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Abstract

This document contains extensions and additional results mentioned in Section 5 in the main

body of the paper but not developed there. All sections, conditions, and results specific to this

document have the suffix “S” to avoid confusion with the corresponding parts in the main text.

Section S.1 considers games in which cognition is self-directed and takes the familiar form of

players receiving additive signals about an exogenous payoff state. Section S.2 considers games

of manipulative cognition in which players choose frames to influence other players’ recollection

of information previously received. Section S.3 considers another class of games of manipulative

cognition that generalizes Holmström (1999) signal-jamming model of career concerns. Finally,

Section S.4 considers games in which cognition determines the depth of reasoning in the level-k

model.

S.1 Noisy information acquisition about exogenous payoff states

In this section, we consider games in which players receive additive signals about an unknown

exogenous payoff state, as in most of the literature on information acquisition.

Payoffs are given by

ui(ai, a−i, ω) = −(1− β)(ai − g(ω))2 − β(ai − ā−i)2 + ψ(a−i, ω), (S.1)

where ai ∈ Ai = R, a−i ≡ (a1, ..., ai−1, ai+1, ..., an) ∈ Rn−1, ω ∈ R, and ā−i ≡ Σj 6=iaj/(n −
1). Because ω is unidimensional, without loss of generality, let g(ω) = ω. Furthermore, because
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ψ(a−i, ω) plays no role in the computation of the individual best responses, let ψ(a−i, ω) = 0 for all

(a−i, ω).

To further simplify the analysis, assume that n = 2 and that ω is drawn from an improper

uniform prior over the entire real line (as it will become clear in a moment, hierarchies of beliefs and

expected payoffs are well defined, despite the improperness of the prior). Correlated (exogenous)

variation in the players’ beliefs about ω is captured by the two players observing a common signal

y = ω + ε,

with ε drawn from a Normal distribution with mean 0 and variance h−1.

The information privately collected by each player, instead, is summarized in the signal

xi = ω + ηi,

with ηi drawn from a Normal distribution with mean 0 and variance ρ−1
i , with (η1, η2) drawn

independently across the two players and independently from (ω, ε).1 Hence, in this model, cognition

determines the precision of a player’s private signal about the exogenous payoff state ω.

Now let si ≡ (xi, y), i = 1, 2. Below we show that when, in the stage-2 game, player i expects

player j to follow a strategy that, for any sj = (xj , y), selects with probability one an action

aj(sj) = mjxj + (1−mj)y

then, given her own cognitive choice ρi, player i’s best response consists in following a strategy that,

for each si = (xi, y), also selects with probability one an action ai(si) = mixi + (1−mi)y that is a

convex linear combination of xi and y, with

mi =
(1− β)ρi
ρi + h

+
βρi
ρi + h

mj .

Fixing the two players’ cognitive postures ρ = (ρ1, ρ2), we then show that there exists a unique

linear continuation equilibrium σρ for the stage-2 game corresponding to the cognitive profile ρ, and

such an equilibrium is such that, for each si = (xi, y), σρi selects with probability one the action

aρi (si) = mρ
i xi + (1−mρ

i )y, with

mρ
i = (1− β)ρi

ρj(1 + β) + h

(ρi + h) (ρj + h)− β2ρiρj
. (S.2)

We then have the following result:

Proposition S.1 (learning about exogenous states). Let ρ = (ρ1, ρ2) and ρ̂ = (ρ̂1, ρ̂2) be two

arbitrary cognitive profiles. UEC always holds for these profiles, irrespective of whether the stage-2

1As shown in Bergemann and Morris (2013), any joint (Gaussian) distribution between (a1, a2, ω) can be generated
by the two players observing a perfectly public and two perfectly private Gaussian additive signals.
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actions are strategic complements (β > 0) or strategic substitutes (β < 0). ID holds if and only if,

β(ρ̂i − ρi)(ρ̂j − ρj) ≥ 0. Finally, expectation conformity holds if and only if

β(ρ̂j − ρj) (ρ̂i − ρi) (ρ̂i + h) [ρi(1 + β) + h] + β2 (ρ̂i − ρi)2 ρ̂j [ρj(1 + β) + h] ≥ 0.

The result in the first part of the proposition says that, holding fixed the precision of player

j’s private signal, the value to player i of increasing the precision of her private signal is higher

when player j expects player i to acquire a more precise private signal. That is, the game always

satisfies UEC. To understand why, consider first the case where the stage-2 actions are strategic

complements (β > 0). When player j expects player i to acquire a more precise signal, she also

expects player i to select an action in the stage-2 game that is more sensitive to player i’s private

signal. Because β > 0, player j’s stage-2 action is then more sensitive to player j’s own private

signal (use the formula in (S.2), but with the role of i and j inverted, to verify that mρ
j is increasing

in ρi) which in turn increases player i’s incentives to acquire a more precise private signal.

Next, consider the case where the stage-2 actions are strategic substitutes (β < 0). Again, when

player j expects player i to acquire a more precise private signal, she also expects player i’s stage-2

action to be more sensitive to player i’s private signal. Because β < 0, player j’s best response is

then to select a stage-2 action that is less sensitive to player j’s own private signal (again, use the

formula in (S.2) to verify that, when β < 0, mρ
j is decreasing in ρi). Because actions are strategic

substitutes, that player j’s stage-2 action responds less to her private signal in turn implies that

player i’s incentives to acquire a more precise private signal are stronger. Hence, irrespective of

whether β > 0 or β < 0, holding fixed player j’s cognition ρj , player i’s incentives to acquire more

precise private information are always higher when player j expects her to acquire more precise

private information.

The second part of the proposition says that, holding player j’s expectation about player i’s

cognition fixed, the value to player i of acquiring more precise private information is higher when

either (a) player j also acquires more precise private information and actions are strategic comple-

ments (β > 0), or (b) player j acquires less precise private information and actions are strategic

substitutes. This is because, irrespective of whether β > 0 or β < 0, when player j acquires more

precise private information, she then always responds more to it (again, use the formula in (S.2)

to verify that mρ
j is always increasing in ρj , irrespective of the sign of β). Player i’s incentives to

acquire more precise information are thus higher when either β > 0 and ρ̂j ≥ ρj , or when β < 0

and ρ̂j < ρj (they are lower when β(ρ̂j − ρj) ≤ 0).

Finally, the last part of the proposition says that player i’s incentives to acquire more precise

information (that is, to choose ρ̂i > ρi) are stronger under the profile ρ̂ = (ρ̂i, ρ̂j) than under the

profile ρ = (ρi, ρj) when, other things equal, ρ̂i − ρi is large relative to ρ̂iρi. For example, when

public information is imprecise, that is, when h→ 0, EC holds if and only if

β(ρ̂j − ρj)ρ̂iρi + β2 (ρ̂i − ρi) ρ̂jρj ≥ 0.
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The results in Proposition S.1 above hold for arbitrary cognitive profiles ρ = (ρi, ρj) and ρ̂ =

(ρ̂i, ρ̂j), which need not be symmetric across the players. When applied to equilibrium analysis, they

shed light on whether equilibrium multiplicity originates in the players benefiting from conforming

to other players’ expectations about their own cognition (UEC) or in their own expectations about

the opponents’ cognitive postures (ID). These properties in turn offer a deeper understanding of the

sources and nature of the equilibrium multiplicity these games are prone to.

Proof of Proposition S.1. Suppose that, in the stage-2 game, player i expects player j to

follow a strategy that, for any sj = (xj , y), selects the action

aj(sj) = mjxj + (1−mj)y

with probability one, for some scalar mj . Given her cognitive choice ρi, for any si = (xi, y), player

i’s best response then consists in selecting with probability one the action

ai = (1− β)E [ω|ρi, si] + βE [aj(sj)|ρi, si]

= (1− β)
[

ρi
ρi+h

xi + h
ρi+h

y
]

+ βmj

[
ρi

ρi+h
xi + h

ρi+y
y
]

+ β(1−mj)y.

Player i’s optimal action is thus also linear in xi and y, with coefficients to xi and y equal to

mi =
(1− β)ρi
ρi + h

+
βρi
ρi + h

mj

and 1−mi, respectively.2

Iterating over the two players’ best responses to find the fixed point, we then have that, for any

cognitive profile ρ = (ρi, ρj), there exists a unique linear continuation equilibrium for the stage-2

game corresponding to the cognitive profile ρ and is such that, for any si = (xi, y), i = 1, 2, σρi
selects with probability one the action aρi (si) = mρ

i xi + (1−mρ
i )y, where3

mρ
i = (1− β)ρi

ρj(1 + β) + h

(ρi + h) (ρj + h)− β2ρiρj
.

Expectation Conformity.

Next observe that, for any (ω, ε, η1, η2), and any (m1,m2), when, in the stage-2 game, for any

2More generally, one can show that, when player i expects player j to follow a strategy σj that, for any sj = (xj , y),
selects with probability one the action aj(sj) = mjxj + kjy, for some scalars mj and kj , then her best response is to
follow a strategy that, for any si = (xi, y), selects with certainty the action ai(si) = mixi + kiy where the coefficients
mi and ki are given by

mi =
(1− β)ρi
ρi + h

+
βρi
ρi + h

mj and ki =
(1− β)h+ βhmj

ρi + h
+ βkj .

One can then use this property to show uniqueness of the linear continuation equilibrium, for any ρ = (ρ1, ρ2).
3The formulas for the equilibrium sensitivities are obtained after various algebraic simplifications which are omitted

for brevity.
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si = (xi, y), each player i = 1, 2 selects with probability one the action ai = mixi + (1−mi)y, then

ai − ω = miηi + (1−mi)ε

and

ai − aj = miηi −mjηj − (mi −mj)ε.

This implies that, when the two players are expected to engage in cognition ρ = (ρi, ρj) and, instead,

player i selects cognition ρ′i, player i’s ex-ante expected (gross) payoff (disregarding the externality

term ψ in the payoff function in (S.1)) is then equal to

Vi
(
ρ′i; ρ

)
= −(1− β)

(
m
ρ′i;ρ
i

)2
1
ρ′i
− (1− β)

(
1−mρ′i;ρ

i

)2
1
h

−β
(
m
ρ′i;ρ
i

)2
1
ρ′i
− β

(
mρ
j

)2
1
ρj
− β

(
m
ρ′i;ρ
i −mρ

j

)2
1
h

where

mρ
j =

(1− β)ρj (ρi + h) + βρiρj(1− β)

(ρi + h) (ρj + h)− β2ρiρj

is the sensitivity of player j’s stage-2 action to her private information xj when the two players are

expected to engage in cognition ρ = (ρi, ρj) and where

m
ρ′i;ρ
i =

(1− β)ρ′i
ρ′i + h

+
βρ′i
ρ′i + h

mρ
j

is the sensitivity of player i’s stage-2 action to his private information when the two players are

expected to engage in cognition ρ = (ρi, ρj) and, instead, player i selects cognition ρ′i.

Simplifying, Vi
(
ρ′i; ρ

)
can be rewritten as

Vi
(
ρ′i; ρ

)
= −

(
m
ρ′i;ρ
i

)2
1
ρ′i
− β

(
mρ
j

)2
1
ρj

−
[
1− β +

(
m
ρ′i;ρ
i

)2
− 2(1− β)m

ρ′i;ρ
i + β

(
mρ
j

)2
− 2βm

ρ′i;ρ
i mρ

j

]
1
h .

Now to see whether this game satisfies UEC, ID, and EC, take any pair of cognitive levels for

player i, ρ̂i and ρi, and let ρ′ = (ρ′i, ρ
′
j) and ρ′′ = (ρ′′i , ρ

′′
j ) be two arbitrary cognitive profiles.

Then let

D ≡
[
Vi
(
ρ̂i; ρ

′)− Vi(ρi; ρ′)]− [Vi(ρ̂i; ρ′′)− Vi(ρi; ρ′′)].
Observe that UEC holds if D ≥ 0 for ρ′ = (ρ̂i, ρj) and ρ′′ = (ρi, ρj), ID holds if D ≥ 0 for ρ′ = (ρ̂i, ρ̂j)

and ρ′′ = (ρ̂i, ρj), and EC holds if D ≥ 0 for ρ′ = (ρ̂i, ρ̂j) and ρ′′ = (ρi, ρj).

Using the characterization of the Vi functions above, we have that4

4Again, the formula for D is obtained after various algebraic simplifications that are omitted for brevity.
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D =

[(
mρi;ρ

′

i

)2
−
(
mρi;ρ

′′

i

)2
](

1
ρi

+ 1
h

)
−
[(
mρ̂i;ρ

′

i

)2
−
(
mρ̂i;ρ

′′

i

)2
](

1
ρ̂i

+ 1
h

)

+2
(
mρ̂i;ρ

′

i −mρi;ρ
′

i

) [
1− β + βmρ′

j

]
1
h − 2

(
mρ̂i;ρ

′′

i −mρi;ρ
′′

i

) [
1− β + βmρ′′

j

]
1
h .

Next, use the structure of the best responses derived above to observe that

mρ̂i;ρ
′

i −mρi;ρ
′

i = h
(ρ̂i − ρi)

(
1− β + βmρ′

j

)
(ρ̂i + h) (ρi + h)

and

mρ̂i;ρ
′′

i −mρi;ρ
′′

i = h
(ρ̂i − ρi)

(
1− β + βmρ′′

j

)
(ρ̂i + h) (ρi + h)

.

Replacing the above expressions into the formulas for D, and simplifying, we then have that

D =

[(
mρi;ρ

′

i

)2
−
(
mρi;ρ

′′

i

)2
](

1
ρi

+ 1
h

)
−
[(
mρ̂i;ρ

′

i

)2
−
(
mρ̂i;ρ

′′

i

)2
](

1
ρ̂i

+ 1
h

)

+
2(ρ̂i−ρi)

[(
1−β+βmρ

′
j

)2
−
(

1−β+βmρ
′′
j

)2
]

(ρ̂i+h)(ρi+h) .

Using the fact that

mρi;ρ
′

i −mρi;ρ
′′

i =
βρi
ρi + h

(
mρ′

j −m
ρ′′

j

)
and

mρ̂i;ρ
′

i −mρ̂i;ρ
′′

i =
βρ̂i
ρ̂i + h

(
mρ′

j −m
ρ′′

j

)
,

after a few simplifications, we then have that

D = β
h

(
mρ′

j −m
ρ′′

j

)(
mρi;ρ

′

i +mρi;ρ
′′

i −mρ̂i;ρ
′

i −mρ̂i;ρ
′′

i

)

+
2(ρ̂i−ρi)

[(
1−β+βmρ

′
j

)2
−
(

1−β+βmρ
′′
j

)2
]

(ρ̂i+h)(ρi+h) .

Next, observe that

mρi;ρ
′

i +mρi;ρ
′′

i =
2(1− β)ρi
ρi + h

+
βρi
ρi + h

(
mρ′

j +mρ′′

j

)
and

mρ̂i;ρ
′

i +mρ̂i;ρ
′′

i =
2(1− β)ρ̂i
ρ̂i + h

+
βρ̂i
ρ̂i + h

(
mρ′

j +mρ′′

j

)
,
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from which we obtain that

mρi;ρ
′

i +mρi;ρ
′′

i −mρ̂i;ρ
′

i −mρ̂i;ρ
′′

i =

=
2(1−β)ρi(ρ̂i+h)+βρi(ρ̂i+h)

(
mρ
′
j +mρ

′′
j

)
−2(1−β)ρ̂i(ρi+h)−βρ̂i(ρi+h)

(
mρ
′
j +mρ

′′
j

)
(ρi+h)(ρ̂i+h) .

The numerator of the last expression is equal to

N = 2(1− β)ρih+ βρih
(
mρ′

j +mρ′′

j

)
− 2(1− β)ρ̂ih− βρ̂ih

(
mρ′

j +mρ′′

j

)
.

Hence,

mρi;ρ
′

i +mρi;ρ
′′

i −mρ̂i;ρ
′

i −mρ̂i;ρ
′′

i = −h
2(1− β)(ρ̂i − ρi) + β (ρ̂i − ρi)

(
mρ′

j +mρ′′

j

)
(ρi + h) (ρ̂i + h)

.

Replacing the last expression into the formula for D, we have that

D =
ρ̂i − ρi

(ρi + h) (ρ̂i + h)
β
(
mρ′

j −m
ρ′′

j

) [
2(1− β) + β

(
mρ′

j +mρ′′

j

)]
from which we obtain that

D
sgn
= β(ρ̂i − ρi)

(
mρ′

j −m
ρ′′

j

)
.

We are now ready to establish the properties in the proposition.

To see that this game satisfies UEC, take ρ′ = (ρ̂i, ρj) and ρ′′ = (ρi, ρj). Using the fact that, for

any ρ = (ρi, ρj),

mρ
j =

(1− β)ρj (ρi + h) + βρiρj(1− β)

(ρi + h) (ρj + h)− β2ρiρj
,

we have that
∂mρ

j

∂ρi

sgn
= β.

We thus conclude that, independently of the sign of β, D ≥ 0, which implies that UEC holds.

Next, to see whether this game satisfies ID, take ρ′ = (ρ̂i, ρ̂j) and ρ′′ = (ρ̂i, ρj). Using the fact

that, for any ρ = (ρi, ρj), and any β ∈ (−1,+1), mρ
j is non-decreasing in ρj , we then have that

D
sgn
= β(ρ̂i − ρi)(ρ̂j − ρj).

We thus have that, for any pair of information structures ρ̂ = (ρ̂i, ρ̂j) and ρ = (ρi, ρj), this game

satisfies ID if and only if β(ρ̂i − ρi)(ρ̂j − ρj) ≥ 0.

Finally, to see whether this game satisfies EC, take ρ′ = (ρ̂i, ρ̂j) and ρ′′ = (ρi, ρj). We then have

that
mρ′

j −m
ρ′′

j

1− β
=

ρ̂j (ρ̂i + h) + βρ̂iρ̂j
(ρ̂i + h) (ρ̂j + h)− β2ρ̂iρ̂j

− ρj (ρi + h) + βρiρj
(ρi + h) (ρj + h)− β2ρiρj
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from which we obtain that

mρ
′
j −m

ρ′′
j

1−β =
[ρ̂j(ρ̂i+h)+βρ̂iρ̂j ][(ρi+h)(ρj+h)−β2ρiρj]−[ρj(ρi+h)+βρiρj ][(ρ̂i+h)(ρ̂j+h)−β2ρ̂iρ̂j]

[(ρ̂i+h)(ρ̂j+h)−β2ρ̂iρ̂j ][(ρi+h)(ρj+h)−β2ρiρj ]
.

The denominator is always positive, so focus on the numerator. This is equal to

n = [ρ̂j (ρ̂i + h) + βρ̂iρ̂j ]
[
(ρi + h) (ρj + h)− β2ρiρj

]
− [ρj (ρi + h) + βρiρj ]

[
(ρ̂i + h) (ρ̂j + h)− β2ρ̂iρ̂j

]
= [ρ̂j (ρ̂i + h) + βρ̂iρ̂j ] [(ρi + h) (ρj + h)]− β2ρiρj ρ̂jh

− [ρj (ρi + h) + βρiρj ] [(ρ̂i + h) (ρ̂j + h)] + β2ρ̂iρ̂jρjh.

Simplifying, we have that

n
h = (ρ̂j − ρj) [ρ̂iρi(1 + β) + (ρ̂i + ρi)h] + (ρ̂i − ρi) ρ̂jρj(β + β2)

+ρ̂iρ̂jβh+ h2ρ̂j − ρiρjβh− h2ρj .

Hence, EC holds with respect to ρ̂ = (ρ̂i, ρ̂j) and ρ = (ρi, ρj) if and only if

β(ρ̂j − ρj) (ρ̂i − ρi) [ρ̂iρi(1 + β) + (ρ̂i + ρi)h] + β2 (ρ̂i − ρi)2 ρ̂jρj(1 + β)

+βh [β (ρ̂iρ̂j − ρiρj) + h (ρ̂j − ρj)] (ρ̂i − ρi) ≥ 0

which, after some simplifications, can be rewritten as

β(ρ̂j − ρj) (ρ̂i − ρi) (ρ̂i + h) [ρi(1 + β) + h] + β2 (ρ̂i − ρi)2 ρ̂j [ρj(1 + β) + h] ≥ 0,

as claimed in the proposition. Q.E.D.

S.2 Framing and defensive memory management

In many environments of interest, cognition has a manipulative dimension: a player’s cognition

impacts her opponents’ understanding of the game. In this section, we consider situations in which

players choose “frames,” or other manipulative devices, to influence other players’ recollection of

information.

A player (the persuader) tries to induce another player (the receiver) to act favorably to her, by

manipulating the receiver’s recollection of information relevant for a decision. The manipulation is

done by means of “frames,” that is, through the design of a contextual purchasing experience—see

Salant and Siegel (2018) for various examples along these lines.

We capture such situations as follows. Player 2 (the receiver) has a payoff equal to

u2(a1, a2, ω) = − (a2 − ω)2

8



where a2 ∈ R is player 2’s action and where ω ∈ R is the underlying state of Nature. Player 1 (the

persuader), instead, has a payoff

u1(a1, a2, ω) = a2

that is invariant in ω and in her own action, and increasing in player 2’s action.5 Hence, player 2

wants to “do the right thing” (i.e., align her action with the underlying state ω), whereas player 1

wants player 2 to take as high an action as possible (e.g., to increase her purchases of player 1’s

product, irrespectively of whether or not this is good for player 2). This structure has received

considerable attention in the recent persuasion and information design literature. Contrary to what

typically assumed in this literature, though, here player 1 cannot commit to her choice of a frame

(i.e., to her manipulative information structure).

Player 2, the receiver, is originally endowed with a primary (exogenous) signal sP2 = ω+ε but recalls

such a signal only imperfectly. Such a primary signal may represent the information a buyer received

about a seller’s product from exogenous sources, or past experiences. In such a context, a “frame”

by player 1 is a device influencing player 2’s ability to recollect her primary signal. Importantly,

such a frame may operate asymmetrically across states, facilitating the recollection of information

favorable to player 1 relative to the less favorable one. The choice of a frame may also depend on the

information that player 1 herself has about the state. However, because this channel is not essential

to the results, we do not consider it here. Instead, we allow the receiver, player 2, to exert effort to

increase her recollection of the primary information, thus reducing the effect of player 1’s frame on

her decision. We interpret such efforts broadly as “defensive memory management.” Allowing for

such efforts also permits us to investigate whether ID holds in this context.

Let ρ1, ρ2 ∈ R+ and denote by r(sP2 ; ρ) the probability that player 2 recalls her primary signal when

the latter takes value sP2 and the two players engage in cognition ρ = (ρ1, ρ2). Let sR2 ∈ R ∪ {∅}
denote player 2’s recalled signal, with sR2 = ∅ in case player 2 does not recall, and sR2 = sP2 in case

she does recall. Without loss of generality, then let sP2 = ω, with ω drawn from R according to some

cdf F .

Interpret ρ1 as player 1’s choice of a frame and assume that ρ1 increases uniformly the probability

that player 2 recalls any positive signal and leaves it unaltered the probability that player 2 recalls

any negative signal. Such a stark structure is not essential to the results. What matters is that the

likelihood that the receiver recollects information that is more favorable to the persuader relative to

the less favorable one is non-decreasing in ρ1. Formally, there exist non-negative and non-decreasing

functions r+ and r− such that, when the state is ω and the two players’ cognitive choices are given

by ρ = (ρ1, ρ2), the probability that player 2 recollects the state is equal to

r(ω; ρ) =

{
r−(ρ2) if ω < 0

r+(ρ1, ρ2) if ω ≥ 0.

5The above payoff specification is thus essentially the same as the one in the previous section, with β = 0,
ψ(a−i, ω) = a−i, g(ω) = ω, and |A1| = 1.

9



Given the cognitive profile ρ = (ρ1, ρ2), then let

E
[
ω̃|sR2 ; ρ

]
=

{
ω if sR2 = ω

ω̄(ρ) if sR2 = ∅

denote player 2’s posterior expectation of the state (equivalently, of her optimal action) given the

recalled information. Let ω− = E [ω̃|ω̃ < 0] and ω+ = E [ω̃|ω̃ ≥ 0], where both expectations are

under the prior distribution F . We then have that, in the absence of any recollection of her primitive

information, player 2’s expected value of ω is equal to

ω̄(ρ) =
(1− r−(ρ2))F (0)ω− + (1− r+(ρ1, ρ2))(1− F (0))ω+

(1− r−(ρ2))F (0) + (1− r+(ρ1, ρ2))(1− F (0))
.

Note that ω̄(ρ) is weakly decreasing in ρ1, that is, in the beliefs player 2 has about player 1’s use

of manipulative frames. It may be either increasing or decreasing in player 2’s own cognition, ρ2.

In particular, ω̄(ρ) is decreasing in ρ2 if dr−(ρ2)
dρ2

= ∂r+(ρ1,ρ2)
∂ρ2

and r+(ρ1, ρ2) ≥ r−(ρ2), that is, if

more cognition by player 2 has an equal effect on her ability to recollect positive and negative

information, and if the likelihood that she recollects positive information is no smaller than the

likelihood that she recollects negative information. On the other hand, ω̄(ρ) is increasing in ρ2,

when dr−(ρ2)
dρ2

> ∂r+(ρ1,ρ2)
∂ρ2

and r+(ρ1, ρ2) ∼= r−(ρ2).

Given the quadratic loss function, for any cognitive profile ρ, and any recalled memory sR2 , player

2’s optimal action is equal to

aρ2(sR2 ) = E
[
ω̃|sR2 ; ρ

]
implying that, for any cognitive profile ρ = (ρ1, ρ2) and any actual choice of frame ρ′1, player 1’s

ex-ante expected gross payoff when the two players are expected to engage in cognition ρ = (ρ1, ρ2)

and, instead, player 1 chooses ρ′1 is equal to

V1(ρ′1; ρ) = F (0)
[
(1− r−(ρ2))ω̄(ρ) + r−(ρ2)ω−

]
+(1−F (0))

[
(1− r+(ρ′1, ρ2))ω̄(ρ) + r+(ρ′1, ρ2)ω+

]
.

Similarly, given any cognitive profile ρ = (ρ1, ρ2) and any actual choice ρ′2 of memory management,

player 2’s ex-ante expected gross payoff when the two players are expected to engage in cognition

ρ = (ρ1, ρ2) and, instead, player 2 invests ρ′2 in memory management is equal to

V2(ρ′2; ρ) = −F (0)(1− r−(ρ′2))E
[
(ω̄(ρ1, ρ

′
2)− ω̃)2 |ω̃ < 0

]
−(1− F (0))(1− r+(ρ1, ρ

′
2))E

[
(ω̄(ρ1, ρ

′
2)− ω̃)2 |ω̃ ≥ 0

]
.

The next result illustrates how cognitive expectations shape the players’ incentives to engage

into manipulative framing and defensive memory management in such environments.

Proposition S.2 (framing and memory management). Consider any pair of cognitive profiles

ρ̂ = (ρ̂1, ρ̂2) and ρ = (ρ1, ρ2). UEC always holds for such profiles (weakly for the receiver, player 2,
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and strongly for the persuader, player 1). ID holds for player 1 (the persuader) if and only if

[r+(ρ̂1, ρ̂2)− r+(ρ1, ρ̂2)] [ω+ − ω̄(ρ̂1, ρ̂2)] ≥ [r+(ρ̂1, ρ2)− r+(ρ1, ρ2)] [ω+ − ω̄(ρ̂1, ρ2)] (S.3)

which is the case for example when (a) ρ̂1 ≥ ρ1, ρ̂2 ≥ ρ2, (b) r+ is weakly supermodular, and (c) ω̄

is weakly decreasing in ρ2.

The persuader’s incentives to engage into manipulative framing are stronger when she is expected

to invest more into manipulative framing. This is because, the more the receiver expects the

persuader to engage in manipulative framing, the more she interprets the lack of recollection of her

primitive information as a signal of the state being unfavorable to the persuader. But then the

stronger the incentives for the persuader to engage into manipulative framing to reduce the risk

that the receiver does not recall.

Next, consider the receiver, player 2. Her optimal action depends only on her beliefs about

player 1’s manipulation and not on her belief about player 1’s expectation of her own defensive

cognition. As a result, UEC also holds for player 2 but in the trivial sense of player 2’s incentives

being invariant in player 1’s expectations about player 2’s cognition.

The second part of the proposition identifies a condition under which player 1’s incentives to

engage in manipulative framing are stronger when she expects player 2 to invest more in defen-

sive memory management. The condition holds, for example, when the more player 2 invests in

recollecting her primitive information, the larger the marginal effect of player 1’s manipulation on

player 2’s recollection of positive information and, in the absence of any recollection, the lower

player 2’s optimal action. Increasing differences for player 1 also holds when r+ is submodular

(that is, when the more player 2 invests in defensive memory management, the smaller the marginal

effect of player 1’s manipulation on player 2’s recollection of positive information) provided that, in

the absence of any recollection, player 2’s optimal action is smaller when player 2 invests more in

memory management than when she invests less.

Whether increasing differences holds for player 2 (the receiver) is more convoluted and depends

on a complicated condition which we do not discuss here.

Proof of Proposition S.2. First, consider UEC. Given any pair of cognitive profiles ρ̂ =

(ρ̂1, ρ̂2) and ρ = (ρ1, ρ2), the value for player 2 (the receiver) of going from cognition ρ2 to cognition

ρ̂2 when player 1’s cognition is ρ1 is invariant in the level of cognition that player 1 expects player

2 to select. Hence, UEC trivially holds for player 2, albeit never strictly. Next, consider player 1

(the persuader). Using the characterization of the ex-ante expected gross payoffs in the paragraphs
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preceding the proposition, we have that

ΓUEC
1

(
ρ, ρ̂
)
≡
[
V1

(
ρ̂1; (ρ̂1, ρ2)

)
− V1

(
ρ1; (ρ̂1, ρ2)

)]
−
[
V1

(
ρ̂1; (ρ1, ρ2)

)
− V1

(
ρ1; (ρ1, ρ2)

))]
= F (0) [(1− r−(ρ2))ω̄(ρ̂1, ρ2) + r−(ρ2)ω−] + (1− F (0)) [(1− r+(ρ̂1, ρ2))ω̄(ρ̂1, ρ2) + r+(ρ̂1, ρ2)ω+]

−F (0) [(1− r−(ρ2))ω̄(ρ̂1, ρ2) + r−(ρ2)ω−]− (1− F (0)) [(1− r+(ρ1, ρ2))ω̄(ρ̂1, ρ2) + r+(ρ1, ρ2)ω+]

−F (0) [(1− r−(ρ2))ω̄(ρ1, ρ2) + r−(ρ2)ω−]− (1− F (0)) [(1− r+(ρ̂1, ρ2))ω̄(ρ1, ρ2) + r+(ρ̂1, ρ2)ω+]

+F (0) [(1− r−(ρ2))ω̄(ρ1, ρ2) + r−(ρ2)ω−] + (1− F (0)) [(1− r+(ρ1, ρ2))ω̄(ρ1, ρ2) + r+(ρ1, ρ2)ω+] .

After simplifying, we have that

ΓUEC
1

(
ρ, ρ̂
)

= [1− F (0)] [r+(ρ̂1, ρ2)− r+(ρ1, ρ2)] [ω̄(ρ1, ρ2)− ω̄(ρ̂1, ρ2)] ≥ 0

where the inequality follows from the fact that

ω̄(ρ) =
(1− r−(ρ2))F (0)ω− + (1− r+(ρ1, ρ2))(1− F (0))ω+

(1− r−(ρ2))F (0) + (1− r+(ρ1, ρ2))(1− F (0))

is decreasing in ρ1. Hence, UEC holds strictly for player 1, for any pair of cognitive profiles ρ̂ =

(ρ̂1, ρ̂2) and ρ = (ρ1, ρ2) such that ρ̂1 6= ρ1 (irrespective of the sign of ρ̂1 − ρ1).

Next, consider ID. Note that

ΓID1
(
ρ, ρ̂
)
≡
[
V1

(
ρ̂1; ρ̂1 , ρ̂2

)
− V1

(
ρ1; ρ̂1 , ρ̂2

)]
−
[
V1

(
ρ̂1; ρ̂1 , ρ2

)
− V1

(
ρ1; ρ̂1 , ρ2

)]
= F (0) [(1− r−(ρ̂2))ω̄(ρ̂1, ρ̂2) + r−(ρ̂2)ω−] + (1− F (0)) [(1− r+(ρ̂1, ρ̂2))ω̄(ρ̂1, ρ̂2) + r+(ρ̂1, ρ̂2)ω+]

−F (0) [(1− r−(ρ̂2))ω̄(ρ̂1, ρ̂2) + r−(ρ̂2)ω−]− (1− F (0)) [(1− r+(ρ1, ρ̂2))ω̄(ρ̂1, ρ̂2) + r+(ρ1, ρ̂2)ω+]

−F (0) [(1− r−(ρ2))ω̄(ρ̂1, ρ2) + r−(ρ2)ω−]− (1− F (0)) [(1− r+(ρ̂1, ρ2))ω̄(ρ̂1, ρ2) + r+(ρ̂1, ρ2)ω+]

+F (0) [(1− r−(ρ2))ω̄(ρ̂1, ρ2) + r−(ρ2)ω−] + (1− F (0)) [(1− r+(ρ1, ρ2))ω̄(ρ̂1, ρ2) + r+(ρ1, ρ2)ω+] .

After simplifying, we have that

ΓID1

(
ρ,ρ̂
)

(1−F (0)) = [r+(ρ̂1, ρ̂2)− r+(ρ1, ρ̂2)] [ω+ − ω̄(ρ̂1, ρ̂2)]

− [r+(ρ̂1, ρ2)− r+(ρ1, ρ2)] [ω+ − ω̄(ρ̂1, ρ2)] .

Hence, ID holds for player 1 with respect to the cognitive profiles ρ̂ = (ρ̂1, ρ̂2) and ρ = (ρ1, ρ2) if and
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only if Condition (S.3) in the proposition holds. It is easy to see that Condition (S.3) is satisfied

when properties (a)-(c) in the proposition hold.

Finally, note that

∂ω̄(ρ)
∂ρ2

sgn
=
[
−dr−(ρ2)

dρ2
F (0)ω− − ∂r+(ρ1,ρ2)

∂ρ2
(1− F (0))ω+

]
[(1− r−(ρ2))F (0) + (1− r+(ρ1, ρ2))(1− F (0))]

− [(1− r−(ρ2))F (0)ω− + (1− r+(ρ1, ρ2))(1− F (0))ω+]
[
−dr−(ρ2)

dρ2
F (0)− ∂r+(ρ1,ρ2)

∂ρ2
(1− F (0))

]
.

After some algebra, we have that

∂ω̄(ρ)
∂ρ2

sgn
= dr−(ρ2)

dρ2
− ∂r+(ρ1,ρ2)

∂ρ2
− r+(ρ1, ρ2)dr

−(ρ2)
dρ2

+ ∂r+(ρ1,ρ2)
∂ρ2

r−(ρ2) .

Therefore, ω̄(ρ) is decreasing in ρ2 for example when dr−(ρ2)
dρ2

= ∂r+(ρ1,ρ2)
∂ρ2

and r+(ρ1, ρ2) ≥ r−(ρ2),

whereas ω̄(ρ) is increasing in ρ2 when dr−(ρ2)
dρ2

> ∂r+(ρ1,ρ2)
∂ρ2

and r+(ρ1, ρ2) ∼= r−(ρ2), as claimed above.

Q.E.D.

S.3 Generalized Career Concerns

The manipulative frames considered in the previous section are instances of “signal jamming,” akin

to those studied in the industrial organization literature. For example, signal jamming occurs when

a firm secretly cuts its price so as to reduce its rivals’ profits and induce them to believe that demand

is low (or that costs are high) and exit the market. Cognitive traps are common in such games.

In this section, we discuss another class of signal jamming considered in the literature, inspired by

Holmström (1999)’s celebrated career concerns model.

A worker exerts effort to convince a competitive labor market that her talent is high. The

worker’s performance depends on her talent, which is unknown to the worker, her effort, and noise.

When talent and effort are complements, such signal jamming often generates expectation confor-

mity and expectation traps (see Dewatripont et al. 1999).6 To see this, consider a generalized

version of the career-concerns model in which both the worker and the competitive labor market

can invest to influence the information the labor market receives about the worker’s talent. Let

player 1 be the worker and player 2 the competitive labor market, and assume that payoffs are as in

the previous section. Denote player 1’s effort by ρ1 and player 2’s effort by ρ2. Given ρ = (ρ1, ρ2),

player 2 receives a signal

s2 = A(ρ) +M(ρ)ω +R(ρ)ε2

about player 1’s talent ω, where A is an “additive” term akin to the one in Holmström (1999)’s

original model, M is a “multiplicative” term akin to the one in Dewatripont et al. (1999), and R is

a term capturing player 2’s ability to “recall,” as in the framing model in the previous section. Each

of these functions is non-negative, with A and M non-decreasing, and R non-increasing. Holmström

6See also Horner and Lambert (2019) for a more recent analysis of these games.
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(1999)’s original model corresponds to A(ρ) = ρ1 and M(ρ) = R(ρ) = 1, all ρ = (ρ1, ρ2) (only the

worker invests and effort has an additive effect on performance), whereas the multiplicative model

of Dewatripont et al. (1999) corresponds to M(ρ) = ρ1, A(ρ) = 0, and R(ρ) = 1, all ρ = (ρ1, ρ2)

(again, only the worker invests, but the impact of effort on performance now depends on the state

ω). In either model, recall is exogenous.

Suppose that ω is normally distributed with mean ω0 > 0 and variance 1/hω, and that ε2 is

normally distributed with mean 0 and variance 1/hε. Fixing ρ = (ρ1, ρ2), for any s2, player 2’s

optimal action is then given by

aρ2(s2) = E[ω̃|s2; ρ] =

[
M2(ρ)hε

M2(ρ)hε +R2(ρ)hω

] [
s2 −A(ρ)

M(ρ)

]
+

[
R2(ρ)hω

M2(ρ)hε +R2(ρ)hω

]
ω0.

Given ρ = (ρ1, ρ2), for any actual choice ρ′1 by player 1, player 1’s ex-ante expected payoff (gross of

the cognitive cost but net of all terms that do not depend on her actual choice ρ′1) is equal to

V1(ρ′1; ρ) =
M(ρ)hε

M2(ρ)hε +R2(ρ)hω

[
M(ρ′1, ρ2)ω0 +A(ρ′1, ρ2)

]
.

Likewise, given ρ = (ρ1, ρ2), for any actual choice ρ′2 by player 2, player 2’s ex-ante expected payoff

(gross of the cognitive cost but net of all terms that do not depend on her actual choice ρ′2) is equal

to

V2(ρ′2; ρ) = −M
2(ρ1, ρ

′
2)R2(ρ1, ρ

′
2)hε +R4(ρ1, ρ

′
2)hω

(M2(ρ1, ρ′2)hε +R2(ρ1, ρ′2)hω)2 .

It is then easy to see that, when only player 1 invests, UEC (and hence EC) never obtains in

Holmström (1999) additive model, where the optimal level of ρ′1 is implicitly given by

C ′1(ρ′1) =
hε

hε + hω

and is independent of the level ρ1 expected by player 2. Instead, UEC (and hence EC) can easily

obtain in the multiplicative model of Dewatripont et al. (1999) where the optimal level of ρ′1 solves

C ′1(ρ′1) =
ρ1hεω0

ρ2
1hε + hω

and is increasing in ρ1 for ρ1 ≤
√
hω/hε. Consistently with the results in Proposition 1 in the main

body, the equilibrium is thus unique in Holmström (1999), whereas multiple equilibria are possible

in the multiplicative model of Dewatripont et al. (1999). Furthermore, when this is the case, the

worker is better off in the low-effort equilibrium. This multiplicative version of this game is thus

prone to expectation traps. Whether or not the above conclusions are robust to the possibility that

player 2 (the labor market) also invests to influence the quality of the information received and/or

to the possibility of endogenous recall depends on the specific assumptions one makes about the A,
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M , and R functions, as indicated in the proposition below. Let

L(ρ) ≡M(ρ)ω0 +A(ρ),

G(ρ) ≡ M(ρ)hε
M2(ρ)hε +R2(ρ)hω

,

and

Z(ρ) ≡ M2(ρ)R2(ρ)hε +R4(ρ)hω

(M2(ρ)hε +R2(ρ)hω)2 .

Proposition S.3 (generalized-career-concerns). Take any pair of profiles ρ = (ρ1, ρ2) and

ρ̂ = (ρ̂1, ρ̂2) with ρ̂i ≥ ρi, i = 1, 2. UEC trivially holds as equality for player 2. It holds for player

1 if the function G is non-decreasing in ρ1. ID holds for player 1 if the function G is increasing in

ρ2 and the function L is supermodular. ID holds for player 2 if the function Z is submodular.

Proof of Proposition S.3. First, consider UEC. Using the expressions for V1(ρ′1; ρ) and

V2(ρ′2; ρ) derived above, we have that

ΓUEC
1

(
ρ, ρ̂
)

= M(ρ̂1,ρ2)hε
M2(ρ̂1,ρ2)hε+R2(ρ̂1,ρ2)hω

[M(ρ̂1, ρ2)ω0 +A(ρ̂1, ρ2)−M(ρ1, ρ2)ω0 −A(ρ1, ρ2)]

− M(ρ1,ρ2)hε
M2(ρ1,ρ2)hε+R2(ρ1,ρ2)hω

[M(ρ̂1, ρ2)ω0 +A(ρ̂1, ρ2)−M(ρ1, ρ2)ω0 −A(ρ1, ρ2)]

and ΓUEC
2

(
ρ, ρ̂
)

= 0. Hence, for any pair of profiles ρ = (ρ1, ρ2) and ρ̂ = (ρ̂1, ρ̂2) with ρ̂i ≥ ρi,

i = 1, 2, we have that ΓUEC
1

(
ρ, ρ̂
)

= 0 if the function L is constant in ρ1. When, instead, L is

strictly increasing in ρ1, then ΓUEC
1

(
ρ, ρ̂
)
≥ 0 if the function G is non-decreasing in ρ1 (with the

inequality strict when G is strictly increasing in ρ1). When, instead, G is strictly decreasing in ρ1,

then ΓUEC
1

(
ρ, ρ̂
)
< 0.

Next, consider ID. Using again the formulas for the functions V1(ρ′1; ρ) and V2(ρ′2; ρ), we have

that

ΓID
1

(
ρ, ρ̂
)

= M(ρ̂1,ρ̂2)hε
M2(ρ̂1,ρ̂2)hε+R2(ρ̂1,ρ̂2)hω

[M(ρ̂1, ρ̂2)ω0 +A(ρ̂1, ρ̂2)−M(ρ1, ρ̂2)ω0 −A(ρ1, ρ̂2)]

− M(ρ̂1,ρ2)hε
M2(ρ̂1,ρ2)hε+R2(ρ̂1,ρ2)hω

[M(ρ̂1, ρ2)ω0 +A(ρ̂1, ρ2)−M(ρ1, ρ2)ω0 −A(ρ1, ρ2)]

and
ΓID

2

(
ρ, ρ̂
)

= −M2(ρ̂1,ρ̂2)R2(ρ̂1,ρ̂2)hε+R4(ρ̂1,ρ̂2)hω
(M2(ρ̂1,ρ̂2)hε+R2(ρ̂1,ρ̂2)hω)2

+ M2(ρ̂1,ρ2)R2(ρ̂1,ρ2)hε+R4(ρ̂1,ρ2)hω
(M2(ρ̂1,ρ2)hε+R2(ρ̂1,ρ2)hω)2

+M2(ρ1,ρ̂2)R2(ρ1,ρ̂2)hε+R4(ρ1,ρ̂2)hω
(M2(ρ1,ρ̂2)hε+R2(ρ1,ρ̂2)hω)2

− M2(ρ1,ρ2)R2(ρ1,ρ2)hε+R4(ρ1,ρ2)hω
(M2(ρ1,ρ2)hε+R2(ρ1,ρ2)hω)2

.

Hence, for any pair of profiles ρ = (ρ1, ρ2) and ρ̂ = (ρ̂1, ρ̂2) with ρ̂i ≥ ρi, i = 1, 2, we have that

ΓID
1

(
ρ, ρ̂
)
≥ 0 if the function G is increasing in ρ2 and the function L is supermodular (strictly, if

G is strictly increasing and/or if L is strictly supermodular). Similarly, for the same profiles, we

have that ΓID
2

(
ρ, ρ̂
)
≥ 0 if the function Z is submodular (with the inequality strict, if Z is strictly
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submodular). Q.E.D.

S.4 Endogenous depth of reasoning

The analysis in the main body as well as in the preceding sections of this Online Supplement assumes

that the players are fully rational and that cognition takes the form of learning about payoffs and/or

about other players’ beliefs. In this section, we consider an alternative situation in which payoffs are

common knowledge, but where players are boundedly rational and cognition determines the players’

ability to compute iterated best responses. The analysis builds on the celebrated level-k model, in

which k is a player’s depth of reasoning, that is, the maximal number of steps of iterated best

responses performed by the player. Contrary to the earlier literature (see, e.g., Crawford, Costa-

Gomes, and Iriberri (2013) for a detailed overview), a player’s depth of reasoning is endogenous.

Alaoui and Penta (2016, 2017, 2018) are the first to endogenize the depth of reasoning in the level-

k model. The main difference relative to their analysis is that we allow the value of expanding

cognition to depend on a player’s beliefs about (a) her opponents’ cognition and (b) her opponents’

expectations of her own cognitive level.

S.4.1 The environment

Consider the following two-player game in which payoffs are common knowledge. For each i = 1, 2,

and each k ∈ N, there is a mixed action αki ∈ ∆(Ai) such that αki is a best response for player

i to player j playing according to αk−1
j , with α0

i specified exogenously, but reflecting a natural

“anchor” that depends on the stage-2 game under consideration (up to this point, the formalism

is the same as in the original model, where k is exogenous). Each player’s cognitive level ρi ∈ N
determines the player’s endogenous depth of reasoning, that is, the number of steps of iterated best

responses performed by the player. A player with depth of reasoning ρi who expects his opponent

to have performed ρj ≥ ρi − 1 steps of iterated best responses plays αρii in the stage-2 game. A

player with depth of reasoning ρi who, instead, expects his opponent to have performed ρj < ρi− 1

steps of iterated best responses plays α
ρj+1
i in the stage-2 game. Formally, for any cognitive profile

ρ = (ρi, ρj), and any ρ′i, player i’s period-2 mixed action when the two players are expected to

engage in cognition ρ and, instead, player i chooses cognition ρ′i is given by

σ
ρ′i;ρ
i =

{
α
ρ′i
i if ρ′i ≤ min{ρi + 1, ρj}+ 1

α
min{ρi+1,ρj}+1
i if ρ′i > min{ρi + 1, ρj}+ 1.

The idea is that player i plays the action corresponding to his cognitive capacity, unless, given the

player’s beliefs over the two players’ cognitive capacities, player i believes his cognitive capacity

exceeds the level that is necessary to perfectly predict the opponent’s mixed action. This modeling

of the stage-2 behavior is the same as in Alaoui and Penta (2016, 2017, 2018). As anticipated above,

the key point of departure is in how players choose ρi. In Alaoui and Penta (2016, 2017, 2018),

the choice of ρi is determined by a cost-benefit analysis in which both the costs and the benefits
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do not depend on a player’s beliefs about her opponents’ cognitive sophistication and about their

expectations of player i’s own cognitive capacity. Here, instead, we allow for such dependence and

investigate its implications for the selection of the cognitive levels.

Consistently with the notation in the paper, denote by

Vi(ρ
′
i; ρ) = Ui(σ

ρ′i;ρ
i , σρj ; ρ′i, ρj)

the ex-ante expected gross value of choosing cognition ρ′i when the two players are expected to engage

in cognition ρ = (ρi, ρj) and, instead, player i chooses cognition ρ′i. Contrary to the case in which

cognition takes the form of information acquisition, note that, in this model, Vi need not coincide

with player i’s value function. This naturally reflects the limited cognitive ability of the players

(recall that this model is meant to be a description of the strategic reasoning of boundedly rational

agents). Also note that we dropped ω from the player’s payoff function because, as explained above,

in this game, payoffs are common knowledge (equivalently, |Ω| = 1).

In the spirit of Alaoui and Penta (2016, 2017, 2018), also assume that, when it comes to choosing

their depth of reasoning, the players correctly perceive how Vi depends on the players’ cognition,

even if they are not able to determine their correct best responses. Importantly, in this cognitive

game, a player understands that, by increasing her cognition, she may end up with a lower payoff.

This may happen despite the players’ cognitive choices being covert. As explained in the main text,

the reason is that a player who increases her depth of reasoning but not to the point of being able

to correctly identify the opponent’s true mixed action may find herself trapped into a cognitive loop

that induces her to select a stage-2 mixed action that is farther away from her true best response

than the one identified by computing a smaller number of iterated best responses.7

S.4.2 Discussion

As mentioned above, the players correctly understand how their gross payoffs Vi depend on their own

cognition, their opponent’s cognition, and their opponent’s expectation about their own cognition.

This may feel at odds with the assumption that the players are boundedly rational and cannot

iterate their best responses to identify the rationalizable actions. It may also look strange that

players be able to predict how their stage-2 actions depend on their actual cognition, on their

opponent’s cognition, and on their opponent’s expectations about their own cognition, without

however being able to compute the precise best responses. These concerns are normal in models

of bounded rationality. The model, however, should not be interpreted literally. It is meant to

capture forces that shape the choice of the depth of reasoning. It seems plausible that such a

choice depends on a player’s expectations of her opponent’s sophistication, as well as on her beliefs

about her opponent’s expectation of her own sophistication. That a player’s perceived (gross)

payoff Vi(ρ
′
i; ρ) from choosing cognition ρ′i when the two players are expected to choose cognition

ρi and ρj correctly reflects the dependence of the stage-2 actual actions on the players’ cognitive

7Clearly, on path, a player whose depth of knowledge exceeds her opponents’ never experiences a lower payoff.
That higher cognition may backfire in the level-k model applies only to off-path cognitive choices.
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levels (and hence coincides with the player’s true payoff) is not essential. What matters is that a

player correctly anticipates the forces that shape her stage-2 action, how they depend on the two

players’ actual and perceived depth of reasoning, and how such forces in turn affect her payoff. In

particular, what matters is that a player understands that (a) more cognition need not translate into

higher payoffs when insufficient to identify the opponent’s action (it can even backfire by bringing a

player’s action more farther apart from her true best response), (b) going significantly deeper into

the understanding of the game than the opponent need not bring any advantage relative to going

slightly deeper, and (c) once at her cognitive capacity, a player is unable to respond to variations in

her opponent’s behavior due to a deeper understanding of the game. These features seem plausible

and extend beyond the specific formalization above.8

S.4.3 Arad and Rubinstein “11–20” game

For concreteness, we illustrate the role of expectation conformity in a specific game that has re-

ceived considerable attention in the level-k literature. The stage-2 game described below was first

introduced in Arad and Rubinstein (2012), and then simplified by Alaoui and Penta (2016). The

players simultaneously announce an integer between 11 and 20. The players receive a number of

tokens equal to the integer they announce. However, if a player announces an integer equal to the

one announced by her opponent minus one, she receives extra x tokens, where x ≥ 20. If the two

players announce the same integer, they receive 10 tokens in addition to the integer they announce.

Each token corresponds to one payoff unit. Letting Ai = {11, 12, ..., 20}, i = 1, 2, we thus have that

the ex-post payoffs are equal to

ui(ai, aj) =


ai + x if ai = aj − 1

ai + 10 if ai = aj

ai otherwise.

This game, which is intended for experimental work, captures, in a stark and simplified manner,

some of the forces that arise in certain strategic situations where players benefit from matching,

or undercutting by little, the rivals’ actions. For example, the two players could be firms selling

imperfectly substitutable goods to different segments of the market. If firm i’s price exceeds the

rival’s, firm i sells only to those consumers who do not value the rival’s product (the “loyalists”).

Firm i is a monopolist on this segment of the market and its monopolistic price on this segment is

ai = 20. Reducing the price below ai = 20 without attracting consumers who see the two goods as

substitutes comes with a loss of profits. When, instead, firm i matches its rival’s price, in addition to

selling to its loyalists, it also sells to 1/2 of those consumers who see the two products as substitutes.

If it undercuts its rival, it sells to all consumers who see the two products as substitutes. However,

if it undercuts the rival by a lot, the extra profits from conquering the contestable buyers are less

than the losses from the loyalists. The Arad and Rubinstein (2012) game is meant to be a (highly

simplified) version of the strategic situation that firms face in such circumstances.

8Some of these properties are in common with the sparsity model in the main body.
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Following Arad and Rubinstein (2012) and Alaoui and Penta (2016), let the “anchor” α0
i be

the degenerate mixed action that selects the largest integer 20 with probability one. This action

is often interpreted as the most natural one in the absence of strategic reasoning. The version

originally introduced in Arad and Rubinstein (2012) does not feature the bonus of 10 tokens in case

the players announce the same integer. The simplification proposed by Alaoui and Penta (2016)

has two advantages. It implies that, if the game was played by fully rational players, the unique

rationalizable action would have both players select ai = 11 with certainty. It also implies that, for

all i, and all k ≥ 9, αki is the degenerate mixed action that selects the integer 11 with certainty; that

is, iterated best responses converge to the unique rationalizable action after 9 iterations. Because

of this property, we simplify the analysis by assuming that ρi ∈ {0, 1, ..., 9}, i = 1, 2. We then have

the following result (the proof follows directly from the arguments after the proposition):

Proposition S.4. (a) Consider any pair of cognitive profiles ρ̂ = (ρ̂1, ρ̂2) and ρ = (ρ1, ρ2) such

that ρ̂1 > ρ1, ρ2 = ρ1 + 1, and ρ̂2 = ρ̂1 + 1. Then ΓUEC
1

(
ρ, ρ̂
)

= ΓUEC
2

(
ρ, ρ̂
)

= 0, whereas

ΓID
1

(
ρ, ρ̂
)
< 0 < ΓID

2

(
ρ, ρ̂
)
. (b) Next, let ρ̂ = (ρ̂1, ρ̂2) and ρ = (ρ1, ρ2) be such that ρ̂2 = ρ̂1 > ρ2 = ρ1.

Then, for i = 1, 2, ΓUEC
i

(
ρ, ρ̂
)

= 0 whereas ΓID
i

(
ρ, ρ̂
)
< 0.

Hence, this game features a negative form of expectation conformity, at least with respect to

the cognitive profiles under consideration. Consider first case (a). The idea behind this specific

pair of cognitive profiles is the following. Suppose the two players are known to have different

cognitive costs, with player 2 being the “leader” (that is, the player with the lowest cognitive cost).

Further assume that both players’ cognitive costs are strictly increasing in their cognition. Then

in any equilibrium in which the follower’s cognition is equal to ρ1, the leader’s cognition is equal

to ρ2 = ρ1 + 1. Similarly, in any equilibrium in which the follower’s cognition is equal to ρ̂1 > ρ1,

the leader’s cognition is equal to ρ̂2 = ρ̂1 + 1.9 We are interested in whether multiple asymmetric

equilibria are possible in such a situation, driven by expectation conformity. The answer is no.

To see why this is the case, consider first the situation faced by the follower (player 1). Fixing

player 2’s cognitive level to ρ2 = ρ1 + 1, the value to player 1 of expanding her cognition from ρ1

to ρ̂1 ≥ ρ1 + 1 = ρ2 is (weakly) smaller when player 2 expects player 1 to choose cognition ρ̂1

than when she expects her to choose cognition ρ1 < ρ̂1. To see this, note that the gross value to

player 1 of expanding cognition from ρ1 to ρ̂1 when player 2 expects player 1 to choose cognition

ρ̂1 ≥ ρ1 + 1 = ρ2 is equal to

V1(ρ̂1; (ρ̂1, ρ2))− V1(ρ1; (ρ̂1, ρ2)) = [20− ρ2 + 10I(ρ̂1 = ρ1 + 1) + (x− 1)I(ρ̂1 > ρ1 + 1)]− (20− ρ1)

= 10I(ρ̂1 = ρ1 + 1) + (x− 1)I(ρ̂1 > ρ1 + 1)− (ρ2 − ρ1).

This is because player 2 announces a2 = 20 − ρ2 when she chooses cognition ρ2 = ρ1 + 1 and

expects player 1 to choose cognition ρ̂1 ≥ ρ1 + 1 = ρ2, whereas player 1, when she chooses cognition

ρ̂1 ≥ ρ1 + 1 = ρ2 and expects player 2 to choose cognition ρ2 = ρ1 + 1, she announces a1 = 20− ρ2

9It is also easy to verify that there exists no equilibrium in which the follower’s cognition is strictly higher than
the leader’s.
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if ρ̂1 = ρ1 + 1 = ρ2 and a1 = 20 − ρ2 − 1 if ρ̂1 > ρ1 + 1 = ρ2. When, instead, player 1 chooses

cognition ρ1 and expects player 2 to choose cognition ρ2 = ρ1 + 1, she then announces a1 = 20− ρ1.

Likewise, when player 2 expects player 1 to choose cognition ρ1 = ρ2 − 1, she announces a2 =

20− ρ1− 1 = 20− ρ2. It follows that the gross value to player 1 of increasing her cognition from ρ1

to ρ̂1 when player 2 expects her to choose cognition ρ1 is the same as when player 2 expects her to

choose cognition ρ̂1, implying that

ΓUEC1 (ρ, ρ̂) ≡ [V1(ρ̂1; (ρ̂1, ρ2))− V1(ρ1; (ρ̂1, ρ2))]− [V1(ρ̂1; (ρ1, ρ2))− V1(ρ1; (ρ1, ρ2))] = 0.

Next, consider player 2 (the leader) and fix player 1’s cognition to be equal to ρ1. The gross

value to player 2 of expanding her cognition from ρ2 = ρ1 + 1 to ρ̂2 = ρ̂1 + 1 is the same no matter

whether player 1 expects her to choose cognition ρ2 or ρ̂2. This is because, in either case, player

1’s ability to predict player 2’s action is bounded by player 1’s own cognitive capacity. In fact,

player 1 announces a1 = 20− ρ1, that is the action identified by ρ1 steps of iterated best responses,

irrespective of how far ahead she thinks player 2 is in the understanding of the game. This last

property, which is the same as is Alaoui and Penta (2016), is similar in spirit to the one discussed

in the context of sparsity in games. Hence, for player 2 as well, ΓUEC2 (ρ, ρ̂) = 0.

Next, consider ID, focusing again on the cognitive profiles of part (a) in the proposition. For

player 1, the gross value of expanding her cognition from ρ1 to ρ̂1 when player 2 expects her to

choose ρ̂1 ≥ ρ1 + 1 = ρ2 and chooses cognition ρ̂2 = ρ̂1 + 1 is equal to

V1(ρ̂1; (ρ̂1, ρ̂2))− V1(ρ1; (ρ̂1, ρ̂2)) = (20− ρ̂1)− (20− ρ1) = −(ρ̂1 − ρ1).

This is because, in this case, player 2 announces a2 = 20 − ρ̂1 − 1, whereas player 1 announces

a1 = 20− ρ̂1 when choosing cognition ρ̂1 and a1 = 20−ρ1 when choosing cognition ρ1. The increase

in cognition thus induces player 1 to lower her announcement, without, however, matching player

2’s announcement, or undercutting it by one.

When, instead, player 2 expects player 1 to choose cognition ρ̂1 ≥ ρ1 + 1 = ρ2 and chooses

cognition ρ2, she then announces a2 = 20− ρ2, in which case the value to player 1 of expanding her

cognition from ρ1 to ρ̂1 is equal to

V1(ρ̂1; (ρ̂1, ρ2))− V1(ρ1; (ρ̂1, ρ2)) = [20− ρ2 + 10I(ρ̂1 = ρ1 + 1) + (x− 1)I(ρ̂1 > ρ1 + 1)]− (20− ρ1) .

Hence,

ΓID1 (ρ, ρ̂) ≡ [V1(ρ̂1; (ρ̂1, ρ̂2))− V1(ρ1; (ρ̂1, ρ̂2))]− [V1(ρ̂1; (ρ̂1, ρ2))− V1(ρ1; (ρ̂1, ρ2))]

= −(ρ̂1 − ρ1)− [10I(ρ̂1 = ρ1 + 1) + (x− 1)I(ρ̂1 > ρ1 + 1)− (ρ2 − ρ1)]

= −(ρ̂1 − ρ2)− [10I(ρ̂1 = ρ1 + 1) + (x− 1)I(ρ̂1 > ρ1 + 1)] < 0.
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The reason why this game features a negative form of increasing differences for the player with

the highest cognitive cost (equivalently, with the lowest expected cognitive level) is that player 2,

when expecting player 1’s cognition to be equal to ρ̂1 ≥ ρ1 + 1 = ρ2, announces a2 = 20 − ρ̂1 − 1

when choosing the high cognitive level ρ̂2 = ρ̂1 + 1, whereas she announces a2 = 20− ρ1 + 1 when

choosing the low cognitive level ρ2 = ρ1 + 1 . Thus player 1 (the one who is expected to be behind

in the exploration of the game) suffers from an increase in cognition by her opponent.

Next consider player 2 (the one who is expected to be ahead in the exploration of the game).

When player 1 expects her to choose cognition ρ̂2, the gross value of increasing her cognition from

ρ2 = ρ1 + 1 to ρ̂2 = ρ̂1 + 1 is equal to

V2(ρ̂2; (ρ̂1, ρ̂2))− V2(ρ2; (ρ̂1, ρ̂2)) = 20− ρ̂2 + x− [(20− ρ2) + 10I(ρ̂1 = ρ1 + 1)] > 0

when player 1’s cognition is equal to the high level ρ̂1 and is equal to

V2(ρ̂2; (ρ1, ρ̂2))− V1(ρ2; (ρ1, ρ̂2)) = 0

when player 1’s cognition is equal to the low level ρ1 (In this latter case, player 2 expects her

capacity to be large enough to perfectly predict player 1’s announcement, no matter whether she

chooses ρ2 = ρ1 + 1 or ρ̂2 = ρ̂1 + 1 > ρ2). It follows that, for the leader, this game features positive

increasing differences:

ΓID2 (ρ, ρ̂) ≡ [V2(ρ̂2; (ρ̂1, ρ̂2))− V2(ρ2; (ρ̂1, ρ̂2))]− [V2(ρ̂2; (ρ1, ρ̂2))− V1(ρ2; (ρ1, ρ̂2))] > 0.

Combining the results for unilateral expectation conformity with those for increasing differences,

we conclude that, in this game, ΓEC
1

(
ρ, ρ̂
)
< 0 < ΓEC

2

(
ρ, ρ̂
)
. Arguments similar to those establishing

Proposition 1 in the main body then imply that, when the cognitive costs are strictly increasing,

there cannot exist multiple asymmetric equilibria.

Next, consider the cognitive profiles in part (b) of the proposition. What motivates considering

such profiles is their relation to the possibility of multiple symmetric equilibria. The result in the

proposition implies that such a multiplicity is not possible.

First, consider UEC and, without loss of generality, focus on player 2. When player 1 chooses

cognition ρ1, in the stage-2 game, she then announces a1 = 20− ρ1, no matter whether she expects

player 2 to choose ρ2 = ρ1 or ρ̂2 > ρ2 = ρ1. This is because, in either case, player 1 is at her

cognitive capacity. As a consequence, the value to player 2 of increasing her cognition from ρ2 to

ρ̂2 > ρ2 is positive but invariant to player 1’s expectations about player 2’s cognition. From the

definition of ΓUEC
2

(
ρ, ρ̂
)
, we then have that

ΓUEC
2

(
ρ, ρ̂
)
≡ [V2(ρ̂2; (ρ1, ρ̂2))− V2(ρ2; (ρ1, ρ̂2))]− [V2(ρ̂2; (ρ1, ρ2))− V2(ρ2; (ρ1, ρ2))]

= (20− ρ1 − 1 + x)− (20− ρ1)− [(20− ρ1 − 1 + x)− (20− ρ1)] = 0.
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Because the two players face the same situation under the cognitive profiles under consideration,

the same conclusion applies to player 1, that is, ΓUEC
1

(
ρ, ρ̂
)

= 0.

Next, consider ID. When player 1 expects player 2 to choose a higher cognitive level ρ̂2, she

then announces a1 = 20− ρ1 when choosing the low cognitive level ρ1 = ρ2 and a1 = 20− ρ̂1 when

choosing the high cognitive level ρ̂1 = ρ̂2 (in both cases, player 1 is constrained by her cognitive

capacity). The value to player 2 of increasing her cognition from ρ2 to ρ̂2 is then equal to

V2(ρ̂2; (ρ̂1, ρ̂2))− V2(ρ2; (ρ̂1, ρ̂2)) = 20− ρ̂2 + 10− (20− ρ2)

when player 1 chooses the high cognitive level ρ̂1 = ρ̂2, whereas it is equal to

V2(ρ̂2; (ρ1, ρ̂2))− V2(ρ2; (ρ1, ρ̂2)) = 20− ρ2 − 1 + x− (20− ρ2 + 10)

when player 1 chooses the low cognitive level ρ1 = ρ2. Because x > 20, we then have that

ΓID
2

(
ρ, ρ̂
)
≡ [V2(ρ̂2; (ρ̂1, ρ̂2))− V2(ρ2; (ρ̂1, ρ̂2))]− [V2(ρ̂2; (ρ1, ρ̂2))− V2(ρ2; (ρ1, ρ̂2))] < 0.

The same conclusion applies to player 1. This game thus features a form of negative ID with

respect to the profiles under consideration: increasing cognition is more valuable when the opponent

chooses a lower cognition. Again, arguments similar to those in Proposition 1 in the main body then

imply that this game, despite being played by boundedly rational players, cannot feature multiple

symmetric (pure-strategy) equilibria. The reason is that, in this game, the benefit of increasing

cognition (starting from a symmetric situation) is lower when the opponent is also expected to

increase her cognition, for the opponent call a lower number after expanding her cognition. Hence,

no matter the cognitive costs, this game features a unique symmetric equilibrium.
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