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Abstract

This document contains additional material. All sections, conditions, and results specific to

this document have the suffix “S” to avoid confusion with the corresponding parts in the main

text. Section S.1 establishes the optimality of the index policy claimed in part (i) of Theorem 1 in

the main text by means of a novel proof that exploits the recursive characterization of the search

index and the categorization of the alternatives. Section S.2 characterizes the click-through-

rates (CTRs), the values-per-click (VPCs), and the purchasing probabilities, in a parametric

example of the application to consumer search introduced in Section 5 in the main text. Section

S.3 proves the possibility that additional ad space may be detrimental to firms’ profits claimed

in the main text. Section S.4 shows how the characterization of the optimal policy extends to

certain problems with irreversible choice. Finally, Section S.5 discusses why an index policy need

not be optimal in the presence of “meta” arms with associated super-processes.

S.1 Optimality of Index Policy

Proof of part (i) of Theorem 1 in the main text. The proof exploits the recursive repre-

sentation of the search index established in part (ii) of Theorem 1, along with the representation

of the DM’s payoff under the index rule established in part (iii) of Theorem 1 and an appropriate

description of the state space, to verify that the DM’s payoff under the index policy satisfies the

Bellman equation of the corresponding dynamic program.

Proof strategy. The proof is in two steps. Step 1 uses the representation of the DM’s payoff under

the index rule established in part (iii) of Theorem 1 in the main text to characterize how much the

DM obtains from following the index policy χ∗ from the outset rather than being forced to make a

different decision in the first period and then reverting to χ∗ from the next period onward. Step 2

then uses the results in step 1 to establish the optimality of χ∗ through dynamic programming.
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Step 1. In the analysis below, we find it useful to describe changes in the composition of the CS,

the evolution of the search technology, as well as all information acquired about the alternatives,

entirely in terms of transitions between states. Rather than keeping track of the collection of kernels

Gξ(ϑ
m;µ) describing the conditional distributions from which the marginal signals ϑm+1 are drawn,

we describe directly the evolution of each alternative’s state ωP as follows. When the DM explores an

alternative currently in state ωP , its new state ω̃P is drawn from a distribution HωP ∈ ∆(ΩP ) that is

invariant to time.1 When the DM explores a different alternative, or expands the CS, the alternative

currently in state ωP remains in the same state with certainty at the beginning of the next period.

Similarly, each time search is conducted, given the current state of the search technology ωS , the

new state of the search technology ω̃S is drawn from a distribution HωS ∈ ∆(ΩS).The distributions

Hωs are time-homogeneous (i.e., the evolution of the search technology depends on past search

outcomes but is invariant in calendar time), and the outcome of each new search is drawn from HωS

independently from the idiosyncratic and time-varying component θ of each alternative in the CS.

Abusing notation, then denote the state of the decision problem by a function S : Ω → N
that specifies, for each ω ∈ Ω, including ω ∈ ΩS , the number of alternatives, including the search

technology, that are in state ω.2 Given this notation, for any pair of states S ′ and S ′′ then define

S ′ ∨ S ′′ ≡ (S ′(ω) + S ′′(ω) : ω ∈ Ω) and S ′\S ′′ ≡ (max{S ′(ω) − S ′′(ω), 0} : ω ∈ Ω). Any feasible

state of the decision problem must specify one, and only one, state of the search technology (i.e.,

one state ω̂S for which S(ω̂S) = 1 and such that S(ωS) = 0 for all ωS 6= ω̂s). However, it will be

convenient to consider fictitious (infeasible) states where search is not possible, as well as fictitious

states with multiple search possibilities. If the state of the decision problem is such that either (i)

the CS is empty, or (ii) there is a single alternative in the CS and the latter cannot be expanded,

we will denote such a state by e(ω), where ω ∈ Ω is the state of the search technology in case (i)

and of the single physical alternative in case (ii).3

Lemma S.1. For any v ∈ R and states S ′ and S ′′, κ(v|S ′ ∨ S ′′) = κ(v|S ′) + κ(v|S ′′).

Proof of Lemma S.1. The result follows from the fact that the state of each alternative that

is not explored in a given period remains unchanged, along with the fact that the time-varying

components θ of the various alternatives evolve independently of one another and of the state of the

search technology, given the alternatives’ categories ξ. Similarly, the state of the search technology

remains unchanged in periods in which search is not conducted, and evolves independently of the

time-varying component θ in the state of each existing alternative, given the alternatives’ categories

ξ. Furthermore, the index of each alternative is a function only of the alternative’s state, and the

1Clearly, because each alternative’s category ξ is fixed, given the current state ωP = (ξ, θ), the distribution HωP
assigns probability one to states whose category is ξ and whose signal history ϑm+1 = (ϑm, ϑm+1) is a “follower” of
ϑm, meaning that it is obtained by adding a new signal realization ϑm+1 to the history ϑm.

2Clearly, with this representation, there is a unique ω̂s ∈ ΩS such that S(ωS) = 1 if ωs = ω̂s and S(ωS) = 0 if
ωs 6= ω̂s. The special case where the DM does not have the option to search corresponds to the case where for all
ωS ∈ ΩS , S(ωS) = 0.

3Throughout the analysis below, we maintain the assumption that an outside option with value equal to zero is
available to the DM. However, to avoid possible confusion, here we do not explicitly treat the outside option as a
separate alternative.

2



index of search is a function only of the state of the search technology. Therefore, all indexes evolve

independently of one another (conditional on the alternatives’ categories), and evolve only when

their corresponding decision (search or exploration of an alternative) is chosen. Since the decisions

are taken under the index policy χ∗, the result follows from the fact that, starting from any state

S, the total time it takes to bring all indexes (that is, those of the alternatives in the CS as well as

the index of search) below any value v is the sum (across alternatives in the CS and search) of the

individual times necessary to bring each index below v in isolation. �

Given the initial state S0, for any ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0}, denote by E
[
u|ωP

]
the

immediate expected payoff from exploring an alternative in state ωP and by ω̃P the new state of

that alternative triggered by its exploration (drawn from HωP ). Let

V P (ωP |S0) ≡ (1− δ)E
[
u|ωP

]
+ δEχ

∗ [
V
(
S0\e(ωP ) ∨ e(ω̃P )

)
|ωP

]
(S.1)

denote the DM’s payoff from starting with exploring an alternative in state ωP and then following

the index policy χ∗ from the next period onward. Similarly, let

V S(ωS |S0) ≡ −(1− δ)E
[
c|ωS

]
+ δEχ

∗ [
V
(
S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)

)
|ωS
]

(S.2)

denote the DM’s payoff from expanding the CS when the state of search is ωS , and then following

the index policy χ∗ from the next period onward, where E
[
c|ωS

]
is the immediate expected cost

from searching (when the state of the search technology is ωS), ω̃S is the new state of the search

technology, and WP (ω̃S) is the state of the new alternatives brought to the CS by the current

search, with c and WP (ω̃S) jointly drawn from the distribution HωS .4

We introduce a fictitious “auxiliary option” which is available at all periods and yields a constant

reward M <∞ when chosen. Denote the state corresponding to this fictitious auxiliary option by

ωAM , and enlarge ΩP to include ωAM . Similarly, let e(ωAM ) denote the state of the problem in which

only the auxiliary option with fixed reward M is available. Since the payoff from the auxiliary

option is constant at M , if v ≥ M , then κ(v|S0 ∨ e(ωAM )) = κ(v|S0), whereas if v < M , then

κ(v|S0 ∨ e(ωAM )) =∞. Hence, the representation of the DM’s payoff under the index policy in part

(iii) of Theorem 1 in the main text, adapted to the fictitious environment that includes the auxiliary

option, implies that

V(S0 ∨ e(ωAM )) =

∫ ∞
0

(
1− Eχ

∗
[
δκ(v)|S0 ∨ e(ωAM )

])
dv = M +

∫ ∞
M

(
1− Eχ

∗
[
δκ(v)|S0

])
dv

= V(S0) +

∫ M

0

Eχ
∗
[
δκ(v)|S0

]
dv. (S.3)

The definition of χ∗, along with Conditions (S.1) and (S.2), then imply the following:

4Note that WP (ω̃S) is a deterministic function of the new state ω̃S of the search technology. To see this, recall that,
for any m ∈ N, the function Em in the definition of the state of the search technology counts how many alternatives
of each possible state ωP have been added to the CS, as a result of the m-th search.
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Lemma S.2. For any (ωS , ωP ,M),

V(e(ωS) ∨ e(ωAM )) =

V S(ωS |e(ωS) ∨ e(ωAM )) if M ≤ IS(ωS)

M > V S(ωS |e(ωS) ∨ e(ωAM )) if M > IS(ωS)
(S.4)

V(e(ωP ) ∨ e(ωAM )) =

V P (ωP |e(ωP ) ∨ e(ωAM )) if M ≤ IP (ωP )

M > V P (ωP |e(ωP ) ∨ e(ωAM )) if M > IP (ωP ).
(S.5)

Proof of Lemma S.2. First note that the index corresponding to the auxiliary option is equal

to M . Hence, if M ≤ IS(ωS), given e(ωS) ∨ e(ωAM ), χ∗ prescribes to start with search, implying

that V(e(ωS) ∨ e(ωAM )) = V S(ωS |e(ωS) ∨ e(ωAM )). If, instead, M > IS(ωS), χ∗ prescribes to

select the auxiliary option forever, with an expected (per period) payoff of M. To see why, in this

case, M > V S(ωS |e(ωS) ∨ e(ωAM )), observe that the payoff V S(ωS |e(ωS) ∨ e(ωAM )) from starting

with search and then following χ∗ in each subsequent period is equal to V S(ωS |e(ωS) ∨ e(ωAM )) =

Eχ
∗

>1

[
(1− δ)

∑τ̄−1
s=0 δ

sUs + δτ̄M |ωS
]
, where τ̄ is the first time at which the index of search and of

all the alternatives brought to the CS by search fall weakly below M , and where the expectation

is under the process that obtains starting from e(ωS) ∨ e(ωAM ) by searching in the first period and

then following the index policy in each subsequent period (the notation Eχ
∗

>1[·] is meant to highlight

that the expectation is under such a process). This follows from the fact that, once the DM, under

χ∗, opts for the auxiliary option, he will continue to select that option in all subsequent periods.

By definition of IS(ωS),

M > IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

] ≥ Eχ
∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]

Eχ
∗

>1

[∑τ̄−1
s=0 δ

s|ωS
] .

Rearranging, MEχ
∗

>1

[∑τ̄−1
s=0 δ

s|ωs
]
> Eχ

∗

>1

[∑τ̄−1
s=0 δ

sUs|ωS
]
. Therefore,

Eχ
∗

>1

[
(1− δ)

τ̄−1∑
s=0

δsUs + δτ̄M |ωS
]
< MEχ

∗

>1

[
(1− δ)

τ̄−1∑
s=0

δs + δτ̄ |ωS
]

= M.

Similar arguments establish Condition (S.5). �

Next, for any initial state S0 of the decision problem, and any state ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) >

0} of the alternatives in the CS corresponding to S0, let DP (ωP |S0) ≡ V(S0)−V P (ωP |S0) denote the

payoff differential between (a) starting by following the index rule χ∗ right away and (b) exploring

first one of the alternatives in state ωP and then following χ∗ thereafter. Similarly, let DS(ωS |S0) ≡
V(S0)−V S(ωS |S0) denote the payoff differential between (c) starting with χ∗ and (d) starting with

search in state ωS and then following χ∗. The next lemma relates these payoff differentials to the

corresponding ones in a fictitious environment with the auxiliary option.5

Lemma S.3. Let S0 be the initial state of the decision problem, with ωS ∈ ΩS denoting the state

5In the statement of the lemma, S0 \ e(ωS) is the state of a fictitious problem where search is not possible, whereas
SP0 \e(ωP ) is the state of the CS obtained from SP0 by subtracting an alternative in state ωP .
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of the search technology, as specified in S0. We have that6

DS(ωS |S0) =

∫ I∗(SP0 )

0

DS(ωS |e(ωS) ∨ e(ωAv ))dEχ
∗
[
δκ(v)|S0 \ e(ωS)

]
(S.6)

+ Eχ
∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA0 )).

Similarly, for any alternative in the CS in state ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0},

DP (ωP |S0) =

∫ max{I∗(SP0 \e(ω
P )),IS(ωS)}

0

DP (ωP |e(ωP ) ∨ e(ωAv ))dEχ
∗
[
δκ(v)|S0 \ e(ωP )

]
(S.7)

+ Eχ
∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA0 )).

Proof of Lemma S.3. Using Condition (S.3), we have that, given the state S0 ∨ e(ωAM ) of the

decision problem, and ωS ∈ ΩS ,

DS(ωS |S0 ∨ e(ωAM )) = V(S0) +

∫ M

0

Eχ
∗
[
δκ(v)|S0

]
dv + (1− δ)E

[
c|ωS

]
(S.8)

− δEχ
∗

[
V(S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S)) +

∫ M

0

Eχ
∗
[
δκ(v)|S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
,

where the equality follows from combining (S.2) with (S.3). Similarly,

DS(ωS |e(ωS) ∨ e(ωAM )) = V(e(ωS)) +
∫M

0
Eχ∗

[
δκ(v)|e(ωS)

]
dv + (1− δ)E

[
c|ωS

]
−δEχ∗

[
V(e(ω̃S) ∨WP (ω̃S)) +

∫M
0

Eχ∗
[
δκ(v)|e(ω̃S) ∨WP (ω̃S))

]
dv|ωS

]
.

(S.9)

Differentiating (S.8) and (S.9) with respect to M , using the independence across alternatives

and search and Lemma S.1, we have that

∂

∂M
DS(ωS |S0 ∨ e(ωAM )) = Eχ

∗
[
δκ(M)|S0\e(ωS)

] ∂

∂M
DS(ωS |e(ωS) ∨ e(ωAM )). (S.10)

That is, the improvement in DS(ωS |S0 ∨ e(ωAM )) that originates from a slight increase in the value

of the auxiliary option M is the same as in a setting with only search and the auxiliary option,

DS(ωS |e(ωS) ∨ e(ωAM )), discounted by the expected time it takes (under the index rule χ∗) until

there are no indexes with value strictly higher than M , in an environment without search where

the CS is the same as the one specified in S0. Similar arguments imply that, for any ωP ∈ {ω̂P ∈
ΩP : S0(ω̂P ) > 0},

∂

∂M
DP (ωP |S0 ∨ e(ωAM )) = Eχ

∗
[
δκ(M)|S0\e(ωP )

] ∂

∂M
DP (ωP |e(ωP ) ∨ e(ωAM )). (S.11)

Let M∗ ≡ max{I∗(SP0 ), IS(ωS)}. Integrating (S.10) over the interval (0,M∗) of possible values

6Recall that I∗(SP0 ) is the largest index of the alternatives in the CS under the state S0.
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for the auxiliary option and rearranging, we have that

DS(ωS |S0 ∨ e(ωA0 )) = DS(ωS |S0 ∨ e(ωAM∗))−
∫ M∗

0

Eχ
∗
[
δκ(v)|S0\e(ωS))

] ∂

∂v
DS(ωS |e(ωS) ∨ e(ωAv ))dv

= DS(ωS |S0 ∨ e(ωAM∗))−DS(ωS |e(ωS) ∨ e(ωAM∗))

+ Eχ
∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA0 ))

+

∫ M∗

0

DS(ωS |e(ωS) ∨ e(ωAv ))dEχ
∗
[
δκ(v)|S0\e(ωS))

]
,

where the second equality follows from integration by parts and from the fact that

Eχ
∗
[
δκ(M∗)|S0\e(ωS)

]
= 1.

That the outside option has value normalized to zero also implies that DS(ωS |S0 ∨ e(ωA0 )) =

DS(ωS |S0). It is also easily verified that DS(ωS |S0∨e(ωAM∗)) = DS(ωS |e(ωS)∨e(ωAM∗)).7 Therefore,

we have that

DS(ωS |S0) =

∫ M∗

0

DS(ωS |e(ωS) ∨ e(ωAv ))dEχ
∗
[
δκ(v)|S0\e(ωS)

]
(S.12)

+ Eχ
∗
[
δκ(0)|S0\e(ωS))

]
DS(ωS |e(ωS) ∨ e(ωA0 )).

Similar arguments imply that

DP (ωP |S0) =

∫ M∗

0

DP (ωP |e(ωP ) ∨ e(ωAv ))dEχ
∗
[
δκ(v)|S0\e(ωP )

]
(S.13)

+ Eχ
∗
[
δκ(0)|S0\e(ωP ))

]
DP (ωP |e(ωP ) ∨ e(ωA0 )).

To complete the proof of Lemma S.3, we consider separately two cases. Case (1): given S0,

χ∗ specifies starting by exploring a physical alternative (i.e., M∗ = I∗(SP0 )). Then Condition

(S.6) in the lemma follows directly from (S.12). Thus consider Condition (S.7). First observe

that, for any state ωP ∈ ΩP such that M∗ > max{I∗(SP0 \e(ωP )), IS(ωS)}, we have that M∗ =

IP (ωP ), in which case DP (ωP |S0) = DP (ωP |e(ωP )∨ e(ωA0 )) = 0 and the integrand DP (ωP |e(ωP )∨
e(ωAv )) in (S.13) is equal to zero over the interval [0, IP (ωP )] and hence also over the interval

[0,max{I∗(SP0 \e(ωP )), IS(ωS)}]. We thus have that, in this case, Condition (S.7) clearly holds.

Next observe that, for any state ωP ∈ ΩP such that M∗ = max{I∗(SP0 \e(ωP )), IS(ωS)}, Condition

(S.7) follows directly from (S.13).

Case (2): given S0, χ∗ specifies starting with search (i.e., M∗ = IS(ωS)). Then, for any

ωP ∈ ΩP , max{I∗(SP0 \e(ωP )), IS(ωS)} = M∗, in which case Condition (S.7) in the lemma follows

directly from (S.13). That Condition (S.6) also holds follows from the fact that, in this case,

DS(ωS |S0) = DS(ωS |e(ωS)∨ e(ωA0 )) = 0 and the integrand DS(ωS |e(ωS)∨ e(ωAv )) in (S.12) is equal

7This follows immediately from the observation that V(S0 ∨ e(ωAM∗)) = V(e(ωS) ∨ e(ωAM∗)) = M∗, and similarly
Eχ
∗ [
V
(
S0\e(ωS) ∨ e(ω̃S) ∨WP (ω̃S) ∨ e(ωAM∗)

)
|ωS

]
= Eχ

∗ [
V
(
e(ω̃S) ∨WP (ω̃S) ∨ e(ωAM∗)

)
|ωS

]
. Intuitively, under

the index policy, any alternative with index strictly below M∗ is never explored given the presence of an auxiliary
alternative with payoff M∗.
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to zero over the entire interval
[
0,max{I∗(SP0 \e(ωP )), IS(ωS)}

]
. �

Step 2. Using the characterization of the payoff differentials in Lemma S.3, we now establish that

the average per-period payoff under χ∗ solves the Bellman equation for our dynamic optimization

problem. Let V∗(S0) ≡ (1− δ)supχ∈XEχ
[∑∞

t=0 δ
tUt|S0

]
denote the value function for the dynamic

optimization problem.

Lemma S.4. For any state of the decision problem S0, with ωS denoting the state of the search

technology as specified under S0,

1. V(S0) ≥ V S(ωS |S0), and V(S0) = V S(ωS |S0) if and only if IS(ωS) ≥ I∗(SP0 );

2. for any ωP ∈ {ω̂P ∈ ΩP : S0(ω̂P ) > 0}, V(S0) ≥ V P (ωP |S0), and V(S0) = V P (ωP |S0) if and only

if IP (ωP ) = I∗(SP0 ) ≥ IS(ωS).

Hence, for any S0, V(S0) = V∗(S0), and χ∗ is optimal.

Proof of Lemma S.4. Part 1 . First, use (S.4) to note that, for all v ≥ 0, DS(ωS |e(ωS)∨e(ωAv )) ≥
0, with the inequality holding as an equality if and only v ≤ IS(ωS). Therefore, from (S.6),

DS(ωS |S0) ≥ 0 – and hence V(S0) ≥ V S(ωS |S0) – with the inequality holding as an equality if and

only if I∗(SP0 ) ≤ IS(ωS).

Part 2 . Similarly, use (S.5) to observe that for any ωP ∈ {ω̂P ∈ ΩP : SP0 (ω̂P ) > 0} and

any v ≥ 0, DP (ωP |e(ωP ) ∨ e(ωAv )) ≥ 0, with the inequality holding as an equality if and only if

0 ≤ v ≤ IP (ωP ). Therefore, from (S.7), DP (ωP |S0) ≥ 0 with the inequality holding as equality if

and only if IP (ωP ) ≥ max{I∗(SP0 \e(ωP )), IS(ωS)}. The result in part 2 then follows from the fact

that the last inequality holds if and only if IP (ωP ) = I∗(SP0 ) ≥ IS(ωS).

Next, note that, jointly, Conditions 1 and 2 in the lemma imply that

V(S0) = max

{
V S(ωS |S0), max

ωP∈{ω̂P∈ΩP :SP0 (ω̂P )>0}

V P (ωP |S0)

}
.

Hence V solves the Bellman equation. That δTEχ [
∑∞

s=T δ
sUs|S] → 0 as T → ∞ guarantees that

V(S0) = V∗(S0), and hence the optimality of the index policyχ∗. �

This completes the proof. �

S.2 CTRs, VPCs and eventual purchase probabilities: a paramet-

ric example

Consider a market with two firms, each of which advertises a single product. Let z denote the profit a

firm derives from selling its product and assume that the two firms’ profits are drawn independently

from a distribution Z. Suppose that the product of each firm can either be highly attractive to the

consumer (ξ = H) or less attractive (ξ = L), with the types drawn independently from Ξ = {H,L},
with Pr(ξ = H) = qH . A highly-attractive product yields an utility to the consumer, net of the

purchasing price, drawn uniformly from [0, 1 + α], where α > 0. A less-attractive product, instead,
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yields a net utility drawn uniformly from [0, 1]. The consumer learns the attractiveness of a firm’s

product by reading the firm’s ad but discovers her net value for the product only by clicking on the

ad and being directed to the firm’s webpage. For simplicity, assume that λ ≡ c ≡ 0, so that the

only cost is discounting.

The two firms advertise their products on a platform using the ascending-clock version of the

generalized second-price auction to allocate the two ad positions. The firm dropping out first is

allocated the second position and pays nothing, whereas the other firm is allocated the first position

and pays to the platform the price at which the other firm dropped out per click.

Using the formula for the reservation prize in Proposition 2 in the main text characterizing the

optimal policy in Pandora’s-boxes problem with an endogenous CS, the“clicking index”of an L-type

firm is given by

IPL ≡ IP (L, ∅) =

δ
2(1−δ)2

(
(1− δ)2 − (IP (L, ∅))2

)
1 + δ

(1−δ)2 ((1− δ)− IP (L, ∅))
,

which, solving for IP (L, ∅), yields

IPL =
1− δ
δ

(
1−

√
1− δ2

)
.

Similarly, the clicking index of an H-type firm is

IPH ≡ IP (H, ∅) = (1 + α)

(
1− δ
δ

)(
1−

√
1− δ2

)
.

Because the consumer always reads the first ad (as there are no direct cost of reading and the

outside option is equal to 0), the initial search index (corresponding to the decision to read the first

ad) plays no role in the analysis and hence we do not provide its characterization. The following

lemma characterizes in closed form the index for reading the second ad which, which is a function

of ρL and ρH . The probabilities ρL and ρH , may of course depend on the type of ad encountered

in the first position.

Lemma S.5. Let ρL and ρH represent the probabilities that the consumer assigns to finding an L

or H firm in the second position. The index IS for the decision to read the second ad is equal to

IS(ρL, ρH) =

(1− δ)(1 + α)

[
1−

√
1− δ4

1+α (1 + αρL) (1 + αρH)

]
δ2(1 + αρL)

if

δ
(

1−
√

1− δ2
) (

1 + αρL
)

1 + α
> 1−

√
1− δ4

1 + α
(1 + αρL) (1 + αρH)
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and otherwise,

IS(ρL, ρH) =

(1− δ)(1 + α)

[
1− δ + δρH −

√
(1− δ + δρH)2 − δ4 (ρH)2

]
δ2ρH

.

Proof of Lemma S.5. Recall that the index of search in the Pandora’s boxes problem with

endogenous CS is given by

IS(ρL, ρH) =

δ2
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)

1−δ

))] ,
where Ξ(l) ≡

{
ξ ∈ Ξ : IP (ξ, ∅) > l

}
. Since there are no direct costs,

IS(ρL, ρH) =

−δ2
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)

1−δ

))] .
Note that since IP (∅, H) > IP (∅, L), it cannot be that Ξ(IS(ρL, ρH)) = {L}. Furthermore, it

cannot be that Ξ(IS(ρL, ρH)) = ∅, as in this case no category has an index greater than search,

which means stopping (in the definition of search index) occurs immediately after search is carried

out, yielding IS(2) = 0, a contradicting. Hence, there are two feasible cases to consider: (i)

Ξ(IS(ρL, ρH)) = {H,L} and (ii) Ξ(IS(ρL, ρH)) = {H}. We derive the index of search for each of

these cases.

Denote ξ ≡ ρL + ρH(1 + α), ξ̂ ≡ ρL + ρH

1+α .

Case (i) - Ξ(IS(ρL, ρH)) = {H,L}. In this case, the index of search is

IS(ρL, ρH) =

−δ
[
ρL
(
δ
∫∞
IS(m)
1−δ

vdFL(u)

)
+ ρH

(
δ
∫∞
IS(m)
1−δ

vdFH(u)

)]
1 +

(
ρL
[
δ + δ2

1−δ

(
1− FL

(
IS(m)

1−δ

))]
+ ρH

[
δ + δ2

1−δ

(
1− FH

(
IS(m)

1−δ

))]) ,
which in the current example, after some algebra, can be rewritten as

IS(ρL, ρH) =
−(1− δ)2

(
− δ2

2 ξ
)
− δ2

2

(
IS(m)

)2
ξ̂

1− δ − δ2ξ̂IS(m)
.
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Solving for IS(ρL, ρH), we have that in case (i),

IS(ρL, ρH) =
1− δ
δ2ξ̂

(
1−

√
1− δ4ξ̂ξ

)

=
(1− δ)(1 + α)

δ2 (1 + αρL)

1−

√
1− δ4

(1 + αρL) (1 + ρHα)

1 + α


Case (ii) - Ξ(IS(ρL, ρH)) = {H}. In this case,

IS(ρL, ρH) =

δ2ρH
(∫∞
IS(m)
1−δ

vdFH(u)

)
1 + ρH

[
δ + δ2

1−δ

(
1− FH

(
IS(m)

1−δ

))] ,
which, after some algebra, can be written as

IS(m) =

1
2δ

2(1− δ)2ρH(1 + α)− δ2ρH

2(1+α)

(
IS(m)

)2
(1− δ)2 + ρH

(
δ(1− δ)− δ2

(
IS(m)
1+α

)) .

Solving for IS(ρL, ρH), we have that in case (ii),

IS(m) =
(1− δ)(1 + α)

δ2ρH

(
1− δ + δρH −

√
(1− δ + δρH)2 − δ2(ρH)2

)
.

Now, case (i), Ξ(IS(ρL, ρH)) = {H,L}, is the relevant case if and only if

IP (∅, L) =
1− δ
δ

(
1−

√
1− δ2

)
>

1− δ
δ2ξ̂

(
1−

√
1− δ4ξ̂ξ

)
,

where recall that the RHS of the latter inequality is the index of search in case (i). The latter

inequality can equivalently be written as

δ

(
1 + αρL

1 + α

)(
1−

√
1− δ2

)
> 1−

√
1− δ4

1 + α
(1 + αρL) (1 + αρH). (S.14)

We have therefore shown that the search index is equal to

(1− δ)(1 + α)

δ2(1 + αρL)

(
1−

√
1− δ4

1 + α
(1 + αρL) (1 + αρH)

)

if (S.14) holds, and otherwise it is equal to

(1− δ)(1 + α)

δ2ρH

(
1− δ + δρH −

√
(1− δ + δρH)2 − δ4(ρH)2

)
.

�
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Given the lemma above, the CTRs, VPCs, and eventual purchase decisions, are pinned down

by the results in Section 5 in the main text.

S.3 Additional ad space - comparative statics

Consider the setting described at the end of Section 5 in the main body. The following result

illustrates how the increase in the probability that search brings an additional product by firm

ξ may reduce the index of search, inducing the consumer to visit the website of one of firm ξ’s

competitors before searching for new products. When strong enough, such an effect may reduce the

probability that one of firm ξ’s product is selected, and hence firm ξ’s profits.

Corollary S.1. Consider the environment described at the end of Section 5 in the main body. An

increase in the probability ρξ that search brings an additional product from firm ξ may reduce firm

ξ’s ex-ante expected profits.

Proof of Corollary S.1. Suppose that each F ξ is a Bernoulli distribution assigning probability

pξ to v = v̂ξ and (1 − pξ) to v = 0, with v̂ξ ∈ R++.8 Each firm makes equal profits on each of its

two products. Hence, each firm’s ex-ante total profits are equal to the total probability with which

one of its two products is selected. To keep things simple, suppose the consumer incurs no cost for

inspecting any product other than the time cost of postponing the final purchase: that is, λξ = 0

for ξ = A,B,C. The consumer’s discount factor is δ.

Exogenous CS. Suppose the identity of the firm receiving the additional slot is determined ex-

ante, i.e., before the consumer starts the exploration process. Given the composition of the CS, the

consumer then sequentially decides which product to inspect and when to stop, at which point she

either chooses one of the inspected products or her outside option (whose value is normalized to

zero). As shown in the main text, the reservation price for each ξ’s product, before the latter is

inspected, is equal to

I(ξ, ∅) =
(1− δ)δpξ v̂ξ

1− δ + δpξ
,

whereas the reservation price of each ξ’s product after it is inspected is equal to I(ξ, v) = (1− δ)v,

with v ∈ {v̂ξ, 0}. The optimal policy is to inspect products in descending order of their reservation

prices, stopping when the remaining reservation prices are all smaller than the maximal realized

value among the inspected products. Clearly, in this environment, each firm benefits from an

increase in the probability it is given a second slot.

Endogenous CS. Now suppose that the consumer’s initial CS consists of three products, one from

each firm ξ = A,B,C, and that the CS can be expanded only once, with the expansion bringing

an additional product drawn from Ξ according to ρ, with ρξ ≥ 0, ξ = A,B,C, and with
∑

ξ ρ
ξ = 1.

The result in the corollary then follows from Claim S.1 below.

8One can think of v̂ξ as the value (net of price) to the consumer in case the product is a good match, and pξ as
the probability of such an event.
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Figure 1: The change φ(ζ)−φ(0) in the probability with which a product of firm B is selected, as a function

of ζ (in blue).

Claim S.1. Suppose that I(A, ∅) > I(B, ∅) > I(C, ∅). There exist parameter values consistent with

the above inequalities such that an increase in ρB, together with a reduction by the same amount

in ρA, leads to a decrease in the overall probability that one of firm B’s products is sold (and hence

in its ex-ante expected profits).

Proof. We establish the claim above by showing that an increase in the probability that search

brings an extra B-product (along with a reduction by the same amount in the probability that it

brings an A-product) may reduce the attractiveness of search thus inducing the consumer to inspect

firm C’s product before expanding the CS. We show that this effect may imply a drop in firm B’s

ex-ante profits.

It is easy to verify that the index for search is equal to

IS =δ2maxk∈{A,B,C}


∑
ξ∈{ξ′∈Ξ:I(ξ′,∅)≥I(k,∅)} ρ

ξpξ v̂ξ

1 +
∑
ξ∈{ξ′∈Ξ:I(ξ′,∅)≥I(k,∅)} ρ

ξδ
(

1 + pξδ
1−δ

)
 . (S.15)

For concreteness, let δ = 0.9 and suppose that (v̂A, pA) = (10, 1
10), (v̂B, pB) = (3, 1

3), and (v̂C , pC) =

(2, 1
2). Note that the distributions F ξ from which the consumer’s values for the firms’ products

are drawn have the same mean, but are mean preserving spreads of one another; hence I(A, ∅) >
I(B, ∅) > I(C, ∅). Suppose that, initially, ρA = ρB = 1

4 , and ρC = 1
2 . It is easily verified that

I(A, ∅) = 0.473, I(B, ∅) = 0.225, I(C, ∅) = 0.163, and IS = 0.174. Also note that I(C, ∅) < IS <
I(B, ∅), so that IS does not take into account the benefits from inspecting firm C’s additional

product, in case search brings a second product by firm C.

Now suppose ρB is increased by ζ ∈ [0, 0.25] while ρA is reduced by the same amount. Let φ(ζ)

denote the probability that one of firm B’s products is ultimately chosen when the probability that

search brings a B-product is ρB + ζ. Figure 1 depicts the change φ(ζ) − φ(0) in the probability

that one of firm B’s products is selected as a function of ζ, where φ(0) = (1 − pA)(pB + (1 −

12



pB)ρBpB) = 0.35. The horizontal gray lines correspond to the indices I(A, ∅), I(B, ∅), and I(C, ∅),
whereas the dark gray curve depicts IS , as a function of ζ. Note that IS is decreasing in ζ, since

I(A, ∅) > I(B, ∅). Hence, an increase in ζ implies a lower index for search. IS starts out above

I(C, ∅), and intersects I(C, ∅) at an interior ζ (smaller than 0.25), denoted by ζ∗ (the vertical

dashed line). For ζ < ζ∗, I(C, ∅) < IS < I(B, ∅), whereas for ζ > ζ∗, IS < I(C, ∅). The function

IS(ζ) has a kink at ζ = ζ∗. For ζ ∈ [0, ζ∗), the CS is expanded before firm C’s product is inspected,

whereas for ζ ∈ (ζ∗, 0.25] the opposite is true. Therefore, the probability that one of firm B’s

products is chosen is equal to φ(ζ) = (1 − pA)(pB + (1 − pB)(ρB + ζ)pB) for ζ ∈ [0, ζ∗) and is

equal to φ(ζ) = (1 − pA)
(
pB + (1− pB)(1− pC)(ρB + ζ)pB

)
for ζ ∈ (ζ∗, 0.25], with a downward

discontinuity at ζ = ζ∗ equal to (1− pA)(1− pB)pBpC(ρ2 + ζ∗). Furthermore, the downward drop

in φ(ζ) at ζ = ζ∗ makes φ(ζ)− φ(0) negative over (ζ∗, 0.25], thus establishing the claim above.

S.4 Irreversible Choice Among Alternatives

Consider the following amendment to the general model of Section 2 in the main text. At any

period t, in addition to exploring an alternative in the CS or expanding the latter, the DM can

irreversibly commit to any alternative in the CS, provided that the alternative has been explored at

least Mξ times (with ξ denoting the alternative’s category).9 Once the DM irreversibly commits to

an alternative, there are no further decisions to be made. Irreversibly committing to an alternative

yields a flow payoff to the DM from that moment onward, the value of which may be only imperfectly

known to the DM at the time the irreversible decision is made. In particular, denote by R(ωP ) the

expected flow value from irreversibly committing to an alternative whose current state is ωP = (ξ, θ).

Note that R(ωP ) admits two equivalent interpretations: (i) the DM obtains an immediate expected

payoff equal to R(ωP )/(1−δ) after which there are no further payoffs; (ii) payoffs continue to accrue

at all subsequent periods after the irreversible choice is made, with each expected flow payoff equal

to R(ωP ).

For any ωP = (ξ, θ) and ω̂P = (ξ̂, θ̂), say that ω̂P “follows” ωP if and only if ξ̂ = ξ, θ =

(ϑ1, ..., ϑm), for some m, and θ̂ = (ϑ1, ..., ϑm, ..., ϑm̂) for some m̂ ≥ m. Denote this relation by

ω̂P � ωP .

Condition 1. A category-ξ alternative has the better-later-than-sooner property if, for any ωP =

(ξ, θ) such that θ = (ϑ1, ..., ϑm), with m ≥ Mξ, and any ω̂P � ωP , either R(ω̂P ) ≥ R(ωP ), or

R(ω̂P ), R(ωP ) ≤ 0.

The following environments are examples of settings satisfying Condition 1.

Example S.1 (Weitzman’s generalized problem). Consider the following extension of Weitz-

man’s original problem: (i) The set of boxes is endogenous; (ii) each category-ξ box requires Mξ

explorations before the box’s value is revealed; (iii) the DM can irreversibly commit (i.e., select) a

box only if its value has been revealed, i.e., only after Mξ explorations, where Mξ can be stochastic;

9If Mξ = 0, the DM can irreversibly commit to any ξ-alternative without first exploring it.
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(iv) the flow payoff from exploring a box without committing to it is equal to the cost of exploring

the box (with the latter evolving stochastically based on the number of past explorations) and is

equal to zero for any exploration t > Mξ; (v) the payoff R(ωP ) from irreversibly committing to a

box whose value has been revealed (i.e., after the Mξ-th exploration) remains constant after the

Mξ-th exploration and is equal to the box’s prize.

Example S.2 (Purchase/Lease problem). In each period, an apartment owner either chooses

one of the real-estate agents she knows to lease her apartment, or searches for new agents. In

addition, the owner can use one of the agents to sell the apartment. The decision to sell the

apartment is irreversible. Once the apartment is sold, the owner’s problem is over. The (expected)

flow value ujt the owner assigns to leasing the apartment through agent j of category ξ in state

ωP = (ξ, θ) is a function of the information θ = (ϑ1, ..., ϑm) the owner has accumulated over time

about agent j’s ability to deal with all sorts of problems related to tenants. The (expected) value

R(ωP ) the owner assigns to selling the apartment through the same agent may also depend on the

agent’s expertise with tenant-related problems but is primarily a function of the familiarity the agent

has with the apartment, which is determined by the number of times m the agent has been hired by

the owner in the past. If the agent has no or little past experience selling apartments, R(ωP ) ≤ 0.

Else, for any θ = (ϑ1, ..., ϑm) and θ̂ = (ϑ1, ..., ϑm, ..., ϑm̂) such that m̂ ≥ m, R(ξ, θ̂) ≥ R(ξ, θ).

Contrary to Weitzman’s generalized problem above, the DM may derive a higher (expected) value

from using an alternative without irreversibly committing to it (i.e, from leasing instead of selling)

for an arbitrary long, possibly infinite, number of periods.

To accommodate for irreversible choice, we need to modify the definition of the index of each

alternative in state ωP ∈ ΩP as follows:

IP (ωP ) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωP

]
Eπ
[∑τ−1

s=0 δ
s|ωP

] , (S.16)

where τ is a stopping time, and where π is a rule specifying whether the DM explores the alternative,

or irreversibly commits to it. Similarly, modify the index of search IS(ωS) by letting the rule π now

specify not only whether the DM keeps searching or explores one of the alternatives brought to the

CS through search, but also whether or not she irreversibly commits to one of the alternatives that

the new search brought to the CS.

Next, amend the definition of the index policy χ∗ as follows. At each period t ≥ 0, given the

state St of the decision problem, the policy specifies to (a) search if IS is greater than the index IP

of any alternative in the CS and the expected “retirement” value R of each alternative in the CS; (b)

experiment with an alternative in state ωP if its index IP is greater than its expected retirement

value R, as well as the index of search, and both the index and the expected retirement value of

any other alternative in the CS; (c) choose (i.e., irreversibly commit to) an alternative in state ωP

if its retirement value R is greater than its index IP , as well as the index of search and both the

index and the expected retirement value of any other alternative in the CS.

We then have the following result:
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Theorem S.1 (Indexability with irreversible choice). Suppose Condition 1 is satisfied for all ξ ∈ Ξ.

The conclusions in Theorem 1 in the main text apply to the problem with irreversible choice under

consideration. However, the stopping time τ∗ in the characterization of the index of search is now

the first time (strictly above the one at which the index is computed) at which IS, all the indexes

of the alternatives brought to the CS by search, and all retirement values of such alternatives fall

below the value IS(ωS) of the search index when the latter is computed.

The result is established by considering a fictitious problem without irreversible choice in which,

each time the DM experiments with an alternative and changes its state to ωP , an “auxiliary

alternative” with constant flow payoff equal to R(ωP ) is added to the CS and remains available

in all subsequent periods, irrespectively of possible changes in the state of the alternative that

generated it. The better-later-than-sooner property of Condition 1 guarantees that, if the DM ever

selects one of these auxiliary alternatives, she necessarily picks the one corresponding to the latest

exploration of the alternative that generated it. This last property in turn implies that both (a)

the non-perishability of the auxiliary alternatives and (b) the reversibility of choice in the fictitious

problem play no role, which in turn implies that the optimal policy in the fictitious problem coincides

with the one in the primitive problem.

Proof of Theorem S.1. To ease the notation, assume the initial CS is empty. It will be evident

from the arguments below that the optimality of χ∗ does not hinge on this assumption. Consider

first an environment where Mξ = 0 for all ξ. It will also become evident from the arguments below

that the result easily extends to environments where Mξ > 0, as well as to environments where Mξ

is stochastic and learned over time.

Consider the following fictitious environment , where all choices are reversible. Whenever an

alternative of category ξ is brought to the CS, an additional auxiliary alternative is also introduced

into the CS, yielding a fixed flow payoff of R(ξ, ∅).10 Furthermore, whenever a non-auxiliary alter-

native in state ωP is explored, a new auxiliary alternative yielding a fixed payoff of R(ω̃P ) is also

added to the CS, where ω̃P denotes the new state of the explored alternative drawn from HωP ,

as in the baseline model.11 We say that an auxiliary alternative corresponds to a (non-auxiliary)

alternative in state ωP if it has been introduced to the CS as the result of either search (in which

case θ = ∅) or the exploration of an alternative in state ωP . In this auxiliary environment, define the

index of search as in the main text, with the rule π specifying whether to keep searching or exploring

one of the alternatives introduced through search, including the auxiliary alternatives brought to

the CS by search or by the explorations of the alternatives brought to the CS through search. For

each alternative in state ωP , define its new index as in (S.16), with the rule π in the definition

of the index specifying for each period prior to stopping whether to explore the alternative itself

or one of the auxiliary alternatives introduced as the result of the alternative’s current and future

explorations (i.e., following the period at which the index is computed; importantly, π excludes

10Recall that R(ξ, ∅) is the retirement value of a physical alternative of category ξ that has never been explored.
11If Mξ > 0, the introduction of the auxiliary alternative as the result of the exploration of an alternative in state

ωP = (ξ, θ) occurs only if θ = (ϑ1, ..., ϑs) with s ≥ Mξ, that is, only if the alternative has been explored at least Mξ

times.
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any auxiliary alternative introduced in periods prior to the one in which the index is computed).

Finally, let the index of any auxiliary alternative coincide with the alternative’s retirement value,

as specified by the function R.

It is easy to see that the same steps as in the proof of Theorem 1 in the main text imply

that, in this auxiliary environment, the index policy based on the above new indices is optimal.12

It is also easy to see that the DM’s problem in the auxiliary environment is a relaxation of the

problem in the primitive environment in which (a) all decisions are reversible, and (b) alternatives

can be retired also in states that are not feasible any more due to the subsequent explorations of

the same alternative. Hereafter, we argue that the DM’s payoff in the primitive environment under

the proposed index policy is the same as under the corresponding index policy in the fictitious

environment. To see this, first observe that, in the fictitious environment, once the DM explores

an auxiliary alternative, she continues to do so in all subsequent periods, since the indexes R(ωP )

of the auxiliary alternatives do not change. This implies that the reversibility of choice in the

fictitious environment plays no role. Next, observe that Condition 1 implies that, in the fictitious

environment, if the DM selects an auxiliary alternative, she always picks the one corresponding to

the “newest” state of the corresponding non-auxiliary alternative that created it; this is because

the latest has the highest expected value R among all the auxiliary alternatives corresponding to

the same non-auxiliary alternative. This implies that the non-perishability of the older versions of

the auxiliary alternatives in the fictitious environment also plays no role. The same condition also

guarantees that the policy π in the definition of the index of the non-auxiliary alternatives in the

fictitious problem coincides with the one in (S.16) where the selection π is restricted to be over the

exploration of the non-auxiliary alternative under consideration and the retirement of the latter in

its most recent state.

Finally, note that the proof immediately extends to settings in which Mξ > 0 by assuming

that, in the fictitious environment, an auxiliary alternative is introduced into the CS only when its

corresponding non-auxiliary alternative has been explored more than Mξ times, with Mξ possibly

stochastic and learned over time (in this latter case, the time-varying component of an alternative’s

state, θ, may also contain information about Mξ). �

S.5 Sub-optimality of Index Policies with “Meta-Arms”

In this section, we briefly illustrate, by means of an example, why multi-armed bandit problems

in which alternatives take the form of “meta arms”, i.e., sub-decision problems with their own

sub-decisions, typically do not admit an index solution. This is so even if each sub-problem is

independent from the others, and even if one knows the solution to each independent sub-problem.

In the same vein, dependence or correlation between alternatives typically precludes an index solu-

tion. This is the case even if a subset of dependent alternatives evolves independently of all other

alternatives, and even if one knows how to optimally choose among the dependent alternatives in

12The proof must be adjusted to accommodate for the auxiliary alternatives introduced as the result of the DM
exploring the physical alternatives. Since all the steps are virtually the same, the proof is omitted.
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each given subset in isolation.

Consider the following extension of the environment described in the main text. There are k ∈ N
sets of arms, K1, ...,Kk. Arms from different sets evolve independently of one another, but the state

of each arm within a set may depend on the state of other arms from the same set. More generally,

suppose that each arm corresponds to a “meta arm”, the activation of which involves decisions other

than when to stop using it. Each meta arm has its own decision process which is independent of

the other meta arms.

Clearly, the model in the main body of the paper is a special case of this richer setting. Suppose

that, for each set of arms Ki, one can compute the optimal sequence of pulls, independently of the

other sets of arms. Equivalently, suppose that for each “meta arm” one can compute the optimal

sequence of decisions that define the usage of that arm, independently of the solution to the other

meta arms’ problems. It is tempting to conjecture that one may then assign an independent index

to each set of arms Ki (alternatively, to each “meta arm”) and that the optimal policy for the overall

problem reduces to an index policy, whereby the meta arm with the highest index is selected in

each period.

Perhaps surprisingly, the optimal policy for this enriched problem does not admit an index

representation. When arms are not defined as in the canonical multi-armed bandit problem, but

rather feature a more complicated internal decision problem (preserving the independence across

arms), the optimal policy need not be an index policy. The following example illustrates.

Example S.3. There are two arms. Arm 1 yields a reward of 1,000 when it is first pulled. In all

subsequent pulls, it yields a reward λ, where λ is initially unknown and may be either 1 or 10, with

equal probability. After the first pull of arm 1, λ is perfectly revealed and is fully persistent. Arm

2 is a “meta arm” corresponding to the following decision problem. When the decision maker pulls

arm 2 for the first time, she must also choose how to pull it. There are two ways to pull this arm,

2(A) and 2(B). If the decision maker selects 2(A), the arm yields a reward of 100 for a single period,

followed by no rewards thereafter. If, instead, the decision maker selects 2(B), the arm yields a

reward equal to 11 in each of its subsequent pulls. The choice of which version of arm 2 to use must

be made the first time that arm 2 is pulled and can not be reversed.

Assume δ = 0.9. The optimal policy for this problem is the following. In period 1, arm 1 is

pulled. If λ = 10, then arm 2 in version 2(A) is then pulled for a single period, followed by arm

1 again in all subsequent periods. If, instead, λ = 1, arm 2 is then pulled in version 2(B) in all

subsequent periods. Note that, under the optimal policy, the decision of how to use arm 2 depends

on the realization of arm 1’s first pull. It is then evident that the optimal policy is not an index

policy, no matter how one defines the indices. This is because an index policy requires that both

the index of each arm and its utilization (when an arm can be used in different versions, as in the

case of “meta arm” 2 in this example) be invariant in the results of the activation of all other arms.
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