T .

Claim (ii): Let Q be the lower-triangular matrix with all entries of 1 on and below the diagonal;

let Λ be the diagonal matrix that has λ everywhere on its diagonal except for the last entry, which
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equals 1:

Q =


1 0 · · · 0

1 1 · · · 0
...

. . .
...

1 1 · · · 1

 , Λ =


λ 0 · · · 0

0 λ · · · 0
...

. . .
...

0 0 · · · 1

 .

We begin by showing limλ→∞A−1E = Q. To this end, we note that Λ−1 is a diagonal matrix that

has 1/λ everywhere on its diagonal except for the last entry which equals 1, and we then compute

lim
λ→∞

Λ−1E

= lim
λ→∞



(θ + γ + λ)/λ −γ/λ 0 0 0 · · ·
1 (θ + γ + λ)/λ −γ/λ 0 0 · · ·
1 1 (θ + γ + λ)/λ −γ/λ 0 · · ·
...

...
. . .

. . .

1 1 (θ + γ + λ)/λ −γ/λ

1 · · · 1 1


= Q,

lim
λ→∞

Λ−1A

= lim
λ→∞



(λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ 0 0 · · ·
−(θ + 2γ)/λ (λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ 0 · · ·

0 −(θ + 2γ)/λ (λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ
...

. . .
. . .

. . .

−(θ + 2γ)/λ (λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ

0 · · · 0 1


= I,

where I denotes the T×T identity matrix. The latter implies limλ→∞A−1Λ = limλ→∞
(
Λ−1A

)−1
= I.

Thus, we obtain

lim
λ→∞

A−1E = lim
λ→∞

A−1ΛΛ−1E =
(

lim
λ→∞

A−1Λ
)(

lim
λ→∞

Λ−1E
)
= IQ = Q.
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So from (3), we deduce

lim
λ→∞

M = θ

(
lim
λ→∞

A−1E

)
+ θ

(
lim
λ→∞

A−1E

)⊤
+ γ

(
F lim

λ→∞
A−1E

)
+ γ

(
F lim

λ→∞
A−1E

)⊤

= θQ+ θQ⊤ + γFQ+ γ(FQ)⊤ = θQ+ θQ⊤ + 2γI =


2θ + 2γ θ · · · θ

θ 2θ + 2γ · · · θ
...

. . .
...

θ θ · · · 2θ + 2γ

 .

Thus, (limλ→∞M)1 = [2γ + θ(T + 1)]1, which implies that

lim
λ→∞

M−11 =
1

2γ + θ(T + 1)

(
lim
λ→∞

M−1

)(
lim
λ→∞

M

)
1

=
1

2γ + θ(T + 1)

(
lim
λ→∞

M−1M

)
1 =

1

2γ + θ(T + 1)
1,

and hence limλ→∞ 1⊤M−11 = T
2γ+θ(T+1) . We can then compute

lim
λ→∞

τ ∗ = lim
λ→∞

(
1

1⊤M−11
M−11

)
=

1

limλ→∞ 1⊤M−11
lim
λ→∞

M−11

=
2γ + θ(T + 1)

T

1

2γ + θ(T + 1)
1 =

1

T
1,

lim
λ→∞

x∗ = lim
λ→∞

FA−1Eτ ∗ = F

(
lim
λ→∞

A−1E

)(
lim
λ→∞

τ ∗
)

= FQ

(
1

T
1

)
= I

(
1

T
1

)
=

1

T
1,

each of which is as claimed. Finally, the client’s expected costs of execution converge to

lim
λ→∞

(
p0 +

1

21⊤M−11

)
= p0 +

1

2

2γ + θ(T + 1)

T
= p0 +

γ

T
+

θ(T + 1)

2T
,

which is also as claimed.

Proof of Corollary 9

Proof. Define the T × T anti-diagonal matrix

P =


0 · · · 0 1

0 · · · 1 0
...

...

1 0 · · · 0

 ,

46



and we begin by showing that A(θI+γF )−1PE⊤ is symmetric. To that end, define T ×T matrices

A1 =


1 0 · · · 0

0 1 0
...

. . .
...

0 0 · · · 0

 A2 =



0 1 0 · · · 0

1 0 1
...

0 1 0
. . . 0

...
. . .

. . . 1

0 · · · 0 0


A3 =


0 0 · · · 0

0 0 0
...

. . .

0 0 · · · 1

 ,

so that A = (λ+ 2θ + 4γ)A1 − (θ + 2γ)A2 +A3. Define also the T × T matrices

E1 =


1 0 · · · 0

0 1 0
...

. . .

0 0 · · · 0

 E2 =



0 0 · · · 0

1 0
...

0 1
. . . 0

...
. . . 0

0 0 · · · 0



E3 =


0 1 1 · · · 0

0 0 1 0
...

. . .
. . .

...

0 · · · · · · · · · 0

 E4 =


0 0 · · · 1

0 0 1
...

. . .
...

0 0 · · · 1

 ,

so that E⊤ = (λ+ γ + θ)E1 − γE2 + λE3 + E4. Observe that we can also write

(θI + γF )−1P =


0 · · · 0 b1

0 b1 b2
...

...

b1 · · · bT−1 bT

 ,

where bt+1 = γ/(γ+ θ)bt for all t ∈ {1, 2 . . . , T − 1}.31 Each of the following matrices is symmetric:

A1(θI + γF )−1PE1 =



0 0 · · · 0 0

0 0 · · · b1 0
...

...
...

...

0 b1 · · · bT−2 0

0 0 · · · 0 0


31We also have b1 = 1/(γ + θ), although that will not be relevant for the following arguments.
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A1(θI + γF )−1PE2 =



0 · · · 0 b1 0

0 · · · b1 b2 0
...

...
...

...

b1 b2 · · · bT−1 0

0 0 · · · 0 0



A1(θI + γF )−1PE3 =



0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 b1 · · · 0 0
...

. . .
...

0 0 0 · · ·
∑T−3

t=1 bt 0

0 0 0 · · · 0 0



A2(θI + γF )−1PE1 =



0 · · · 0 b1 0

0 · · · b1 b2 0

0 · · · b2 b1 + b3 0

0 · · · b1 + b3 b2 + b4 0
...

...
...

...
...

...
...

b1 b2 b1 + b3 b2 + b4 · · · bT−3 + bT−1 0

0 0 0 0 · · · 0 0



A2(θI + γF )−1PE2 =



0 · · · 0 b1 b2 0

0 b1 b2 b1 + b3 0

0
... b2 b1 + b3 b2 + b4 0

b1
...

...
...

...
...

b2 b1 + b3 b2 + b4 · · · bT−2 + bT 0

0 0 0 · · · 0 0



A2(θI + γF )−1PE3 =



0 0 · · · 0 0

0 0 · · · b1 0
...

...
...

...

0 b1 · · ·
∑T−2

t=1 bt 0

0 0 · · · 0 0



A3(θI + γF )−1PE4 =


0 0 · · · 0

0 0 0
...

. . .
...

0 0 · · ·
∑T

t=1 bt


To show that A(θI+γF )−1PE⊤ is indeed symmetric, it only remains to show that [(λ+2θ+4γ)A1−
(θ+2γ)A2](θI + γF )−1PE4 is the transpose of A3(θI + γF )−1P [(λ+ γ + θ)E1 − γE2 + λE3]. The

former has nonzero entries only in the first T − 1 entries of its last column, while the latter has
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nonzero entries only in the first T − 1 entries of its last row. We check these nonzero entries. For

t < T , the (t, T )-element of [(λ+ 2θ + 4γ)A1 − (θ + 2γ)A2](θI + γF )−1PE4 is

(λ+ 2θ + 4γ)
t∑

s=1

bs − (θ + 2γ)

[
t+1∑
s=1

bs +
t−1∑
s=1

bs

]
= −(θ + 2γ)bt+1 + (λ+ θ + 2γ)bt + λ

t−1∑
s=1

bs.

For t < T , the (T, t)-element of A3(θI + γF )−1P [(λ+ γ + θ)E1 − γE2 + λE3] is

(λ+ γ + θ)bt − γbt+1 + λ

t−1∑
s=1

bs.

Computing the difference:[
(λ+ γ + θ)bt − γbt+1 + λ

t−1∑
s=1

bs

]
−

[
−(θ + 2γ)bt+1 + (λ+ θ + 2γ)bt + λ

t−1∑
s=1

bs

]
= (θ + γ)bt+1 − γbt,

which equals zero because bt+1 = γ/(γ + θ)bt. We conclude that A(θI + γF )−1PE⊤ is symmetric,

as claimed. Mathematically,

A(θI + γF )−1PE⊤ = EP⊤(θI⊤ + γF⊤)−1A⊤ = EP (θI + γF⊤)−1A⊤,

which implies

PE⊤(A−1)⊤(θI + γF⊤) = (θI + γF )A−1EP.

LettingM1 = (θI+γF )A−1E, we can rewrite this asM1P = PM⊤
1 . Because P−1 = P , we also have

PM1 = M⊤
1 P . Together, these imply (M1+M⊤

1 )P = P (M1+M⊤
1 ). Then using M = M1+M⊤

1 , we

conclude MP = PM , hence MPM−11 = 1, and hence PM−11 = M−11. Therefore, we conclude

Pτ ∗ =
1

1⊤M−11
PM−11 =

1

1⊤M−11
M−11 = τ ∗,

hence τj = τT+1−j for all j = 1, . . . , T .

Proof of Proposition 10

Proof. In the following analysis, we verify the statements about the limit of the optimal contract

and trading strategy made earlier in this section. Throughout, we assume θ > 0 since the results

for θ = 0 follow from Corollary 7(ii), whose proof does not require assuming λ = 0. We note that

a model with price-shock variance σ2
k = Tσ2

Tk
is equivalent to a model with price-shock variance
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normalized to 1 while λ is replaced by λTσ2

Tk
. Therefore, (A.15) becomes

Xk
q +

θ + 2γ

λTσ2

2Xk
q −Xk

q+ 1
Tk

−Xk
q− 1

Tk

1/Tk
=

γ

λTσ2

2V k
q − V k

q+ 1
Tk

− V k
q− 1

Tk

1/Tk
+

θ

λTσ2

V k
q − V k

q− 1
Tk

1/Tk
+ V k

q

(A.19)

for all q ∈ (0, 1), where Xk
q =

∑⌈qTk⌉
t=1 xkt and V k

q =
∑⌈qTk⌉

t=1 τkt for τ k ∈ ∆Tk and a dealer strategy xk

in the kth model. Throughout this analysis, we assume that the limiting processes Xq = limk→∞Xk
q

and Vq = limk→∞ V k
q exist and are continuously differentiable, except for jumps at 0 and 1. Thus,

given any q ∈ (0, 1),

lim
k→∞

V k
q − V k

q− 1
Tk

1/Tk
= lim

ϵ→0

Vq − Vq−ϵ

ϵ
= V̇q

lim
k→∞

2V k
q − V k

q+ 1
Tk

− V k
q− 1

Tk

1/Tk
= lim

ϵ→0

(
Vq − Vq−ϵ

ϵ
− Vq+ϵ − Vq

ϵ

)
= V̇q − V̇q = 0,

lim
k→∞

2Xk
q −Xk

q+ 1
Tk

−Xk
q− 1

Tk

1/Tk
= lim

ϵ→0

−(Xq+ϵ −Xq) + (Xq −Xq−ϵ)

ϵ
= −Ẋq + Ẋq = 0.

Thus, it follows from (A.19) that

Xq =
θ

λTσ2
V̇q + Vq (A.20)

for all q ∈ (0, 1). Furthermore, the jumps of Vq at 0 and 1 are given by

V0+ = lim
q↘0

Vq = lim
k→∞

Sk∑
t=1

τkt = lim
k→∞

Sk∑
t=1

(
V k

t
Tk

− V k
t−1
Tk

)
,

V1 − V1− = V1 − lim
q↗1

Vq = lim
k→∞

Sk∑
t=1

τkTk−(t−1) = lim
k→∞

Sk∑
t=1

(
V k
1− t−1

Tk

− V k
1− t

Tk

)
,

where Sk is a sequence chosen so that both Sk → ∞ and S3
k/Tk → 0. From (A.19), it follows that

2Xk
1
Tk

−Xk
2
Tk

=
γ

θ + 2γ

(
2V k

1
Tk

− V k
2
Tk

)
+

θ

θ + 2γ
V k

1
Tk

+O

(
1

Tk

)
,

2Xk
t

Tk

−Xk
t+1
Tk

−Xk
t−1
Tk

=
γ

θ + 2γ

(
2V k

t
Tk

− V k
t+1
Tk

− V k
t−1
Tk

)
+

θ

θ + 2γ

(
V k

t
Tk

− V k
t−1
Tk

)
+O

(
1

Tk

)
,

where ak = bk +O
(

1
Tk

)
means lim supk→∞

|ak−bk|
1/Tk

< ∞, and thus

xk1 − xk2 =
γ

θ + 2γ

(
τk1 − τk2

)
+

θ

θ + 2γ
τk1 +O

(
1

Tk

)
,

xkt − xkt+1 =
γ

θ + 2γ

(
τkt − τkt+1

)
+

θ

θ + 2γ
τkt +O

(
1

Tk

)
.
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Assuming xkSk
= O

(
1
Tk

)
and τkSk

= O
(

1
Tk

)
, we obtain

xkt = xkt+1 +
γ

θ + 2γ

(
τkt − τkt+1

)
+

θ

θ + 2γ
τkt +O

(
1

Tk

)
=

γ

θ + 2γ

Sk∑
j=t

(
τkj − τkj+1

)
+

θ

θ + 2γ

Sk∑
j=t

τkj +O

(
Sk

Tk

)

=
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj +O

(
Sk

Tk

)
, (A.21)

and likewise if xkTk−Sk
= O

(
1
Tk

)
and τkTk−Sk

= O
(

1
Tk

)
,

xkTk−t = xkTk−(t+1) −
γ

θ + 2γ

(
τkTk−(t+1) − τkTk−t

)
− θ

θ + 2γ
τkTk−(t+1) +O

(
1

Tk

)
= − γ

θ + 2γ

Sk∑
j=t

(
τkTk−(j+1) − τkTk−j

)
− θ

θ + 2γ

Sk∑
j=t+1

τkTk−j +O

(
Sk

Tk

)

=
γ

θ + 2γ
τkTk−t −

θ

θ + 2γ

Sk∑
j=t+1

τkTk−j +O

(
Sk

Tk

)
. (A.22)

Therefore, the expected costs for the client are

E[τ k · p] = p0 + θ

Tk∑
t=1

Xk
t

Tk

(
V k

t
Tk

− V k
t−1
Tk

)
+ γ

Tk∑
t=1

(
Xk

t
Tk

−Xk
t−1
Tk

)(
V k

t
Tk

− V k
t−1
Tk

)
= p0 + θ

∫ 1

0
Xq dVq + θ

Sk∑
t=1

Xk
t

Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t + θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1)

+ γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1) +O

(
1

Tk

)
. (A.23)

We next analyze each of the following three terms:

1. θ
∫ 1
0 Xq dVq,

2. θ
∑Sk

t=1X
k
t

Tk

τkt + γ
∑Sk

t=1 x
k
t τ

k
t ,

3. θ
∑Sk

t=1X
k
1− t−1

Tk

τkTk−(t−1) + γ
∑Sk

t=1 x
k
Tk−(t−1)τ

k
Tk−(t−1).

For the first term, we use (A.20) to write∫ 1

0
Xq dVq =

∫ 1

0

(
θ

λTσ2
V̇q + Vq

)
V̇q dq =

θ

λTσ2

∫ 1

0
V̇ 2
q dq +

1

2
V 2
1− − 1

2
V 2
0+, (A.24)
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where the second equality is implied by∫ 1

0
VqV̇q dq =

1

2
V 2
1− − 1

2
V 2
0+,

which in turn follows from integration by parts∫ 1

0
VqV̇q dq = V 2

1− − V 2
0+ −

∫ 1

0
V̇qVq dq.

Set a = V1− − V0+. By Corollary 9, optimal contract weights are symmetric, so we have V0+ =

1 − V1− = (1 − a)/2. Moreover, the minimizer of
∫ 1
0 V̇ 2

q dq subject to a = V1− − V0+ is V̇q = a

almost everywhere on (0, 1) by Jensen’s inequality. Therefore, (A.24) in the optimum becomes∫ 1

0
Xq dVq =

θ

λTσ2

∫ 1

0
V̇ 2
q dq +

1

2
V 2
1− − 1

2
V 2
0+ =

θ2

λTσ2
a2 +

θ(1 + a)2

8
− θ(1− a)2

8
. (A.25)

Using V0+ = 1− V1− = (1− a)/2, we also have

Sk∑
t=1

τkt =
1− a

2
+O

(
1

Tk

)
,

Sk∑
t=1

τkTk−(t−1) =
1− a

2
+O

(
1

Tk

)
.

Next, we analyze the minimization of

θ

Sk∑
t=1

Xk
t

Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t . (A.26)

subject to
∑Sk

t=1 τ
k
t = 1−a

2 . Using (A.21), we write

θ

Sk∑
t=1

Xk
t

Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t

= θ

Sk∑
t=1

t∑
ℓ=1

(
γ

θ + 2γ
τkℓ +

θ

θ + 2γ

Sk∑
j=ℓ

τkj

)
τkt + γ

Sk∑
t=1

(
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj

)
τkt +O

(
S3
k

Tk

)

= θ

Sk∑
t=1

(
γ

θ + 2γ

t∑
ℓ=1

τkℓ +
θ

θ + 2γ

Sk∑
j=1

min{j, t}τkj

)
τkt + γ

Sk∑
t=1

(
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj

)
τkt +O

(
S3
k

Tk

)
.
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We can simplify two terms

θ

Sk∑
t=1

γ

θ + 2γ

t∑
ℓ=1

τkℓ τ
k
t + γ

Sk∑
t=1

θ

θ + 2γ

Sk∑
j=t

τkj τ
k
t =

θγ

θ + 2γ

Sk∑
t=1

Sk∑
ℓ=1

τkℓ τ
k
t +

θγ

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

Sk∑
t=1

1− a

2
τkt +

θγ

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

(1− a)2

4
+

θγ

θ + 2γ

Sk∑
t=1

(
τkt
)2
.

Therefore, the optimization problem (A.26) becomes

θγ

θ + 2γ

(1− a)2

4
+

θ2

θ + 2γ

Sk∑
t=1

τkt

Sk∑
j=1

min{j, t}τkj +
θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

subject to
∑Sk

t=1 τ
k
t = 1−a

2 . The first-order condition from the Lagrange multiplier method implies

0 =
∂

∂τks

(
θ2

Sk∑
t=1

τkt

Sk∑
j=1

min{j, t}τkj + (θγ + γ2)

Sk∑
t=1

(
τkt
)2)

+ λ1

= θ2
Sk∑
j=1

min{j, s}τkj + θ2
Sk∑
t=1

τkt min{s, t}+ 2(θγ + γ2)τks + λ1

= 2θ2
Sk∑
j=1

min{j, s}τkj + 2(θγ + γ2)τks + λ1 (A.27)

for all s = 1, 2, . . . Specifically, for γ = 0, this implies with s = 1 that λ1 = −θ2(1− a); with s = 2

that λ1 = −θ2(1−a)−
∑Sk

j=2 τj , implying
∑Sk

j=2 τj ; and iteratively comparing different s, we obtain

τk1 = 1−a
2 and τkj = 0 for all j > 1.

For γ > 0, we deduce

0 = 2θ2
Sk∑
j=1

(
min{j, s+ 1} −min{j, s}

)
τkj + 2(θγ + γ2)

(
τks+1 − τks

)
= 2θ2

Sk∑
j=s+1

τkj + 2(θγ + γ2)
(
τks+1 − τks

)
= 2θ2

(
1− a

2
−

s∑
j=1

τkj

)
+ 2(θγ + γ2)

(
τks+1 − τks

)
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for all s = 1, 2, . . ., so that

τks+1 = τks − θ2

γθ + γ2

(
1− a

2
−

s∑
j=1

τkj

)
, s = 1, 2, . . .

Its solution is

τkj =
θγj−1

(θ + γ)j
1− a

2
, j = 1, 2, . . . , (A.28)

which satisfies

s∑
j=1

τkj =
s∑

j=1

θγj−1

(θ + γ)j
1− a

2
=

θ

θ + γ

1− γs

(θ+γ)s

1− γ
θ+γ

1− a

2

s→∞→ 1− a

2
.

We also note that it follows from (A.21), (A.22), and (A.28) that

xkt =
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj +O

(
Sk

Tk

)

=
γ

θ + 2γ

θγt−1

(θ + γ)t
1− a

2
+

θ

θ + 2γ

Sk∑
j=t

θγj−1

(θ + γ)j
1− a

2
+O

(
Sk

Tk

)

=
γ

θ + 2γ

θγt−1

(θ + γ)t
1− a

2
+

θ

θ + 2γ

θγt−1

(θ + γ)t
1

1− γ
θ+γ

1− a

2
+O

(
Sk

Tk

)
=

θγt−1

(θ + γ)t
1− a

2
+O

(
Sk

Tk

)
,

xkTk−t =
γ

θ + 2γ
τkTk−t −

θ

θ + 2γ

Sk∑
j=t+1

τkTk−j +O

(
Sk

Tk

)

=
γ

θ + 2γ
τkt+1 −

θ

θ + 2γ

Sk∑
j=t+2

τkj +O

(
Sk

Tk

)

=
γ

θ + 2γ

θγt

(θ + γ)t+1

1− a

2
− θ

θ + 2γ

Sk∑
j=t+2

θγj−1

(θ + γ)j
1− a

2
+O

(
Sk

Tk

)

=
γ

θ + 2γ

θγt

(θ + γ)t+1

1− a

2
− θ

θ + 2γ

θγt+1

(θ + γ)t+2

1

1− γ
θ+γ

1− a

2
+O

(
Sk

Tk

)
= O

(
Sk

Tk

)
. (A.29)

For s = 1, (A.27) simplifies to

0 = 2θ2
Sk∑
j=1

τkj + 2(θγ + γ2)τk1 + λ1,
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which implies

λ1 = −2θ2
Sk∑
j=1

τkj − 2(θγ + γ2)τk1 = −2θ2
1− a

2
− 2(θγ + γ2)

θ

θ + γ

1− a

2
= −2(θ2 + γθ)

1− a

2
.

We also derive from (A.27) that

2θ2
Sk∑
j=1

min{j, t}τkj = −2(θγ + γ2)τkt − λ1 = −2(θγ + γ2)τkt + 2(θ2 + γθ)
1− a

2
,

hence the optimization problem becomes

θγ

θ + 2γ

(1− a)2

4
+

θ2

θ + 2γ

Sk∑
t=1

τkt

Sk∑
j=1

min{j, t}τkj +
θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

(1− a)2

4
− θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

+
1

θ + 2γ

Sk∑
t=1

τkt (θ
2 + γθ)

1− a

2
+

θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

(1− a)2

4
+

1

θ + 2γ

Sk∑
t=1

τkt (θ
2 + γθ)

1− a

2

=
θγ

θ + 2γ

(1− a)2

4
+

θ2 + γθ

θ + 2γ

(1− a)2

4

= θ
(1− a)2

4
. (A.30)

Finally, we analyze the minimization problem

θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1) + γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1)

subject to
∑Sk

t=1 τ
k
Tk−(t−1) =

1−a
2 . However, as per (A.29), the jumps of the trading strategy in the

limit disappear so that xkTk−(t−1) = O
(
Sk
Tk

)
and Xk

1− t−1
Tk

= 1 + O
(S2

k
Tk

)
. Therefore, the value of the

minimization problem becomes

θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1) + γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1) = θ

Sk∑
t=1

τkTk−(t−1) +O

(
S3
k

Tk

)
= θ

1− a

2
+O

(
S3
k

Tk

)
.

(A.31)

In summary, using (A.25), (A.30), and (A.31), the expected costs from (A.23) in the optimum
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are

E[τ k · p] = p0 + θ

∫ 1

0
Xq dVq + θ

Sk∑
t=1

Xk
t

Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t + θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1)

+ γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1) +O

(
S3
k

Tk

)
= p0 +

θ2

λTσ2
a2 +

θ(1 + a)2

8
− θ(1− a)2

8
+ θ

(1− a)2

4
+ θ

1− a

2
+O

(
S3
k

Tk

)
= p0 +

θ2

λTσ2
a2 + θ

(1− a)2

4
+

θ

2
+O

(
S3
k

Tk

)
, (A.32)

minimized over a. The first-order condition gives

θ2

λTσ2
2a− θ

1− a

2
= 0

so that

a =
θ
2

θ
2 + 2θ2

λTσ2

=
1

1 + 4θ
λTσ2

. (A.33)

We conclude for q ∈ (0, 1) that

Vq = V0+ + (Vq − V0+) =
1− a

2
+ aq,

Xq =
θ

λTσ2
V̇q + Vq =

θa

λTσ2
+

1− a

2
+ aq,

using (A.20), which implies the formulas for the limits of the optimal contract and dealer’s trading

strategy. Thanks to (A.32) and (A.33), the client’s expected costs converge to

p0 +
θ2

λTσ2
a2 + θ

(1− a)2

4
+

θ

2
= p0 +

θ

4

(
1 +

4θ

λTσ2

)
a2 − a

2
θ +

3

4
θ = p0 +

3− a

4
θ.

Proof of Proposition 11

Proof. This proof builds on the first half of the proof of Proposition 10.

Claim (i): In the case of a TWAP contract, we have

V TWAP
q = lim

k→∞
V TWAP,k
q = lim

k→∞

⌈qTk⌉∑
t=1

τTWAP,k
t = q

for all q ∈ (0, 1) so that (A.20) becomes

XTWAP
q =

θ

λTσ2
V̇ TWAP
q + V TWAP

q =
θ

λTσ2
+ q
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for all q ∈ (0, 1). Along with the conditions XTWAP,k
0 = 0 and XTWAP,k

1 = 1 for all k, this shows

(7). Because V TWAP
q does not have any jumps, it follows from (A.23) that the expected costs for

the client under a TWAP contract are

lim
k→∞

E[τTWAP,k · p] = p0 + θ

∫ 1

0
XTWAP

q dV TWAP
q = p0 + θ

∫ 1

0

(
θ

λTσ2
+ q

)
dq = p0 +

θ2

λTσ2
+

1

2
θ.

Claim (ii): In the case of a MOC contract, we have

V MOC
q = lim

k→∞
V MOC,k
q = lim

k→∞

⌈qTk⌉∑
t=1

τMOC,k
t = 0

for all q ∈ (0, 1) so that (A.20) becomes

XMOC
q =

θ

λTσ2
V̇ MOC
q + V MOC

q = 0

for all q ∈ (0, 1). Along with the conditions XMOC
0 = 0 and XMOC

1 = 1, this shows (8). The

expected costs for the client are

E[τMOC,k · p] = p0 + θ

Tk∑
t=1

XMOC,k
t

Tk

(
V MOC,k

t
Tk

− V MOC,k
t−1
Tk

)
+ γ

Tk∑
t=1

(
XMOC,k

t
Tk

−XMOC,k
t−1
Tk

)(
V MOC,k

t
Tk

− V MOC,k
t−1
Tk

)
= p0 + θXMOC,k

1 + γ
(
XMOC,k

1 −XMOC,k
Tk−1

Tk

)
= p0 + θ +

γ2

θ + 2γ
+O

(
Sk

Tk

)
,

using that

XMOC,k
1 −XMOC,k

Tk−1

Tk

= xMOC,k
Tk

=
γ

θ + 2γ
+O

(
Sk

Tk

)
by (A.22).

57



Online Appendix to

“Block Trade Contracting”

Markus Baldauf Christoph Frei Joshua Mollner

Table of Contents

A Affine Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OA-2

B Dynamic Incentive Compatibility: An Equivalence Result . . . . . . . . . . . . . . . . OA-8

C Unrestricted Contract Set: Supplemental Details . . . . . . . . . . . . . . . . . . . . . OA-9

D Continuous-Time Limit: Supplemental Details . . . . . . . . . . . . . . . . . . . . . . . OA-11

E Additional Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OA-15

OA-1



A Affine Contracts

Our main result, Proposition 5, provides explicit formulas for the optimal contract and the dealer’s

trading strategy when the feasible contracts are weighted averages of the market prices. When

the feasible contracts are affine functions of the market prices, we can still give explicit results,

although the formulas become more complicated.

For the purposes of this appendix, we consider the contract set T affine given in Section 2.4.

A contract in T affine is parametrized by a vector (τ0, τ1, . . . , τT ) ∈ RT+1, which stipulates that

the client will pay the dealer τ(p) = τ0 +
∑T

t=1 τtpt. For notational convenience, we write τ =

(τ1, . . . , τT )
⊤, excluding the constant τ0. The weighted average price contracts considered in the

main text correspond to restricting to such contracts (τ0, τ1, . . . , τT ) with τ0 = 0 and
∑T

t=1 τt = 1.

We provide a mathematical characterization of the optimal affine contract in Online Ap-

pendix A.1. Then we illustrate with numerical examples and discuss the solution in Online Ap-

pendix A.2. Of special interest is the case of a risk-neutral dealer, which we discuss in Online

Appendix A.3.

A.1 Characterization of the optimal affine contract

The problem that we analyze here is the one formulated in Section 2.3 with T = T affine. The proof

of the following result goes along the same lines as that of Lemma 3 and is therefore omitted.

Lemma 13. Recall the T × T matrix F from (A.16) and define T × T matrices Ã and Ẽ by

Ã =



λσ2 + 2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)

0 · · · 0 λσ2


,

Ẽ =



θ + γ −γ − λσ2 −λσ2 · · ·
0 θ + γ −γ − λσ2 −λσ2 · · ·
0 0 θ + γ −γ − λσ2 −λσ2 · · ·
...

...
. . .

. . .

0 0 θ + γ −γ − λσ2

0 · · · 0 0


.

For any affine contract with τ = (τ1, . . . , τT )
⊤, the dealer has a unique best response in X , which

is the deterministic trading strategy x = FÃ−1Ẽτ + λσ2FÃ−11, where 1 = (1, 1, . . . , 1)⊤ denotes

a T -dimensional vector of ones.

Likewise, the following result is the analogue to Proposition 5 for the space of affine contracts.
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While the formulas look complicated, they are fully explicit and can be computed directly.

Proposition 14. We define

G =



1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
...

. . .
. . .

0 · · · 0 1


,

M = θF⊤ + θF + 2γF⊤F + λσ2F⊤G⊤GF,

N = Ẽ⊤Ã−⊤MÃ−1Ẽ + λσ2G⊤G− λσ2G⊤GFÃ−1Ẽ − λσ2Ẽ⊤Ã−⊤F⊤G⊤G, (OA.34)

v = λ2σ4G⊤GFÃ−11− λσ2Ẽ⊤Ã−⊤MÃ−11.

The optimal affine contract and the dealer’s trading strategy are given by

τ ∗ = N−1v,

x∗ = FÃ−1ẼN−1v + λσ2FÃ−11,

τ∗0 = p0(1− 1⊤τ ∗) + (x∗ − τ ∗)⊤(θF−1x∗ + γx∗) +
λσ2

2
(x∗ − τ ∗)⊤G⊤G(x∗ − τ ∗). (OA.35)

Under them, the client’s expected costs of execution are

p0 +
1

2
λ2σ41⊤Ã−⊤MÃ−11− 1

2
v⊤(N−1)2v.

The proof of Proposition 14 is deferred to Online Appendix A.4.

A.2 Illustration and discussion of the optimal affine contract

Illustration. To illustrate the solution provided by Proposition 14, Figures A.1–A.3 display the

optimal contract and dealer’s trading strategy for various choices of the parameters θ, γ, and λ.

For the left panels, note that τ∗t corresponds to the weight on pt for t ∈ {1, . . . , T} and to the

additive constant for t = 0.
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Figure A.1: The optimal affine contract and best-responding trading strategy for different levels of
permanent price impact. Without permanent price impact (θ = 0), the first best is achieved. In
this case, the optimal contract satisfies τj = 1/T for all j = 1, . . . , T and τ0 = 0, while the trading
strategy is constant over time. The other parameters are γ = 1, λ = 1, σ = 0.5, p0 = 0, and
T = 20.

2 4 6 8 10 12 14 16 18 20

time

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Trading strategy

 = 0.0

 = 0.5

 = 1.0

Figure A.2: The optimal affine contract and best-responding trading strategy for different levels of
temporary price impact. The other parameters are θ = 1, λ = 1, σ = 0.5, p0 = 0, and T = 20.

Comparison to the baseline analysis. Several features of our baseline analysis (with weighted-

average-price contracts) extend to the case of affine contracts. One similarity is that the dealer’s

best response continues to reflect a frontloading motive. In the main text, this frontloading motive

was formalized by Proposition 4. The availability of additional contracts is irrelevant to that result,

so that the proposition carries over unchanged. Likewise, Figures A.1–A.3 suggest that the dealer’s

trading policy in response to the optimal contract is frontloaded relative to the contract (in the

sense that
∑t

s=1 x
∗
s ≥

∑t
s=1 τ

∗
s for all t), just as in our baseline analysis (cf. Figures 1–3).
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Figure A.3: The optimal affine contract and best-responding trading strategy for different levels
of risk aversion. The other parameters are θ = 1, σ = 0.5, p0 = 0, and T = 20. For λ ↘ 0, the
trading strategy is flat, coinciding with the first best. Rather than plug in λ = 0, we consider the
limit λ ↘ 0 for reasons discussed in footnote 32.

In terms of the optimal contract, the main qualitative similarity to our baseline analysis is

that there continue to be relatively larger weights on late prices, as illustrated by the left panels of

Figures A.1–A.3. The main qualitative difference—besides the obvious presence of the constant—is

that there are no longer large weights on early prices. Here is the intuition for those patterns. In

the baseline, the reason to weight earlier prices was because, holding prices fixed, the client can

reduce her payment by shifting weight from later prices (which are high in expectation) to earlier

prices (which are low in expectation). With affine contracts, the client has two additional tools for

reducing her payment: (i) reducing the total weight put on prices (as
∑T

t=1 τt is no longer fixed at

one), and (ii) reducing the fixed-payment component τ0. As a result, she no longer has the same

reason to weight early prices. However, her rationale for weighting later periods remains—and for

the same reasons as discussed before.

A.3 The case of a risk-neutral dealer

A notable case is that in which the dealer is risk-neutral (i.e., λ = 0), in which case the client

obtains her first-best payoff. For example, she can achieve this by offering the dealer a suitable

fixed-price contract (analogous to a ‘sell-the-firm’ contract in classical models of moral hazard),

which she can do because the set of affine contracts includes all fixed-price contracts. However,

such a contract is not unique in implementing first best; many contracts are optimal when λ = 0.

In fact, we prove the following proposition in Online Appendix A.4.

Proposition 15. When λ = 0, an affine contract (τ0, τ ) is optimal if and only if (i) there exists

c ∈ R such that τ = c
(
θ+γ
γ , (θ+γ)2

γ2 , . . . , (θ+γ)T

γT

)⊤
and (ii) τ0 is chosen to make the (IR) constraint

bind.
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In the language of Proposition 15, the optimal fixed-price contract entails c = 0. As illustrated

in Figure A.3, the optimal contract identified by Proposition 14 entails c > 0 when λ converges to

zero.32

A.4 Proofs of results in Online Appendix A

Proof of Proposition 14. It follows from (IR) that

τ0 ≥ p0−p0

T∑
t=1

τt+
T∑
t=1

(Xt−Xt−1−τt)
(
θXt+γ(Xt−Xt−1)

)
+
λσ2

2

T∑
t=1

(
Xt−1−1+

T∑
j=t

τj

)2

, (OA.36)

with equality if (IR) is binding. The client’s expected cost of a contract τ(p) is

E[τ(p)] = τ0 + E

[
T∑
t=1

τtpt

]

= τ0 + E

[
T∑
t=1

τt

(
p0 +

t∑
j=1

(θxj + εj) + γxt

)]

= τ0 +
T∑
t=1

τt

(
p0 +

t∑
j=1

θxj + γxt

)

≥ p0 +

T∑
t=1

(Xt −Xt−1)
(
θXt + γ(Xt −Xt−1)

)
+

λσ2

2

T∑
t=1

(
Xt−1 − 1 +

T∑
j=t

τj

)2

, (OA.37)

with equality if (IR) is binding. Using matrices, we can rewrite this when (IR) is binding as

E[τ(p)] = p0 +X⊤F⊤(θX + γFX) +
λσ2

2
(x− τ )⊤G⊤G(x− τ )

= p0 +
1

2
X⊤MX +

λσ2

2
τ⊤G⊤Gτ − λσ2τ⊤G⊤Gx

= p0 +
1

2
τ⊤Ẽ⊤Ã−⊤MÃ−1Ẽτ +

λσ2

2
τ⊤G⊤Gτ − λσ2τ⊤G⊤GFÃ−1Ẽτ − λ2σ4τ⊤G⊤GFÃ−11

+ λσ21⊤Ã−⊤MÃ−1Ẽτ +
λ2σ4

2
1⊤Ã−⊤MÃ−11,

where F is defined in (A.16), and G and M are given in (OA.34). We can write this as

E[τ(p)] =
1

2
τ⊤Nτ − v⊤τ + p0 +

λ2σ4

2
1⊤Ã−⊤MÃ−11,

where N and v are defined in (OA.34). From the first-order condition, the minimizer is given by

τ ∗ = N−1v. It now follows from Lemma 13 that x∗ = FÃ−1ẼN−1v + λσ2FÃ−11. We deduce

32If we plug λ = 0 in the formula of Proposition 14, it will not be well defined because Ã is not invertible.
Proposition 14 gives a unique optimal contract for every λ > 0, converging to a unique limiting contract as λ ↘ 0.
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(OA.35) from (OA.36). For the expected costs under this contract, we write

E[τ(p)] =
1

2
(τ ∗)⊤Nτ ∗ − v⊤τ ∗ + p0 +

λ2σ4

2
1⊤Ã−⊤MÃ−11

=
1

2
(τ ∗ −N−1v)⊤N(τ ∗ −N−1v)− 1

2
v⊤(N−1)2v + p0 +

λ2σ4

2
1⊤Ã−⊤MÃ−11

= −1

2
v⊤(N−1)2v + p0 +

λ2σ4

2
1⊤Ã−⊤MÃ−11,

which concludes the proof.

Proof of Proposition 15. By Proposition 1, the expected costs of execution are p0 + γ
T + θ(T+1)

2T

under the first-best trading strategy xFB =
(
1
T , . . . ,

1
T

)⊤
. We will find all τ with

E[τ(p)] = p0 +
γ

T
+

θ(T + 1)

2T
.

To do so, we first note that the best response to all such τ must be xFB. Indeed, (OA.37) for λ = 0

gives

E[τ(p)] ≥ p0 + γ

T∑
t=1

x2t + θ

T∑
t=1

xt

t∑
s=1

xs ≥ p0 +
γ

T
+

θ(T + 1)

2T
, (OA.38)

where the second inequality follows from the proof of Proposition 1. Equality holds in the first

part of (OA.38) if and only if (IR) is binding. There is equality in the second part of (OA.38)

if and only if x = xFB. Next, we rewrite the best-response formula in Lemma 13 for λ = 0 as

AF−1x = Eτ + (0, . . . , 0, 1)⊤, where

A =



2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) 2θ + 4γ −(θ + 2γ)

0 · · · 0 1


,

E =



θ + γ −γ 0 · · ·
0 θ + γ −γ 0 · · ·
0 0 θ + γ −γ 0 · · ·
...

...
. . .

. . .

0 0 θ + γ −γ

0 · · · 0 0


.

We compute AF−1xFB = (0, . . . , 0, 1)⊤. Therefore, a contract is optimal if and only if (i) Eτ = 0

and (ii) τ0 is chosen to make the (IR) constraint bind. The condition Eτ = 0 is equivalent to

(θ + γ)τt = γτt+1 for all t = 1, . . . , T − 1, or τ = c
(
θ+γ
γ , (θ+γ)2

γ2 , . . . , (θ+γ)T

γT

)⊤
for some c ∈ R.
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B Dynamic Incentive Compatibility: An Equivalence Result

Our formulation of the (IC) constraint is, in a certain sense, static: it says that the recommended

trading strategy must be optimal for the dealer from his perspective at time zero. One might ask

whether this formulation is without loss. Indeed, since the client selects a trade xt in every period,

one could imagine imposing a separate incentive compatibility constraint for every period t. In this

online appendix we show that our “static” formulation is indeed without loss of generality. In brief,

this is the case because trading decisions do not need to be pre-determined at time zero—rather, a

trading strategy constitutes a complete, contingent plan, which specifies the trading decisions that

will be made in all the various contingencies that might arise at future times.

Recall, that in our formulation of the client’s problem, the (IC) constraint is

x ∈ argmax
x̂∈X

E[u(τ(p)− x̂ · p)]. (IC)

A natural question is to compare (IC) with a dynamic version of the incentive compatibility con-

straint. Here is how we would formulate such a dynamic version:

(∀t = 1, 2, . . . , T )(∀A ∈ Ft−1 with P [A] > 0) : x ∈ argmax
x̂∈Xx

t

E[u(τ(p)− x̂ · p)|A], (ICdyn)

where Xx
t = {x̂ ∈ X : x̂s = xs for s < t} and E[u(τ(p) − x̂ · p)|A] = E[u(τ(p)−x̂·p)1(A)]

P [A] . In words,

(ICdyn) means that, for any trading period t and any information set A available at that time, it is

not beneficial for the dealer to deviate to an x̂t ̸= xt when he has previously chosen x1, x2, . . . , xt−1.

To see that (IC) and (ICdyn) are equivalent, we first note that (ICdyn) implies (IC) immediately

by choosing t = 1 and setting A equal to the entire sample space. To show the converse direction,

we assume that (ICdyn) is violated for some period t. This implies the existence of an x̂ ∈ Xx
t

and an Ft−1-measurable set A with strictly positive probability such that E[u(τ(p) − x · p)|A] <

E[u(τ(p)− x̂ · p)|A]. Define x ∈ X by

xs = xs1(s < t) + x̂s1(s ≥ t)1(A) + xs1(s ≥ t)1
(
A∁),

which satisfies

E[u(τ(p)− x · p)] = E[u(τ(p)− x · p)1(A)] + E
[
u(τ(p)− x · p)1

(
A∁)]

= E[u(τ(p)− x̂ · p)1(A)] + E
[
u(τ(p)− x · p)1

(
A∁)]

= E[u(τ(p)− x̂ · p)|A]P [A] + E
[
u(τ(p)− x · p)1

(
A∁)]

> E[u(τ(p)− x · p)|A]P [A] + E
[
u(τ(p)− x · p)1

(
A∁)]

= E[u(τ(p)− x · p)1(A)] + E
[
u(τ(p)− x · p)1

(
A∁)]

= E[u(τ(p)− x · p)],

contradicting (IC). Therefore, (IC) implies (ICdyn).
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C Unrestricted Contract Set: Supplemental Details

The main result of Section 3.2 is Proposition 2, which states

When the set of feasible contracts is T all, the client’s expected costs of execution can

be made arbitrarily close to her first-best costs of p0 +
γ
T + θ(T+1)

2T .

Yet, to work up to this result, Section 3.2 first analyzes the special case of γ = 0, θ = 1, σ = 1,

and T = 2 periods. This appendix provides detailed computations for steps that were glossed over

in the analysis of that special case.

Deriving the dealer’s first-order condition. Recall that we were considering a class of con-

tracts indexed by (ζ, δ,K), specifying payment

τ(p) = δ +
1

2
(p1 + p2)−K1[p1 − p0 > ζ].

In Section 3.2, we demonstrated that, under such a contract, the dealer’s monetary payoff is

τ(p)− x · p = δ +

(
1

2
− x1

)
(x1 − 1− ε2)−K1[ε1 > ζ − x1]. (OA.6)

We then claimed that we can then compute the dealer’s expected utility, differentiate with respect

to x1, and evaluate at x1 =
1
2 to obtain

d

dx1
log
(
− E

[
u
(
τ(p)− x · p

)])∣∣∣∣
x1=1/2

= −λ

2
+

ϕ(ζ − 1/2)
1

1−exp(−λK) − Φ(ζ − 1/2)
, (OA.7)

where Φ and ϕ denote the standard normal CDF and pdf. To see this in detail, we argue as follows.

Building off (OA.6), the dealer’s expected utility is

E
[
u
(
τ(p)− x · p

)]
= E

[
u
(
δ + (12 − x1)(x1 − 1− ε2)−K1[ε1 > ζ − x1]

)]
= −E

[
exp
(
− λ

[
δ + (12 − x1)(x1 − 1− ε2)−K1[ε1 > ζ − x1]

])]
= −exp

(
− λ

[
δ + (12 − x1)(x1 − 1)

])
E
[
exp
(
λ(12 − x1)ε2

)]
E
[
exp
(
λK1[ε1 > ζ − x1]

)]
= −exp

(
− λ

[
δ + (12 − x1)(x1 − 1)

])
exp
(
λ2

2 (12 − x1)
2
)[
exp(λK)P[ε1 > ζ − x1] + P[ε1 ≤ ζ − x1]

]
= −exp

(
− λ

[
δ + (12 − x1)(x1 − 1)

]
+ λ2

2 (12 − x1)
2
)[
exp(λK)− (exp(λK)− 1)Φ(ζ − x1)

]
.

(OA.8)
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Differentiating with respect to x1 and evaluating at x1 =
1
2 , we obtain

d

dx1
log
(
− E

[
u
(
τ(p)− x · p

)])∣∣∣∣
x1=1/2

= −λ

2
+

d

dx1
log
[
exp(λK)− (exp(λK)− 1)Φ(ζ − x1)

]∣∣∣∣
x1=1/2

= −λ

2
+

ϕ(ζ − 1/2)
1

1−exp(−λK) − Φ(ζ − 1/2)
,

verifying (OA.7).

Deriving the dealer’s expected utility. We also claimed that, if K is chosen as in (1), then

choosing x1 =
1
2 leaves the dealer with expected utility

E
[
u
(
τ(p)− x · p

)]∣∣∣∣
x1=1/2

=− exp (−λδ)

1− λ
2
1−Φ(ζ−1/2)
ϕ(ζ−1/2)

. (OA.9)

Indeed, we can plug x1 =
1
2 into (OA.8) to obtain

E
[
u
(
τ(p)− x · p

)]∣∣∣∣
x1=1/2

=− exp (−λδ)
[
exp(λK)− (exp(λK)− 1)Φ(ζ − x1)

]
.

Then, plugging in

K =
1

λ
log

(
1 +

λ/2

ϕ(ζ − 1/2)− λ
2

[
1− Φ(ζ − 1/2)

])
from (1) verifies (OA.9).
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D Continuous-Time Limit: Supplemental Details

This appendix provides supplemental details regarding the continuous-time limit characterized

in Section 5. Online Appendix D.1 gives an overview of the proof of Proposition 10. Online

Appendix D.2 discusses and decomposes the wedge between the first-best and the second-best.

D.1 Strategy for the proof of Proposition 10

We begin by conjecturing three regions of convergence for the contract: the first Sk periods, the

last Sk periods, and the middle Tk − 2Sk periods, where Sk → ∞ and
S3
k

Tk
→ 0.33,34 We show that

the limiting optimal contract entails a constant density in the middle region. Given an arbitrary

such density a, we show that the initial and terminal regions converge to the limits described in

the text. Plugging in, the client’s cost in the limit becomes a quadratic function of a, which is

minimized at the a reported in Proposition 10.

To explain in more detail why the limiting optimal contract entails a constant density at interior

times, define Xq = limk→∞
∑⌈qTk⌉

t=1 xkt and Vq = limk→∞
∑⌈qTk⌉

t=1 τkt . In the proof, we demonstrate

that the continuous-time limit of the dealer’s best response function as defined by Lemma 3 is

Xq =
θ

λTσ2 V̇q+Vq for all q ∈ (0, 1). This equation reflects the dealer’s frontloading motive: provided

V̇q ≥ 0 (as holds in the optimum), we have Xq ≥ Vq. It likewise indicates that this frontloading

motive is strengthened by θ and weakened by (λ, T, σ2). Plugging in this best response, the client’s

expected costs due to permanent price impact at the interior times q ∈ (0, 1) are

θ

∫ 1

0
Xq dVq =

θ2

λTσ2

∫ 1

0
V̇ 2
q dq + θ

∫ 1

0
VqV̇q dq︸ ︷︷ ︸

= θ
2

(
V 2
1−−V 2

0+

) . (OA.10)

In fact, permanent price impact is the client’s only consideration at interior times—temporary price

impact is avoided owing to continuity of Xq and Vq on q ∈ (0, 1). Given arbitrary values for V1−

and V0+, the client’s problem for the interior times therefore distills to choosing Vq to minimize

the objective (OA.10), which is done by choosing V̇q to be a constant. With this constant density

at the interior times and atoms at the boundary instants, the contract therefore amounts to an

extreme U-shape.

33This proof strategy is not fully rigorous because it assumes that the cumulative weights of the optimal contracts
converge to a smooth function (except for jumps at 0 and 1) and determines the limit under this assumption. Although
this assumption is consistent with numerical experimentation, a fully rigorous proof would also demonstrate the nature
of the convergence. For the special case of no temporary price impact, we can produce such a proof, and we include
it in Online Appendix E.2. We also note that this proof strategy relies on a conjecture only about the convergence
of the optimal contract—and no analogous conjecture about the dealer’s best response, whose convergence behavior
is somewhat more complicated (i.e., the convergence of part of the curve to a vertical line illustrated by Figure 5).

34For example, we could have Tk = k, σ2
k = Tσ2

k
, and Sk = 4

√
k. The reason we require

S3
k

Tk
→ 0 rather than simply

Sk
Tk

→ 0 is because we approximate the client’s expected costs by terms with errors of order
S3
k

Tk
, where S3

k comes from
multiple layers of sums related to permanent price impact and the contract.
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D.2 The wedge between the first-best and second-best

The wedge itself. In the continuous-time limit considered in Proposition 10, the client’s expected

costs of execution exceed those of the first best by 1−a
4 θ, where a = 1

1+ 4θ
λTσ2

. This expression for

the wedge results as the difference between p0 +
3−a
4 θ and p0 +

1
2θ.

A related observation is that, using the notation introduced in Remark 5, the client benefits from

contracting with a dealer (rather than trading directly on the market) if p0 +
3−a
4 θ < p0 +

1
2θ

client,

or if θclient > 3−a
2 θ.

Comparative statics. This wedge is decreasing in a, as larger values of a mean smaller front-

loading of the optimal contract and a trading strategy that is closer to the first best. Because a

is increasing in (λ, Tσ2), it follows that this wedge is decreasing in those parameters. Moreover,

θ enters the expression for this wedge both directly and through a. Because a is decreasing in θ,

both effects go in the same direction: the wedge is increasing in θ.

Decomposition. This wedge can be decomposed as the sum of the dealer’s expected profit and

an inefficiency due to suboptimal trading (i.e., the fact that x∗ ̸= xFB):

1− a

4
θ︸ ︷︷ ︸

wedge between first-best
and second-best payments

=
1− a

2
θ − (1− a)2

4

θ2

θ + 2γ︸ ︷︷ ︸
dealer’s expected profit

+
(1− a)2

4

θ2

θ + 2γ
− 1− a

4
θ.︸ ︷︷ ︸

inefficiency from suboptimal trading

Formally, this decomposition follows from the subsequent result.

As an aside, the presence of γ in this decomposition highlights that—although it does not affect

the client’s execution costs when the contract is chosen optimally—temporary price impact does

not vanish and does play a role in the continuous-time limit.

Proposition 16. Assume the dealer is strictly risk-averse (λ > 0). Consider a sequence of execu-

tion horizons (Tk)
∞
k=1 and a sequence of price-shock variances (σ2

k)
∞
k=1 such that limk→∞ Tk = ∞

and Tkσ
2
k = Tσ2 for all k. For each k, let τ ∗k be the associated optimal contract, and let x∗k be the

dealer strategy that best responds to τ ∗k. The dealer’s expected profit under τ ∗k and x∗k converges

to
1− a

2
θ − (1− a)2

4

θ2

θ + 2γ
, (OA.11)

where a = 1
1+ 4θ

λTσ2

.

Proof. To simplify notation throughout this proof, we write simply τ k and xk instead of τ ∗k and

x∗k. The dealer’s expected profit is given by

E
[
τ k · pk − xk · pk

]
=

Tk∑
t=1

(
τkt − xkt

)(
p0 + θXk

t
Tk

+ γxkt

)
=

Tk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
,
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using for the second equality that
∑Tk

t=1 τ
k
t =

∑Tk
t=1 x

k
t = 1. Arguing similarly to (A.23), this

expression converges to

lim
k→∞

Tk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
= θ

∫ 1

0
Xq d(Vq −Xq) + lim

k→∞

Sk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
(OA.12)

+ lim
k→∞

Sk∑
t=1

(
τkTk−(t−1) − xkTk−(t−1)

)(
θXk

1− t−1
Tk

+ γxkTk−(t−1)

)
.

We analyze the terms on the right-hand side of (OA.12). The first term can be written as

θ

∫ 1

0
Xq d(Vq −Xq) = θa

∫ 1

0
Xq dq −

θ

2
X2

1− +
θ

2
lim
k→∞

(
X0+ −

Sk∑
t=1

xkTk−(t−1)

)2

= θa

∫ 1

0

(
3(1− a)

4
+ aq

)
dq − θ

2

(
3 + a

4

)2

+
θ

2

(
3(1− a)

4
− 1− a

2

)2

= θa
3(1− a)

4
+ θa2

1

2
− θ

2

(
3 + a

4

)2

+
θ

2

(
1− a

4

)2

=
θ

4
(3a− a2 − 1− a)

= −θ

4
(1− a)2. (OA.13)

Using (6) and (A.30), the second term on the right-hand side of (OA.12) can be computed as

lim
k→∞

Sk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
= lim

k→∞

(
θ

Sk∑
t=1

X∗,k
t

Tk

τ∗,kt + γ

Sk∑
t=1

x∗,kt τ∗,kt − θ

Sk∑
t=1

X∗,k
t

Tk

x∗,kt − γ

Sk∑
t=1

(
x∗,kt

)2)

= θ
(1− a)2

4
− θ

∞∑
j=1

j∑
ℓ=1

θγℓ−1

(θ + γ)ℓ
1− a

2

θγj−1

(θ + γ)j
1− a

2
− γ

∞∑
j=1

(
θγj−1

(θ + γ)j
1− a

2

)2

=
(1− a)2

4

(
θ − θ3

γ2
γ

θ + γ

∞∑
j=1

1−
( γ
θ+γ

)j
1− γ

θ+γ

γj

(θ + γ)j
− θ2

γ

∞∑
j=1

(
γ

θ + γ

)2j
)

=
(1− a)2

4

(
θ − θ3

γ2

γ
θ+γ

1− γ
θ+γ

(
γ

θ+γ

1− γ
θ+γ

−
(

γ

θ + γ

)2 1

1−
( γ
θ+γ

)2
)

− θ2

γ

(
γ

θ + γ

)2 1

1−
( γ
θ+γ

)2
)

=
(1− a)2

4

(
θ − θ3

γ2

( γ
θ+γ

)2
1− γ

θ+γ

1

1−
( γ
θ+γ

)2 − θ2

γ

(
γ

θ + γ

)2 1

1−
( γ
θ+γ

)2
)

=
(1− a)2

4

(
θ − θ2

θ + 2γ

)
. (OA.14)
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Because xk has no persistent jumps at the end time by (A.29), the third term on the right-hand

side of (OA.12) becomes

lim
k→∞

Sk∑
t=1

τkTk−(t−1)

(
θXk

1− t−1
Tk

+ γxkTk−(t−1)

)
= θ

1− a

2
(OA.15)

by (A.31). Substituting (OA.13)–(OA.15) into (OA.12), we obtain that the dealer’s expected profit

converges to (OA.11).
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E Additional Special Cases

With various sections of the main text, we have already solved for the optimal weighted-average-

price contract within several special cases of the model. This appendix considers three more special

cases. Online Appendix E.1 considers the case of two trading periods (i.e., T = 2), and provides

further intuition for the optimality of symmetric contract weights. Online Appendix E.2 considers

the case of no temporary price impact (i.e., γ = 0), demonstrating that the optimal contract in

this case is a U-shape with a ‘flat bottom,’ in that all interior weights are the same. Finally,

Online Appendix E.3 considers the limiting case of an infinite execution horizon (i.e., T → ∞),

demonstrating that the client obtains her first-best payoff in this limit.

E.1 Two trading periods

To provide additional intuition for the optimal contract’s symmetry, this appendix considers the

version of the model with T = 2 trading periods. Our approach is to provide intuition by connecting

our setup to a rudimentary microeconomics-based calculation.

Monopolist with linear demand. Consider the problem of a monopolist facing a linear inverse

demand curve P = a−bQ and a marginal cost c. Following the standard derivation, the monopolist

optimally sets

Q∗ =
a

2b
− c

2b
and P ∗ =

a

2
− c

2
.

Let us use Q∗
0 and P ∗

0 to denote these optimal values in the special case of c = 0. In particular, it

holds that

Q∗
0 =

a

b

dP ∗

dc
.

As we demonstrate below, this relationship is a consequence of the linear nature of demand; a
b is

the appropriate scaling factor, which can be interpreted as the quantity demanded at a price of

zero.

In fact, an analogous relationship holds even more generally. Suppose the monopolist faces an

additional cost that is quadratic in P − c, so that her objective is (P − c)Q− λ
2 (P − c)2, which can

be written

(a− bQ− c)Q− λ

2
(a− bQ− c)2.

In the case of λ = 0, this reduces to the classic problem mentioned above. We obtain

Q∗ =
a− c

b

1 + bλ

2 + bλ︸ ︷︷ ︸
≡ϕ

. (OA.16)

The interpretation of the first factor in (OA.16) is the quantity demanded at marginal-cost pricing.

The precise form of the second factor does not matter for the subsequent arguments, so we simply

label it ϕ; it can be interpreted as the monopolist’s optimal amount of quantity reduction. That
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this is a constant is due to the linear nature of demand. It follows from (OA.16) that Q∗
0 =

a
bϕ. The

intuition is that Q∗
0 must equal the quantity demanded at a price of zero (which, as mentioned is

a
b ) times quantity reduction from marginal-cost pricing (which we have denoted ϕ). It also follows

from (OA.16) that

P ∗ = a− bQ∗ = a(1− ϕ) + ϕc.

That P ∗ should be this weighted average of a and c is intuitive because ϕ = 1 corresponds to no

quantity reduction (i.e., marginal-cost pricing) and ϕ = 0 corresponds to full quantity reduction

(i.e., pricing so that zero quantity is demanded). Hence, dP ∗

dc = ϕ. We conclude that

Q∗
0 =

a

b
ϕ =

a

b

dP ∗

dc
,

as claimed.

The dealer’s problem. To see the connection to our setting, suppose that T = 2, and parametrize

(x1, x2) =
(1
2
+ x,

1

2
− x
)

and (τ1, τ2) =
(1
2
+ τ,

1

2
− τ
)
.

Given any τ , the dealer’s problem is to choose x to maximize

(x− τ)
(
E[p2]− E[p1]

)
− λσ2

2
(τ − x)2.

Because E[p2]−E[p1] = θ
2 − (θ+ 2γ)x, this objective is of the same form that was analyzed above,

with the roles of (P,Q, c, a, b, λ) now played by
(
x,E[p2]− E[p1], τ, θ

2θ+4γ ,
1

θ+2γ , λσ
2
)
. We conclude

that when τ = 0, it will hold that E[p2]− E[p1] = θ
2
dx∗

dτ .

The client’s problem. The client’s problem is to choose τ to minimize(1
2
+ τ
)
E[p1] +

(1
2
− τ
)
E[p2],

taking into account how τ influences x∗, and hence prices. Suppose we begin at τ = 0 and perturb

τ upward. This produces two effects:

• The direct effect. The direct effect of this perturbation is to increase the objective at the rate

E[p1]− E[p2],

which is equal to − θ
2
dx∗

dτ by the above observation. Intuitively, permanent price impact leads

us to have E[p2] > E[p1] (given the dealer’s best response to τ = 0), and so the direct effect

of increasing τ is to put more weight on the lower price, which is beneficial to the client.
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• The indirect effect. The indirect effect of this perturbation (through its effect on expected

prices) is to increase the objective at the rate

1

2

(
dE[p1]
dx︸ ︷︷ ︸

=γ+θ

+
dE[p2]
dx︸ ︷︷ ︸
=−γ

)
dx∗

dτ
.

Intuitively, this increase in τ leads the dealer to trade more in the first period, which—

because of permanent price impact—leads p1 to increase more than p2 decreases. At τ = 0,

the client’s payment is an equally-weighted average of these two prices, so the indirect effect

of this perturbation is harmful to the client.

By the arguments above, these two effects cancel out, so it follows that it is optimal for the client

to select τ = 0.

E.2 No temporary price impact

This appendix considers the case in which price impact has no temporary component (i.e., is purely

permanent). We begin by considering the optimal contract in discrete time, demonstrating that it

is a U-shape with a ‘flat bottom,’ in that all interior weights are the same. We then consider the

continuous-time limit, producing a more rigorous proof of the result of Proposition 10 for the case

without temporary price impact.

E.2.1 The optimal contract in discrete time

Without temporary component (i.e., when γ = 0), we obtain the following as a corollary of the

general solution given by Proposition 5.

Corollary 17. Assume that there is no temporary price impact (γ = 0). Then the weights of the

optimal contract satisfy τ∗i = τ∗j for all i, j ∈ {2, 3, . . . , T − 1}. Moreover, the solution depends on

(λ, σ, θ) only through λσ2

θ .

Corollary 17 says that in this case of only permanent price impact, the optimal contract puts

the same weight on all interior periods. From Proposition 5, we know that the extremal elements

of τ ∗ are also equal, but they differ from the interior weights, which can also be seen in the left

panel of Figure 2 for the curve γ = 0.0. From Figure E.1, we observe that the extremal weights of

the optimal contract are greater than 1/T and decreasing in α ≡ λσ2

θ so that the dominance of the

extremal weights over the inner weights is stronger for small values of α. In fact, it follows from

Corollaries 6 and 8 that the extremal weights converge to 1/2 for α → 0 and to 1/T for α → ∞.

As mentioned, numerical experimentation suggests that the dealer’s best response to the optimal

contract is frontloaded relative to the contract itself. In this case of no temporary price impact,

we can formally prove a limited version of this general conjecture: that the first component of

the dealer’s trading strategy dominates the first weight of the optimal contract. Indeed, without
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Figure E.1: The upper surface shows the extremal weights of the optimal contract as a function of
T and α = λσ2

θ when there is no temporary price impact. As a visual comparison, the lower surface
represents 1/T . The extremal weights are greater than 1/T and decreasing in α.

temporary price impact, the dealer’s best response x to any symmetric contract with equal inner

weights; that is, of the form
(1−a(T−2)

2 , a, . . . , a, 1−a(T−2)
2

)
for 0 ≤ a ≤ 1

T−2 and with T ≥ 3 satisfies

x1 >
1− a(T − 2)

2
, (OA.17)

as we show in Online Appendix E.2.3.

Proof of Corollary 17. We start by writing

M−1 =
(
θA−1E + θE⊤(A−1)⊤

)−1
=

1

θ

(
A−1E + E⊤(A−1)⊤

)−1
=

1

θ

(
A−1

(
E +AE⊤(A−1)⊤

))−1

=
1

θ

(
E +AE⊤(A−1)⊤

)−1
A =

1

θ

(
(EA⊤ +AE⊤)(A−1)⊤

)−1
A (OA.18)

=
1

θ
A⊤(EA⊤ +AE⊤)−1

A =
1

θ
A⊤(EA⊤ +AE⊤)−1

A

and

EA⊤ +AE⊤ = B + vv⊤ (OA.19)
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where v = λ(1, 1, . . . , 1)⊤ and

B =



4θ2 + λ2 + 2λθ −2θ2 λθ · · · −λ2 + λ+ θ

−2θ2 4θ2 + λ2 −2θ2 − θλ 0 −λ2 + λ

λθ −2θ2 − θλ 4θ2 + λ2 −2θ2 − θλ −λ2 + λ

λθ 0 −2θ2 − θλ 4θ2 + λ2
...

...
...

. . .
. . . −λ2 + λ

−λ2 + λ+ θ −λ2 + λ · · · −λ2 + λ 2− λ2


,

which is a tridiagonal matrix except for the first and last rows and the first and last columns. The

Sherman-Morrison formula implies

(
B + vv⊤)−1

= B−1 − B−1vv⊤B−1

1 + v⊤B−1v
. (OA.20)

We also note that B = (2θ + λ)A+ V , where

V =



2λθ λθ · · · −λ2 + λ+ θ

λθ 0 · · · −λ2 + λ

λθ 0 · · ·
...

...
...

. . . λ− λ2 + θ(λ+ 2θ)

−λ2 + λ+ θ −λ2 + λ · · · 2− λ2 − λ− 2θ


,

hence

A =
1

2θ + λ
(B − V ). (OA.21)

Combining (OA.18)–(OA.21) yields

(1⊤M−11)τ ∗ = M−11 =
1

θ
A⊤(EA⊤ +AE⊤)−1

A1 =
1

θ
A⊤(B + vv⊤)−1

A1

=
1

θ
A⊤
(
B−1 − B−1vv⊤B−1

1 + v⊤B−1v

)
A1 =

1

θ(2θ + λ)
(B − V ⊤)

(
B−1 − B−1vv⊤B−1

1 + v⊤B−1v

)
A1

=
1

θ(2θ + λ)

(
A1− vv⊤B−1

1 + v⊤B−1v
A1− V ⊤

(
B−1 − B−1vv⊤B−1

1 + v⊤B−1v

)
A1

)
.

Let us now consider a T vector ν which equals τ ∗, except that elements j, i ∈ {2, 3, . . . , T − 1} are

flipped. We write ν = Pτ ∗ for a permutation matrix P , which is a diagonal matrix with 1 on the

diagonal except for the ith and jth elements on the diagonal which are zero, and P (i, j) = 1 and

P (j, i) = 1. We check directly that

PA1 = A1, PV ⊤ = V ⊤, Pv = v
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so that

ν = Pτ ∗ =
1

θ(2θ + λ)(1⊤M−11)

(
PA1− Pvv⊤B−1

1 + v⊤B−1v
A1− PV ⊤

(
B−1 − B−1vv⊤B−1

1 + v⊤B−1v

)
A1

)
=

1

θ(2θ + λ)(1⊤M−11)

(
A1− vv⊤B−1

1 + v⊤B−1v
A1− V ⊤

(
B−1 − B−1vv⊤B−1

1 + v⊤B−1v

)
A1

)
= τ ∗,

which shows τ∗i = τ∗j and thus proves τ∗i = τ∗j for all i, j ∈ {2, 3, . . . , T − 1}.
For the second statement that the weights of the optimal contract and the dealer’s trading

strategy depend on (λ, σ, θ) only through α = λσ2

θ , we recall the comment at the beginning of

this Appendix that the case of a general σ is equivalent to replacing λ by λσ2 and then setting

σ = 1. For the dependence structure on θ, it can be seen in the case γ = 0 that minimizing the

client’s expected costs E[τ ·p] = p0 + θ
∑T

t=1 τtXt in (A.17) is equivalent to minimizing
∑T

t=1 τtXt,

which does not directly depend on θ. Moreover, for γ = 0 and θ ̸= 0, the constraint (A.15) can be

rewritten as

−Xt+1 +

(
λ

θ
+ 2

)
Xt −Xt−1 = τt +

λ

θ

t∑
j=1

τj , t = 1, 2, . . . , T − 1.

which depends on θ only through λ
θ , hence so must the optimizers.

E.2.2 Alternative proof of Proposition 10 for the case of no temporary price impact

We now consider the continuous-time limit of the model in this case with no temporary price

impact. In this case, we can build upon Corollary 17 to provide a more rigorous proof of the result

of Proposition 10 than the general proof given in the appendix.

As in Proposition 10, we consider a sequence of execution horizons (Tk)
∞
k=1 and a sequence of

price-shock variances (σ2
k)

∞
k=1 such that limk→∞ Tk = ∞ and Tkσ

2
k = Tσ2 for all k. In this case

of no temporary price impact, Corollary 17 implies that the optimal contract in discrete time is a

U-shape with a ‘flat bottom,’ in that all interior weights are the same. Thus, without temporary

price impact, we know for each fixed k the optimal contract up to a single parameter, say ak. We

then derive a recursive system of linear equations to characterize the trading policy that the dealer

selects in response to any ak. Solving this system for the trading policy and plugging that in, the

client’s optimization problem becomes quadratic in ak, so that we can readily solve for the optimal

ak. The formula for the optimal ak is complicated, but it simplifies in the limit as k → ∞. That

expression in turn allows us to compute the limits of the optimal contract and trading policy, which

are indeed as stated in Proposition 10.

Proof. Assume γ = 0. We consider a fixed k and note that a model with price-shock variance

σ2
k = Tσ2

Tk
is equivalent to a model with price-shock variance normalized to 1 while λ is replaced by
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λTσ2

Tk
. From Corollary 17, it follows that the optimal contract is of the form

τ k =

(
1− (Tk − 2)ak

2
, ak, ak, . . . , ak,

1− (Tk − 2)ak
2

)⊤
(OA.22)

for some constant ak. Therefore, (A.15) with γ = 0 becomes

Xk
1 +

Tkθ

λTσ2

(
2Xk

1 −Xk
2

)
=

(
Tkθ

λTσ2
+ 1

)
1− (Tk − 2)ak

2
,

Xk
t +

Tkθ

λTσ2

(
2Xk

t −Xk
t+1 −Xk

t−1

)
=

1− (Tk − 2)ak
2

+
Tkθ

λTσ2
ak + ak(t− 1), t = 2, 3, . . . , Tk − 1.

Let us define

Y k
t = Xk

t − 1− (Tk − 2)ak
2

− Tkθ

λTσ2
ak − ak(t− 1), t = 1, 2, . . . , Tk, (OA.23)

which satisfies

Y k
1 +

Tkθ

λTσ2

(
2Y k

1 − Y k
2

)
= −

T 2
k θ

2ak
λ2T 2σ4

, (OA.24)

Y k
t +

Tkθ

λTσ2

(
2Y k

t − Y k
t+1 − Y k

t−1

)
= 0, t = 2, 3, . . . , Tk − 1.

We set Zk
t = Y k

t+1 for t = 0, 1, . . . , Tk − 1 so that

Zk
t =

(
λTσ2

Tkθ
+ 2

)
Zk
t−1 − Y k

t−1 and Y k
t = Zk

t−1, t = 2, 3, . . . , Tk − 1,

which we can write as(
Zk
t

Y k
t

)
= Mk

(
Zk
t−1

Y k
t−1

)
for Mk =

(
λTσ2

Tkθ
+ 2 −1

1 0

)
, t = 2, 3, . . . , Tk − 1.

By iteration, we obtain(
Zk
t

Y k
t

)
= Mk · · ·Mk︸ ︷︷ ︸

t− 1 times

(
Zk
1

Y k
1

)
= M t−1

k

(
Y k
2

Y k
1

)
, t = 1, 2, . . . , Tk − 1.

Next, we note that Mk is diagonalizable with eigendecomposition Mk = VkDkV
−1
k for

Dk =

(
1 + αk − βk 0

0 1 + αk + βk

)
and Vk =

(
1 + αk − βk 1 + αk + βk

1 1

)
,
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where αk = λTσ2

2Tkθ
and βk =

√
λTσ2

Tkθ

(
λTσ2

4Tkθ
+ 1
)
. We can compute

M t−1
k = VkD

t−1
k V −1

k

=
1

2βk

(
(1 + αk + βk)

t − (1 + αk − βk)
t (1 + αk − βk)

t(1 + αk + βk)− (1 + αk + βk)
t(1 + αk − βk)

(1 + αk + βk)
t−1 − (1 + αk − βk)

t−1 (1 + αk − βk)
t−1(1 + αk + βk)− (1 + αk + βk)

t−1(1 + αk − βk)

)
,

so that we obtain

Zk
Tk−1 =

1

2βk

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)
Tk−1

)
Y k
2

+
1

2βk

(
(1 + αk − βk)

Tk−1(1 + αk + βk)− (1 + αk + βk)
Tk−1(1 + αk − βk)

)
Y k
1 .

From (OA.23), we also have

Zk
Tk−1 = Y k

Tk
= 1− 1− (Tk − 2)ak

2
− Tkθ

λTσ2
ak − ak(Tk − 1) =

1

2
− 1

2

(
Tk −

1

αk

)
ak.

Hence,

βk − βk

(
Tk −

1

αk

)
ak =

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)
Tk−1

)
Y k
2

+
(
(1 + αk − βk)

Tk−1(1 + αk + βk)− (1 + αk + βk)
Tk−1(1 + αk − βk)

)
Y k
1

Combining this with (OA.24), which can be written as(
1 +

1

ak

)
Y k
1 − 1

2αk
Y K
2 = − ak

4α2
k

,

we obtain

Ak

(
Y k
1

Y k
2

)
=

(
−βkTk − βk

αk

− 1
4α2

k

)
ak +

(
βk

0

)
,

where

Ak =

(
A11

k A12
k

1 + 1
αk

− 1
2αk

)
A11

k = (1 + αk − βk)
Tk−1(1 + αk + βk)− (1 + αk + βk)

Tk−1(1 + αk − βk)

A12
k = (1 + αk + βk)

Tk−1 − (1 + αk − βk)
Tk−1

so that

Y k
t =

(
vk
t

)⊤
A−1

k

(
−βkTk − βk

αk

− 1
4α2

k

)
ak +

(
vk
t

)⊤
A−1

k

(
βk

0

)
, t = 1, 2, . . . , Tk
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for

(
vk
t

)⊤
=
(

0 1
)
M t−1

k

(
0 1

1 0

)

=
1

2βk

(
(1 + αk − βk)

t−1(1 + αk + βk)− (1 + αk + βk)
t−1(1 + αk − βk)

(1 + αk + βk)
t−1 − (1 + αk − βk)

t−1

)⊤

.

For future reference, we also compute

A−1
k =

2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12

k

1 + 1
αk

−A11
k

)
A11

k + 2A12
k (αk + 1) = (1 + αk + βk)

Tk − (1 + αk − βk)
Tk .

Thus, we deduce from (OA.23) that

Xk
t = ηkt ak + κkt , t = 1, 2, . . . , Tk, (OA.25)

where

ηkt =
(
vk
t

)⊤
A−1

k

(
−βkTk − βk

αk

− 1
4α2

k

)
− Tk − 2

2
+

1

2αk
+ t− 1, (OA.26)

κkt =
(
vk
t

)⊤
A−1

k

(
βk

0

)
+

1

2
. (OA.27)

By (A.17) with γ = 0, the client’s expected cost of the contract is

p0 + θ

Tk∑
t=1

τkt X
k
t = p0 + θak

Tk∑
t=1

τkt η
k
t + θ

Tk∑
t=1

τkt κ
k
t

= p0 + θak

(
τk1 η

k
1 + τkTk

ηkTk
+

Tk−1∑
t=2

τkt η
k
t

)
+ θ

(
τk1 κ

k
1 + τkTk

κkTk
+

Tk−1∑
t=2

τkt κ
k
t

)

= p0 + θak

(
1− (Tk − 2)ak

2

(
ηk1 + ηkTk

)
+ ak

Tk−1∑
t=2

ηkt

)
+ θ

(
1− (Tk − 2)ak

2

(
κk1 + κkTk

)
+ ak

Tk−1∑
t=2

κkt

)

= p0 + θa2k

(
− Tk − 2

2

(
ηk1 + ηkTk

)
+

Tk−1∑
t=2

ηkt

)
+ θak

(
ηk1 + ηkTk

2
− Tk − 2

2

(
κk1 + κkTk

)
+

Tk−1∑
t=2

κkt

)

+ θ
κk1 + κkTk

2
. (OA.28)
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The first-order condition yields

ak =

ηk1+ηkTk
2 − Tk−2

2 (κk1 + κkTk
) +

∑Tk−1
t=2 κkt

(Tk − 2)(ηk1 + ηkTk
)− 2

∑Tk−1
t=2 ηkt

. (OA.29)

We will next show

lim
k→∞

ηk⌈qTk⌉

Tk
=

−1
2 + θ

λTσ2 + q if q ∈ (0, 1),

0 if q = 1,
(OA.30)

lim
k→∞

κk⌈qTk⌉ =

1
2 if q ∈ (0, 1),

1 if q = 1,
(OA.31)

lim
k→∞

ηk1
Tk

= −1

2
, (OA.32)

lim
k→∞

κk1 =
1

2
. (OA.33)

In the following limit computations, we will repeatedly use the fact that

lim
n→∞

(
1 +

c√
n

)n
= lim

m→∞

(
1 +

c

m

)m2

= lim
m→∞

((
1 +

c

m

)m)m

= lim
m→∞

ecm =


0 if c < 0,

1 if c = 0,

∞ if c > 0,

and that exponential convergence is faster than any power convergence.

To illustrate how we use this fact, first note that we have

1 + αk + βk = 1 +
λTσ2

2Tkθ
+

√
λTσ2

Tkθ

(
λTσ2

4Tkθ
+ 1

)
≥ 1 +

√
λTσ2

Tkθ

and that for sufficiently large Tk, we also have

1 + αk − βk = 1 +
λTσ2

2Tkθ
−

√
λTσ2

Tkθ

(
λTσ2

4Tkθ
+ 1

)
≤ 1− 1

2

√
λTσ2

Tkθ
.

So the fact implies that for any C ∈ (0, 1], we have both (1+αk+βk)
CTk → ∞ and (1+αk−βk)

CTk →
0. The reason is that βk converges to zero only like 1√

Tk
while αk converges to zero like 1

Tk
. Because

of the slow convergence of βk, it dominates the other terms.

To show (OA.30), we first compute

lim
k→∞

1

Tk

(
vk
⌈qTk⌉

)⊤
A−1

k

(
−βkTk − βk

αk

− 1
4α2

k

)
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= lim
k→∞

1

Tk

(
vk
⌈qTk⌉

)⊤ 2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12

k

1 + 1
αk

−A11
k

)(
−βkTk − βk

αk

− 1
4α2

k

)

= lim
k→∞

1

Tk

(
vk
⌈qTk⌉

)⊤ 1

A11
k + 2A12

k (αk + 1)

(
−βkTk − βk

αk
− A12

k
2αk

2(1 + αk)
(
− βkTk − βk

αk

)
+

A11
k

2αk

)

= lim
k→∞

1

2Tkβk(A
11
k + 2A12

k (αk + 1))

((
(1 + αk − βk)

⌈qTk⌉−1(1 + αk + βk)

− (1 + αk + βk)
⌈qTk⌉−1(1 + αk − βk)

)(
− βkTk −

βk
αk

−
A12

k

2αk

)
+
(
(1 + αk + βk)

⌈qTk⌉−1 − (1 + αk − βk)
⌈qTk⌉−1

)(
2(1 + αk)

(
− βkTk −

βk
αk

)
+

A11
k

2αk

))

= lim
k→∞

1

2Tkβk(A
11
k + 2A12

k (αk + 1))

(
(1 + αk − βk)

⌈qTk⌉−1

(
(1 + αk + βk)

×
(
− βkTk −

βk
αk

−
A12

k

2αk

)
− 2(1 + αk)

(
− βkTk −

βk
αk

)
+

A11
k

2αk

)
+ (1 + αk + βk)

⌈qTk⌉−1

(
− (1 + αk − βk)

(
− βkTk −

βk
αk

−
A12

k

2αk

)
+ 2(1 + αk)

(
− βkTk −

βk
αk

)
+

A11
k

2αk

))

= lim
k→∞

(1 + αk + βk)
⌈qTk⌉−1

2Tkβk((1 + αk + βk)Tk − (1 + αk − βk)Tk)

×
(
− (1 + αk − βk)

(
− βkTk −

βk
αk

+
(1 + αk − βk)

Tk−1

2αk

)
+ 2(1 + αk)

(
− βkTk −

βk
αk

)
+

(1 + αk − βk)
Tk−1(1 + αk + βk)

2αk

)
= lim

k→∞

(1 + αk + βk)
⌈qTk⌉−1

(
(1 + αk + βk)

(
− βkTk − βk

αk

)
+ (1 + αk − βk)

Tk−1 βk
αk

)
2Tkβk((1 + αk + βk)Tk − (1 + αk − βk)Tk)

= lim
k→∞

(1 + αk + βk)
⌈qTk⌉−Tk

(
− βkTk − βk

αk
+ (1 + αk − βk)

Tk−1 βk
αk(1+αk+βk)

)
2Tkβk

(
(1+αk−βk)

Tk

(1+αk+βk)
Tk

+ 1
)

=


0 if q ∈ (0, 1),

lim
k→∞

−βkTk−
βk
αk

2Tkβk
= lim

k→∞

(
− 1

2 − 1
2Tkαk

)
= −1

2 − θ
λTσ2 if q = 1.

(OA.34)
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Therefore, we deduce from (OA.26) that

lim
k→∞

ηk⌈qTk⌉

Tk
= lim

k→∞

(
1

Tk

(
vk
⌈qTk⌉

)⊤
A−1

k

(
−βkTk − βk

αk

− 1
4α2

k

)
− 1

2
+

1

2Tkαk
+ q

)

=

−1
2 + θ

λTσ2 + q if q ∈ (0, 1),

0 if q = 1,

which shows (OA.30). Similarly, for (OA.31), we first compute

lim
k→∞

(
vk
⌈qTk⌉

)⊤
A−1

k

(
βk

0

)

= lim
k→∞

(
vk
⌈qTk⌉

)⊤ 2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12

k

1 + 1
αk

−A11
k

)(
βk

0

)

= lim
k→∞

(
vk
⌈qTk⌉

)⊤ 1

A11
k + 2A12

k (αk + 1)

(
βk

2βk(1 + αk)

)

= lim
k→∞

(
1
2

(
(1 + αk − βk)

⌈qTk⌉−1(1 + αk + βk)− (1 + αk + βk)
⌈qTk⌉−1(1 + αk − βk)

)
A11

k + 2A12
k (αk + 1)

+

(
(1 + αk + βk)

⌈qTk⌉−1 − (1 + αk − βk)
⌈qTk⌉−1

)
(1 + αk)

A11
k + 2A12

k (αk + 1)

)

= lim
k→∞

−1
2(1 + αk + βk)

⌈qTk⌉−1(1 + αk − βk) + (1 + αk + βk)
⌈qTk⌉−1(1 + αk)

(1 + αk + βk)Tk

= lim
k→∞

1

2
(1 + αk + βk)

⌈qTk⌉−Tk

=

0 if q ∈ (0, 1),

1
2 if q = 1,

(OA.35)

so that by (OA.27) we obtain

lim
k→∞

κk⌈qTk⌉ =

1
2 if q ∈ (0, 1),

1 if q = 1,
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which proves (OA.31). To show (OA.32), we begin by computing from (OA.26)

ηk1 =
(
vk
1

)⊤
A−1

k

(
−βkTk − βk

αk

− 1
4α2

k

)
− Tk − 2

2
+

1

2αk

= (1, 0)
2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12

k

1 + 1
αk

−A11
k

)(
−βkTk − βk

αk

− 1
4α2

k

)
− Tk

2
+ 1 +

1

2αk

=
2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12

k

)( −βkTk − βk
αk

− 1
4α2

k

)
− Tk

2
+ 1 +

1

2αk

=
−βkTk − βk

αk
− A12

k
2αk

A11
k + 2A12

k (αk + 1)
− Tk

2
+ 1 +

1

2αk

=
−βkTk − βk

αk
− 1

2αk

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)
Tk−1

)
(1 + αk + βk)Tk − (1 + αk − βk)Tk

− Tk

2
+ 1 +

1

2αk
. (OA.36)

We then compute the limit

lim
k→∞

ηk1
Tk

=
−βk − βk

αkTk
− 1

2αkTk

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)
Tk−1

)
(1 + αk + βk)Tk − (1 + αk − βk)Tk

− 1

2
+

1

Tk
+

1

2αkTk

= lim
k→∞

− βk

(1+αk+βk)
Tk−1−(1+αk−βk)

Tk−1

(
1 + 2θ

λTσ2

)
− θ

λTσ2

(1+αk+βk)
Tk−1(1+αk+βk)−(1+αk−βk)

Tk−1(1+αk−βk)

(1+αk+βk)
Tk−1−(1+αk−βk)

Tk−1

− 1

2
+

θ

λTσ2

= lim
k→∞

− θ
λTσ2

1 + αk + βk
− 1

2
+

θ

λTσ2
= −1

2
,

which proves (OA.32). Finally, for (OA.33), we begin by computing from (OA.27)

κk1 =
(
vk
1

)⊤
A−1

k

(
βk

0

)
+

1

2

= (1, 0)
2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12

k

1 + 1
αk

−A11
k

)(
βk

0

)
+

1

2

=
βk

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

1

2
, (OA.37)

so that limk→∞ κk1 = 1
2 , which concludes the proof of (OA.29)–(OA.33). Additionally, we note that

the convergence in (OA.34) and (OA.35) is uniform in q on compact sets in (0, 1). To see this,

note that the expressions in the limits (OA.34) and (OA.35) depend on q only through (1 + αk +

βk)
⌈qTk⌉−Tk and (1 + αk − βk)

⌈qTk⌉−1, which both converge to zero uniformly in q on compact sets
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in (0, 1). Indeed, for every 0 < q0 < Q0 < 1, we have

0 ≤ lim
k→∞

sup
q∈[q0,Q0]

(1 + αk + βk)
⌈qTk⌉−Tk ≤ lim

k→∞
(1 + αk + βk)

⌈Q0Tk⌉−Tk = 0,

0 ≤ lim
k→∞

sup
q∈[q0,Q0]

(1 + αk − βk)
⌈qTk⌉−1 ≤ lim

k→∞
(1 + αk − βk)

⌈Q0Tk⌉−1 = 0,

which shows

lim
k→∞

sup
q∈[q0,Q0]

(1 + αk + βk)
⌈qTk⌉−Tk = 0 and lim

k→∞
sup

q∈[q0,Q0]
(1 + αk − βk)

⌈qTk⌉−1 = 0.

This implies that for every 0 < q0 < Q0 < 1 and every ϵ > 0, there exists k0 such that∣∣∣∣∣η
k
⌈qTk⌉

Tk
+

1

2
− θ

λTσ2
− q

∣∣∣∣∣ < ϵ and

∣∣∣∣κk⌈qTk⌉ −
1

2

∣∣∣∣ < ϵ

for all k > k0 and q ∈ [q0, Q0]. Note that k0 may depend on q0, Q0 and ϵ, but it does not depend on

q because of the uniform convergence. We can also deduce from (OA.34) and (OA.35) that there

exists k0 such that
∣∣ ηkt
Tk

∣∣ ≤ 1 + θ
λTσ2 and |κkt | ≤ 3

2 for all k ≥ k0 and t = 1, 2, . . . , Tk. Therefore, for

every 0 < q0 < Q0 < 1 and every ϵ > 0, there exists k0 such that∣∣∣∣∣ 1Tk

Tk−1∑
t=2

κkt −
Tk − 2

2Tk

∣∣∣∣∣ = 1

Tk

∣∣∣∣∣
Tk−1∑
t=2

(
κkt −

1

2

)∣∣∣∣∣
≤ 1

Tk

(
2
(
⌈q0Tk⌉ − 1

)
+ (Tk − 2)ϵ+ 2

(
⌈(1−Q0)Tk⌉ − 1

))
< 2q0 + ϵ+ 2(1−Q0),∣∣∣∣∣ 1T 2

k

Tk−1∑
t=2

ηkt +
Tk − 2

2Tk
− θ(Tk − 2)

λTσ2Tk
− (Tk − 2)(Tk − 1)

2T 2
k

∣∣∣∣∣ = 1

Tk

∣∣∣∣∣
Tk−1∑
t=2

(
ηkt
Tk

+
1

2
− θ

λTσ2
− t− 1

Tk

)∣∣∣∣∣
≤ 1

Tk

((
3 +

2θ

λTσ2

)(
⌈q0Tk⌉ − 1

)
+ (Tk − 2)ϵ+

(
3 +

2θ

λTσ2

)(
⌈(1−Q0)Tk⌉ − 1

))
<

(
3 +

2θ

λTσ2

)
q0 + ϵ+

(
3 +

2θ

λTσ2

)
(1−Q0)

for all k > k0. Letting q0 → 0, Q0 → 1 and ϵ → 0, we deduce

lim
k→∞

1

Tk

Tk−1∑
t=2

κkt =
1

2
and lim

k→∞

1

T 2
k

Tk−1∑
t=2

ηkt = −1

2
+

θ

λTσ2
+

1

2
=

θ

λTσ2
. (OA.38)

Together with (OA.29)–(OA.33), this implies

lim
k→∞

Tkak = lim
k→∞

ηk1+ηkTk
2Tk

− 1
2(κ

k
1 + κkTk

) + 1
Tk

∑Tk−1
t=2 κkt

ηk1+ηkTk
Tk

− 2
T 2
k

∑Tk−1
t=2 ηkt

=
−1

4 − 3
4 + 1

2

−1
2 − 2θ

λTσ2

=
1

1 + 4θ
λTσ2

. (OA.39)
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Combining this with (OA.22) and setting a = 1
1+ 4θ

λTσ2

, we find

lim
k→∞

⌈qTk⌉∑
t=1

τ∗kt =


0 if q = 0,

lim
k→∞

(
1−(Tk−2)ak

2 +
(
⌈qTk⌉ − 1

)
ak

)
= 1−a

2 + qa if q ∈ (0, 1),

1 if q = 1.

Similarly, using (OA.25), (OA.30), (OA.31), and (OA.39), we derive

lim
k→∞

Xk
⌈qTk⌉ =


0 if q = 0,

lim
k→∞

(
ηk⌈qTk⌉ak + κk⌈qTk⌉

)
=
(
− 1

2 + θ
λTσ2 + q

)
a+ 1

2 = θa
λTσ2 + 1−a

2 + aq if q ∈ (0, 1),

lim
k→∞

(
ηkTk

ak + κkTk

)
= 0 + 1 = 1 if q = 1.

Finally, the client’s expected costs of execution converge to

lim
k→∞

(
p0 + θa2k

(
− Tk − 2

2

(
ηk1 + ηkTk

)
+

Tk−1∑
t=2

ηkt

)
+ θak

(
ηk1 + ηkTk

2
− Tk − 2

2

(
κk1 + κkTk

)
+

Tk−1∑
t=2

κkt

)

+ θ
κk1 + κkTk

2

)

= lim
k→∞

(
p0 + θ a2kT

2
k︸ ︷︷ ︸

→ 1

(1+ 4θ
λTσ2 )2

(
− 1− 2/Tk

2︸ ︷︷ ︸
→ 1

2

ηk1 + ηkTk

Tk︸ ︷︷ ︸
→− 1

2

+
1

T 2
k

Tk−1∑
t=2

ηkt︸ ︷︷ ︸
→ θ

λTσ2

)

+ θ akTk︸︷︷︸
→ 1

1+ 4θ
λTσ2

(
ηk1 + ηkTk

2Tk︸ ︷︷ ︸
→− 1

4

− 1− 2/Tk

2︸ ︷︷ ︸
→ 1

2

(
κk1 + κkTk

)︸ ︷︷ ︸
→ 3

2

+
1

Tk

Tk−1∑
t=2

κkt︸ ︷︷ ︸
→ 1

2

)
+ θ

κk1 + κkTk

2︸ ︷︷ ︸
→ 3

4

)

= p0 +
θ(

1 + 4θ
λTσ2

)2(− 1

2
·
(
− 1

2

)
+

θ

λTσ2

)
+

θ

1 + 4θ
λTσ2

(
− 1

4
− 1

2
· 3
2
+

1

2

)
+ θ

3

4

= p0 +
θ

4
(
1 + 4θ

λTσ2

) − θ

2
(
1 + 4θ

λTσ2

) + 3θ

4

= p0 +
1 + 6θ

λTσ2

2
(
1 + 4θ

λTσ2

)θ
= p0 +

3− a

4
θ

for a = 1
1+ 4θ

λTσ2

, where we used (OA.28), (OA.30)–(OA.33), (OA.38), and (OA.39).
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E.2.3 Proof of equation (OA.17)

Proof of (OA.17). According to (OA.25), Xk
1 = ηk1ak + κk1, which by (OA.36) and (OA.37) can be

computed as

Xk
1 = ηk1ak + κk1

=

(−βkTk − βk
αk

− 1
2αk

((1 + αk + βk)
Tk−1 − (1 + αk − βk)

Tk−1)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
− Tk

2
+ 1 +

1

2αk

)
ak

+
βk

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

1

2

=
1− (Tk − 2)ak

2
+

βk(1− akTk)− akβk
αk

− ak
2αk

((1 + αk + βk)
Tk−1 − (1 + αk − βk)

Tk−1)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

ak
2αk

.

To conclude the proof, we need to show that

βk(1− akTk)− akβk
αk

− ak
2αk

((1 + αk + βk)
Tk−1 − (1 + αk − βk)

Tk−1)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

ak
2αk

> 0.

For ak = 0, this inequality is satisfied, and for ak > 0, it is equivalent to

(1 + αk + βk)
Tk−1(αk + βk)− (1 + αk − βk)

Tk−1(αk − βk) > −2αkβk(1/ak − Tk) + 2βk. (OA.40)

Because of ak ≤ 1
Tk−2 , equation (OA.40) follows from

(1 + αk + βk)
Tk−1(αk + βk) + (1 + αk − βk)

Tk−1(−αk + βk)

= (αk + βk)

Tk−1∑
j=0

(
Tk − 1

j

)
βj
k(1 + αk)

Tk−1−j + (−αk + βk)

Tk−1∑
j=0

(
Tk − 1

j

)
(−βk)

j(1 + αk)
Tk−1−j

= 2αk

⌊(Tk−1)/2⌋∑
j=0

(
Tk − 1

2j + 1

)
β2j+1
k (1 + αk)

Tk−2j−2 + 2βk

⌊(Tk−1)/2⌋∑
j=0

(
Tk − 1

2j

)
β2j
k (1 + αk)

Tk−1−2j

≥ 2βk(1 + αk)
Tk−1

> 2βk + 2(Tk − 1)αkβk

≥ 2βk + 4αkβk,

where we used that Tk ≥ 3.

E.3 Infinite execution horizon

Besides the continuous-time limit considered in Section 5, another limit of economic interest con-

cerns what happens as the execution horizon T diverges to infinity, holding all other parameters

fixed. In particular, σ would be held fixed, so the distance between consecutive trading periods

should not be interpreted as going to zero, distinguishing this from the continuous-time limit.
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Rather, this limit can be interpreted as speaking to how the optimal contract changes as the client

becomes progressively more patient.

As we did when analyzing the continuous-time limit, the following result is stated in terms of

the cumulative values through quantiles q of the execution period, and we focus on the case of a

strictly risk-averse dealer to ensure well-behaved convergence.

Proposition 18. Assume γ = 0 and that the dealer is strictly risk-averse (λ > 0). For each

execution horizon T ∈ N, let τ ∗T be the optimal contract, and let x∗T be the dealer strategy that

best responds to τ ∗T . For all q ∈ [0, 1],

lim
T→∞

⌈qT ⌉∑
t=1

τ∗Tt = q and lim
T→∞

⌈qT ⌉∑
t=1

x∗Tt = q

The client’s expected costs of execution converge to p0 +
θ
2 .

This result states a sense in which, as the execution horizon T diverges, (i) the optimal contract

τ ∗T converges to guaranteed TWAP, and (ii) the dealer’s trading strategy x∗T converges to the

first best. It follows that the client receives her first-best payoff in the limit.35

For the intuition, note that in general, the dealer’s frontloading motive reflects a balance between

two considerations: given an offered contract τ , if the dealer deviates from x = τ to an alternative

that differs from τ , then he may increase his expected profit, but he also exposes himself to price

risk. As T → ∞, the dealer must take on more and more price risk in order to create the same

increase in expected profit, so that such deviations become progressively less attractive, and the

dealer’s best response converges to a trading strategy that mirrors the contract weights. Thus, the

limit resembles the case in which the dealer’s best response is to choose x = τ . And in that case,

it is optimal for the client to induce the first-best policy, which she can achieve with a guaranteed

TWAP contract.

Proof of Proposition 18. In this setting, (A.15) becomes

Xk
q +

θ + 2γ

λσ2

(
2Xk

q −Xk
q+ 1

Tk

−Xk
q− 1

Tk

)
=

γ

λTσ2

(
2V k

q −V k
q+ 1

Tk

−V k
q− 1

Tk

)
+

θ

λTσ2

(
V k
q −V k

q− 1
Tk

)
+V k

q

(OA.41)

for all q ∈ (0, 1), where Xk
q =

∑⌈qTk⌉
t=1 xkt and V k

q =
∑⌈qTk⌉

j=1 τkj for τ k ∈ ∆Tk and a dealer strategy

xk in the kth model. Assuming that the limiting processes Xq = limk→∞Xk
q and Vq = limk→∞ V k

q

exist and are continuous, we have

Xq = lim
k→∞

Xk
q = lim

k→∞
Xk

q+ 1
Tk

= lim
k→∞

Xk
q− 1

Tk

and Vq = lim
k→∞

V k
q = lim

k→∞
V k
q+ 1

Tk

= lim
k→∞

V k
q− 1

Tk

,

hence we obtain from (OA.41) by letting k go to ∞ that Xq = Vq for all q ∈ [0, 1], and the client’s

expected costs converge to p0 +
θ
2 . Consequently, the client chooses the first-best strategy as the

35Indeed, Proposition 1 states that, under the first best, the client’s expected costs of execution are p0+
γ
T
+ θ(T+1)

2T
.

Taking the limit as T → ∞, we obtain p0 +
θ
2
, as in Proposition 18.
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contract weights in the limit. Formally, this can be shown by analysis similar to that in the proof of

Proposition 10 in the appendix. One would follow the computations related to the client’s expected

costs in (A.23), while using Xq = Vq for all q ∈ [0, 1].
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