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Abstract

A decision-maker alternates between exploring alternatives in the consideration set and
expanding the latter. When the expansion technology is stationary, or improving, alter-
natives are replaced at each expansion. When, instead, it deteriorates, alternatives are
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boxes in Weitzman’s (1979) Pandora’s problem. When applied to online consumer search,
it (a) endogenizes click-through rates and values per click in sponsored search auctions,
(b) explains the phenomenon of non-sequential-non-cascading clicking, and (c) illustrates
why the generalized second-price auction may lead to inefficient assignments even under its
ascending-clock implementation.
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1 Introduction

Classic models of sequential experimentation or learning involve a decision-maker (hereafter,

DM) exploring a fixed set of alternatives with unknown returns. Yet, a ubiquitous feature of

many dynamic decision problems is that the set of alternatives a DM can explore is expanded

over time, in response to the information gathered by exploring the alternatives already in the

consideration set (hereafter, CS).

In this paper, we study the tradeoff between the exploration of alternatives already in the

CS and the expansion of the latter through search for additional alternatives. A key difference

between exploration and expansion is the direct vs indirect nature of the two activities. When

an alternative is in the CS, the DM can “point to it,” that is, she can choose to explore that

particular alternative instead of others. When, instead, an alternative is outside the CS, the DM

cannot point to it, meaning that she cannot choose to explore that specific alternative instead of

others.1 This inability may reflect natural randomness in the search process, which may bring

to the CS alternatives different from those the DM was looking for. Alternatively, search may

bring more than a single alternative and such batching may have implications for the decision

to expand the CS in the first place. Finally, the DM may have limited knowledge about the

alternatives outside the CS, and/or her ability to bring new alternatives to it, and may revise

her beliefs about the “search technology” based on the results of past searches.

To study the tradeoff between exploration of alternatives already in the CS and expansion of

the latter, we consider a generalization of the classic multi-armed bandit problem in which the

set of “arms” is endogenous . Exploring an alternative already in the CS (pulling an arm) yields a

flow payoff and generates information (for example, about the distribution from which the flow

payoff is drawn). Searching for new “arms” (that is, choosing to expand the CS) is costly and

brings a random set of new alternatives (i.e., of arms).

The solution to the above problem takes the form of an “index” policy. Each alternative

in the CS is assigned a history-dependent number that is a function only of the state of that

alternative. This number (the arm’s “index”) is the same as in Gittins and Jones’ (1974) original

work on bandit problems with an exogenous set of arms. Search (that is, the decision to expand

the CS) is also assigned an index, which depends only on the state of the search technology.

Crucially, the search index does not depend on the information generated by the exploration of

any of the alternatives already in the CS. It also differs from the value the DM attaches to the

expansion of the CS but is linked to the indexes of the new alternatives the DM expects to find

through current and future searches. The optimal policy consists in selecting at any period the

alternative for which the index is the highest.

1Likewise, the DM cannot choose to bring a specific alternative from outside of the CS into the CS: If she
could, there would be no distinction between exploring alternatives inside and outside the CS, making the latter
irrelevant.
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Our environment can be viewed as a special case of the branching problem in the operations-

research literature, where certain arms, after being activated, branch into new ones and then

disappear (see, e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale, 2003). In our problem,

the decision to expand the CS corresponds to the activation of a branching arm that yields

negative rewards (in the form of search costs) and brings a stochastic set of new arms according

to a distribution that depends on the results of past searches.

Our proof of indexability is based on a novel recursive characterization of the search index

which facilitates its computation and permits us to uncover various properties of the dynamics

of exploration and CS-expansion that are relevant for economic applications. At any point in

time, the decision to search for new alternatives depends on the current CS only through (a) the

value of the alternative with the highest index, and (b) the state of the search technology. This

property holds despite the fact that the opportunity cost of searching for new alternatives (which

is linked to the value of continuing with the current CS) depends on the entire composition of

the current CS. Similarly, conditional on forgoing search in a given period, the decision of which

alternative to explore in the current CS is independent of the search technology, despite the fact

that search may bring alternatives that are more similar to certain alternatives currently in the CS

than others.2 If the search technology is stationary, or improving, in a sense made precise below,

then alternatives in the CS at the time of its expansion never receive attention in the future,

and hence are effectively discarded once the CS is expanded. Each search is then equivalent to

replacement of the current CS with a new one. When, instead, the search technology deteriorates

over time (e.g., because the DM becomes pessimistic about the possibility of finding attractive

new alternatives), the alternatives in the current CS are put on hold and may be revisited after

the CS is expanded. Furthermore, in this case, the decision to expand the CS is made as if there

will be no further expansions after the current one.

The analysis can be applied to a broad class of experimentation and/or sequential learning

problems of interest in economics. In the paper, we first show how the model permits one

to endogenize the set of boxes in Weitzman’s (1979) “Pandora’s problem” where the index of

search has a natural interpretation in terms of the prizes of the various types of boxes that

the DM expects to bring to the CS. We then apply the results to the problem of a consumer

searching online for new products. The model permits us to endogenize both the probability

with which any given ad is clicked, and a firm’s value per click (with the latter varying with

the position the ad occupies) that result from a consumer’s search. The results also provide

an explanation for clicking patterns that have been observed in empirical work but that are

2These properties can be seen as a generalization of the IIA (independence of irrelevant alternatives) property
of classic multi-armed bandit problems. What makes this problem different from the classic one enriched with
a “meta” arm that comprises all the alternatives brought to the CS by search is that the evaluation of such a
“meta” arm requires knowing how to subsequently explore the arms that search brings to the CS, which is what is
investigated in the first place. Furthermore, dynamic problems with “meta” arms rarely admit an index solution.
See also the discussion in footnote 22.
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inconsistent with the properties of existing models used in the literature. Finally, the analysis

has important implications for the efficiency of the allocations induced by the auctions typically

used to allocate ad space, as discussed below.

Pandora’s problem with an endogenous set of boxes. In Weitzman (1979)’s problem,

the DM faces an exogenous set of boxes, each containing a prize of unknown value drawn from

a known distribution. Opening a box reveals its prize, is costly (with the cost box-specific), and

is necessary to collect its prize. The DM can collect only one prize among any of the opened

boxes, and must choose the optimal sequence of inspections as well as when to stop. We extend

this problem by allowing the DM, at any period, to choose between opening a box among those

in the CS, or expanding the latter by searching for new boxes. The outcome of each search is

stochastic and brings to the CS a new set of boxes whose characteristics are unknown at the time

of the expansion but may depend on the composition of the current CS. Our solution generalizes

Weitzman (1979)’s by introducing an appropriate reservation price for each expansion of the CS,

which we characterize using our recursive description of the search index.

Online consumer search. As an illustration of the usefulness of the model and its key

results in concrete economic applications, we consider the problem of a consumer alternating

between (a) reading new ads (bringing the corresponding products to the CS), (b) clicking on

the ads of those products already in the CS (revealing the products’ value to the consumer, net

of the purchasing price), and (c) finalizing the purchase with one of the visited vendors. We

show how our results can be used to describe the selection of the various products by means

of a comparison of the products’ “discovery values.” The latter generalize the “effective values”

of Choi, Dai and Kim (2018)’s eventual purchase theorem by accounting for the uncertainty

the consumer faces about the ads that occupy the various positions. The results also provide

a structural relationship between the ads’ positions and their click-through rates (CTRs)—that

is, the ratio of users who click on the link directing to a vendor’s webpage after reading the ad

displayed at a given position.

Other models used to study online consumer search typically assume that positions’ CTRs

are either exogenous (see, e.g., Edelman et al., 2007) or are such that consumers click on the ads

in the order in which the ads are displayed, which implies that firms advertising on a platform

experience externalities only from the ads displayed at higher positions than the one their ad

occupies (see, e.g., Athey and Ellison, 2011). Neither assumption seems to square well with

empirical findings. For example, Jeziorski and Segal (2015) show that (a) approximately half of

the users do not click on ads sequentially in the order they are displayed (non-sequential clicking),

(b) over half of the users who click more than once, click on a higher position’s ad after clicking

on a lower position’s ad (non-cascading clicking), and (c) the rate at which an ad at a given

position is clicked upon depends not only on the ads displayed at higher positions but also on

the ads displayed at lower positions (externalities from lower positions). These phenomena are
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consistent with the dynamics in our model.3

The model also explains why CTRs need not be monotone in the ads’ positions, even when

the purchasing probabilities are. More generally, the analysis delivers a structural relationship

relating the probability each product is purchased to the primitives of the problem (consumers’

realized values, ads’ positions, search costs, and consumer’s beliefs over the attractiveness of the

products displayed at the various positions). Such relationship also provides a characterization

of the firms’ value per click (VPC), and shows why the latter are naturally position-specific.

These results have implications for bidding in sponsored-search auctions and for the efficiency

of the allocations sustained in equilibrium. For example, we use them to show that the generalized

second-price auction may lead to inefficient assignments even under the ascending-price imple-

mentation considered in the literature (see, e.g., Edelman et al., 2007 and Gomes and Sweeney

(2014)). The model also explains why a firm advertising on a platform may experience a decline

in its profits when the probability that it displays ads for additional products at downstream

positions increases. Such a decline can happen even if the extra ad is unambiguously profitable

when brought exogenously to the consumer’s CS.

Other applications. The model, along with the characterization of the optimal policy and

its implications for the dynamics of exploration and CS expansion, can also be applied to various

other problems of interest in economics in which the endogeneity of the CS is important, such

as the problem of a search committee alternating between evaluating known candidates and

searching for additional ones, the administration of medical products when physicians can search

for new treatments after observing disappointing results with known ones, and clinical trials,

where firms alternate between testing existing products and conducting basic R&D activities

that may lead to the eventual discovery of new products, with all products requiring regulatory

approval before they can be brought to the market.

Outline. The rest of the paper is organized as follows. The remainder of this section dis-

cusses the paper’s contribution vis-a-vis the pertinent literature. Section 2 introduces the model.

Section 3 characterizes the optimal policy and identifies key properties for the dynamics of exper-

imentation and CS expansion. Section 4 contains results for the extension of Weitzman (1979)’s

Pandora’s boxes problem to a setting with endogenous boxes. Section 5 contains all the results

for our primary application, online consumer search. Finally, Section 6 concludes with a brief

discussion of and a few possible enrichments of the baseline model. All proofs are either in the

Appendix at the end of the document or in the online Supplement.

3The endogeneity of the CS is important. A sequential search model in which the set of products is known to
the consumer from the outset (such as Weitzman’s Pandora’s boxes model with an exogenous set of boxes) fails
to deliver any structural relationship between the positions at which the ads are displayed and the corresponding
CTRs.
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1.1 Related literature

To the best of our knowledge, the problem studied in the present paper (where the DM alternates

between exploring “arms” already in the CS and stochastically expanding the latter) is new. As

mentioned above, this problem can be viewed as a special case of the branching problem in

the operations-research literature (see, e.g., Weiss, 1988, Weber, 1992, and Keller and Oldale,

2003). The recursive characterization of the index for CS-expansion is new and exploits a novel

classification of the alternatives into “categories,” with the latter summarizing all characteristics

of the arms that are relevant for the dynamics of the technology governing the expansion of the

CS. This characterization permits us to arrive at a novel representation of the DM’s payoff under

the index policy, which we use to establish the optimality of such a policy. Importantly, the same

recursive characterization is also crucial for the characterization of the dynamics of exploration

and CS expansion, and favors the computation of the index. When applied to relevant economic

environments, the characterization permits us to uncover new insights.

The paper is also related to the literature on experimentation and sequential learning with an

exogenous CS.4 Most closely related are Weitzman (1979), Austen-Smith and Martinelli (2018),

Fudenberg, Strack and Strzalecki (2018), Gossner, Steiner and Stewart (2021), Ke and Villas-Boas

(2019), and Ke, Shen, and Villas-Boas (2016). The problem studied in these papers involves a

DM acquiring costly information about a set of options before stopping and choosing one of them.

Related are also Che and Mierendorff (2019) and Liang, Mu, and Syrgkanis (2022). The first

paper studies the optimal sequential allocation of attention to two different signal sources biased

towards alternative actions. The second paper studies the dynamic acquisition of information

about an unknown Gaussian state. In all of these papers, the set of alternatives is fixed ex-ante.

In our model, instead, the DM expands the CS over time in response to the information she

collects about the alternatives already in it. Related are also Garfagnini and Strulovici (2016)

and Carnehl and Schneider (2023). The first paper considers a setting where successive (forward-

looking) agents experiment with endogenous technologies; trying “radically” new technologies

reduces the cost of experimenting with similar technologies, which effectively expands the set

of affordable technologies.5 The second paper studies the time-risk tradeoff of an agent who

wishes to solve a problem before a deadline and allocates her time between implementing a given

method and developing (and then implementing) a new one. While, at a high level, the problems

examined in these papers are related to ours in that they also consider environments in which the

set of alternatives expands over time, both the models and the questions addressed are different.

In Fershtman and Pavan (2021), we study “soft” affirmative-action policies in a setting in

4See Bergemann and Välimäki (2008) for an overview of applications of multi-armed-bandit problems in
economics.

5Technologies are interdependent in their environment. In particular, a radically new technology is informative
about the value of similar technologies.
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which the candidate pool is endogenous.6 That paper studies the effects of changes in the search

technology on the recruitment of minority candidates. The present paper, instead, establishes

the optimality of an index policy, provides a recursive characterization of the index of search,

and shows the value of these results by applying them to the problem of online consumer search.

Section 4 extends Weitzman (1979) to a setting with an endogenous set of boxes. Despite

its many applications, relatively few extensions of Weitzman’s problem have been studied in the

literature. Notable exceptions include Olszewski and Weber (2015), Choi and Smith (2016), and

Doval (2018). In these papers, though, the set of boxes is fixed.

The application to online consumer search in Section 5 is related to recent work by Choi, Dai

and Kim (2018) who derive an “eventual-purchase theorem” relating the probability each product

is selected to the primitives of the environment, in a setting with a fixed CS.7 Our contribution

is in showing how the purchasing probabilities change when accounting for the (endogenous

gradual resolution of the) uncertainty the consumer faces about the products occupying the

various positions. The analysis in this section is also related to the literature on sponsored

search (in addition to the papers by Edelman et al., 2007, Athey and Ellison, 2011, and Gomes

and Sweeney, 2014, cited above, see also Edelman and Schwarz, 2010 and the references therein).

As mentioned above, our contribution is in showing how the model of sequential search with

endogenous CS permits one to endogenize the CTRs and the VPCs (with the latter naturally

varying with the position occupied by the ads), and generates predictions about the dynamics

of clicking and purchases that are consistent with the findings in the empirical literature, as

reported in Jeziorski and Segal (2015). The same application is also related to independent work

by Greminger (2021). While that paper focuses on the comparison between direct and indirect

search, we use the model to (a) endogenize the CTRs and VPCs, (b) show how the uncertainty

about the ads occupying the different positions can lead to non-sequential and non-cascading

clicking, (c) derive implications for bidding and the efficiency of the equilibrium allocations of

the auctions typically considered in the literature, and (d) study the effects of additional ad space

on firms’ profits.8

Finally, the paper is part of a fast-growing literature on CS.9 Eliaz and Spiegler (2011) study

implications of different CS on firms’ behavior, assuming such sets are exogenous. Manzini

and Mariotti (2014) and Masatlioglu, Nakajima, and Ozbay (2012), instead, identify CS from

choice behavior. Caplin, Dean, and Leahy (2019) provide necessary and sufficient conditions for

6See also Bardhi, Guo, and Strulovici (2021) for the effects of initial asymmetries across alternatives on the
alternatives’ long-run utilization, and their implications for minority hiring.

7See also Armstrong and Vickers (2015) and Armstrong (2017) for related results in settings with an exogenous
CS.

8The model in that paper is a special version of the one in Subsection 5 in which payoffs are additively separable
in an observable and an unobservable component.

9For the earlier marketing literature, see, e.g., Hauser and Wernerfelt (1990) and Roberts and Lattin (1991).
For a survey of recent developments, see Honka et al (2019).
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rationally-inattentive agents to focus on a subset of all available choices, thus endogenizing the

CS. Simon (1955) considers a sequential search model in which alternatives are examined until a

“satisfying” alternative is found. Caplin, Dean, and Martin (2011) show that the rule in Simon

(1955) can be viewed as resulting from an optimal procedure when there are information costs.

Our analysis complements the one in this literature by providing a dynamic micro-foundation

for endogenous CS. Rather than committing to a CS up front and proceeding to evaluate its

alternatives, the DM gradually expands the CS, in response to the results obtained from the

exploration of the alternatives in the set.

2 Model

In each period t = 0, 1, 2, ..., the DM chooses between exploring one of the alternatives within

her CS and expanding the CS by searching for additional alternatives. Exploring an alternative

generates information about it and yields a (possibly negative) flow payoff. Expanding the CS

yields a stochastic set of new alternatives, which are added to the CS and can be explored in

subsequent periods.

Consideration sets. Denote by Ct ≡ (0, ..., nt) the period-t CS, with nt ∈ N. Ct comprises

all alternatives i = 0, ..., nt that the DM can explore in period t, with the initial set C0 ≡ (0, ..., n0)

specified exogenously and with alternative 0 corresponding to the selection of the DM’s outside

option, yielding a payoff normalized to zero. Given Ct, expansion of the CS in period t (that

is, search) brings a set of new alternatives Ct+1\Ct = (nt + 1, ..., nt+1) which are added to the

current CS and expand the latter from Ct to Ct+1.

Alternatives, categories, learning, and payoffs. Each alternative belongs to a fixed

category ξ ∈ Ξ that is observed by the DM when the alternative is brought to the CS.10 A category

contains information about an alternative’s experimentation technology and payoff process. Let

µ ∈ R denote a fixed unknown parameter about the alternative that the DM is learning about,

with µ drawn from a distribution Γξ. When the DM explores the alternative, she observes a signal

realization about µ. Let m − 1 ∈ N denote the number of past explorations of an alternative,

and ϑm−1 ≡ (ϑs)
m−1
s=0 its history of past signal realizations, with ϑ0 ≡ ∅. When the DM explores

the alternative for the m-th time, she receives an additional signal ϑm about it, drawn from some

distribution Gξ(ϑ
m−1;µ) and updates her beliefs about µ using Bayes’ rule. Importantly, signal

realizations are drawn independently across alternatives, given the alternatives’ categories. The

flow payoff u that the DM obtains from exploring an alternative from category ξ with parameter

µ for the m-th time is drawn from a distribution Lξ(m;µ). The latter does not depend on the

times at which the alternative was explored – only on the number of times it was explored and

the realizations of past explorations.11

10The set of categories, Ξ, is measurable and need not be finite.
11The assumption that ξ is observable implies that the distribution Γξ from which µ is drawn is known to
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The search (expansion) technology. When DM searches for the k-th time, she incurs

a cost ck and discovers alternatives of different categories. Let Ek = (nk(ξ) : ξ ∈ Ξ) denote

the complete description of the alternatives identified through the k-th search, with nk(ξ) ∈ N
representing the number of category-ξ alternatives discovered. Let (ck, Ek)

m−1
k=0 denote the history

of the past m−1 search outcomes. Given (ck, Ek)
m−1
k=0 , the m-th search outcome (cm, Em) is drawn

from a distribution J((ck, Ek)
m−1
k=0 ) that is independent of calendar time, with (c0, E0) ≡ ∅. The

dependence of J on the history of past search outcomes allows us to capture, for example, learning

about the effectiveness of search, as well as changes in the DM’s ability to find new alternatives

(e.g., learning by doing and/or fatigue).

The classification of alternatives into categories allows us to keep track of all relevant infor-

mation about the evolution of the search technology. In particular, it allows the outcome of each

search to depend on the composition of the CS while still permitting an index characterization

of the optimal policy. In an environment with an exogenous CS, categories play no role and one

can simply let each alternative belong to its own category. With an endogenous CS, instead,

categories permit us to identify common information among the alternatives in the CS that is

responsible for the outcomes of future searches.

Objective. A policy χ for the decision problem described above is a rule specifying, for each

period t, whether to experiment with one of the alternatives in the CS Ct or expand the latter

through search. A policy χ is optimal if, after each period t, it maximizes the expected discounted

sum Eχ [
∑∞

s=t δ
sUs|St] of the flow payoffs, where δ ∈ (0, 1) denotes the discount factor, Us denotes

the flow period-s payoff (with the latter equal to the search cost in case search is conducted in

period s), St denotes the state of the problem in period t (the latter specifies, for each alternative

in the CS, the history of signals, along with the history of all past search outcomes; see Section 3

for the formal definition) and Eχ [·|St] denotes the expectation under the endogenous process for

the flow payoffs obtained by starting from the state St and following the policy χ at each period

s ≥ t. To guarantee that the process of the expected payoffs is well behaved, we assume that,

for any t, any St and any χ, δtEχ [
∑∞

s=t δ
sUs|St]→ 0 as t→∞.12

Remark. The model above describes an infinite-horizon experimentation problem (aug-

mented by search) in which payoffs are accumulated alongside learning. However, flow payoffs

and learning need not be intertwined. In Sections 4-5, we consider settings in which the DM

sequentially decides between learning about alternatives in the CS and expanding the CS, until

a final choice is made among the alternatives in the CS, ending the decision problem. In the

online Supplement, we discuss how the results extend to a broader family of problems where the

the DM after the alternative’s category ξ is learned (which occurs at the time the alternative is brought to the
CS). Note, however, that the distribution Gξ(ϑ

m−1;µ) from which the m-th signal ϑm is drawn, as well as the
distribution Lξ(m;µ) from which the m-th reward is drawn, are not fully known to the DM because they depend
on µ, which is unknown to the DM.

12This property is immediately satisfied if payoffs and costs are uniformly bounded; its role is to guarantee that
the solution to the Bellman equation of the above dynamic program coincides with the true value function.
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DM needs to irreversibly stop learning in order to be able to a accumulate rewards.

3 Optimal Policy and Key Implications

To facilitate the characterization of the optimal policy, we start by introducing the following

notation. Denote by θ a generic sequence of signal realizations about an alternative; that is, θ is

given by ϑm ≡ (ϑs)
m
s=1 for some m. Denote by ωP = (ξ, θ) an alternative’s state, and by ΩP the

set of all possible states of an alternative.13 While the category ξ is fixed, the history θ of past

signal realizations changes over time as the result of the information that the DM accumulates

about the alternative through past explorations. Similarly, the state of the search technology is

given by the history of past search outcomes, that is, ωS = (ck, Ek)
m−1
k=0 for some m. Denote the

set of the possible states of search by ΩS.

The state of the decision problem is given by the pair S ≡ (ωS,SP ), where SP is the state of

the current CS ; formally, SP : ΩP → N is a counting function that specifies for each possible state

of an alternative ωP ∈ ΩP , the number of alternatives in the CS in that state. Let Ω ≡ ΩP ∪ΩS.14

Denote by St the state of the decision problem at the beginning of period t. This representation

of the decision problem keeps track of all relevant information in a parsimonious way and, as will

become clear below, greatly facilitates the analysis.

Remark. The time-varying component θ of each alternative’s state ωP = (ξ, θ) admits

interpretations other than the signals about a fixed unknown parameter µ. In particular, all

of our results apply to a broader class of problems where θ evolves as the result of “shocks”

that need not reflect the accumulation of information. For example, such shocks may reflect

endogenous variations in preferences, as in certain habit-formation or learning-by-doing models.

Furthermore, because no assumptions are made on the distributions Lξ(m;µ) and Gξ(ϑ
m−1;µ)

from which the payoffs and the signals are drawn, the analysis accommodates for cases where

payoffs themselves carry information, as well as cases where information arrives without any

accompanying rewards.

3.1 Optimal Policy

We now characterize the optimal policy and discuss its implications for the dynamics of exper-

imentation and CS expansion. Recall that a policy χ for the decision problem above specifies,

for each period t and each period-t state St, whether to experiment with one of the alternatives

in the CS or expand the latter through search. Clearly, because the entire decision problem is

13The initial state of each alternative from category ξ, before the DM explores it, is (ξ, ∅). The superscript P
in ωP is meant to highlight the fact that this is the state of a “physical” alternative in the CS, not the state of
the search technology, or the overall state of the decision problem, defined below.

14Note that ΩP ∩ ΩS = ∅.

9



time-homogeneous (independent of calendar time), so is the optimal policy.15

For each state ωP of an alternative, let16

IP (ωP ) ≡ sup
τ>0

E
[∑τ−1

s=0 δ
sus|ωP

]
E
[∑τ−1

s=0 δ
s|ωP

] , (1)

denote the “index” of each alternative in the CS in state ωP , where τ denotes a stopping time

(that is, a rule prescribing when to stop, as a function of the observed signal realizations), and

where us denotes the flow payoff from the alternative’s s-th exploration. The definition in (1) is

equivalent to the one in Gittins and Jones (1974). As is well known, the optimal stopping rule

in the definition of the index is the first period (after the one at which the index is computed)

at which the index falls weakly below the value at the time the index was computed (see, e.g.,

Mandelbaum, 1986).

Given each state S = (ωS,SP ) of the decision problem, denote the maximal index among the

alternatives within the CS by I∗(SP ).17

We now define an index for search (i.e., expansion of the CS). This index depends on the state

ωP (ξ, θ) only through the alternative’s category ξ, with the latter contributing to the state ωS of

the search technology.18 Analogously to the indexes defined above, the index for search is defined

as the maximal expected average discounted net payoff, per unit of expected discounted time,

obtained between the current period and an optimal stopping time. Contrary to the standard

indexes, however, the maximization is not just over the stopping time, but also over the rule

governing the selection among the new alternatives brought to the CS by the current and further

searches. Denote by τ a stopping time, and by π a rule prescribing, for any period s between the

current one and the stopping time τ , either the selection of one of the new alternatives brought

to the CS by search or further search. Importantly, π selects only among search and alternatives

that are not already in the CS when the decision to search is made.19

Formally, given the state of the search technology ωS, the index for search is defined by

IS(ωS) ≡ sup
π,τ

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

] , (2)

where Us denotes the flow payoff from the s-th decision taken under the rule π (with this decision

15That is, for any two periods t and t′ such that St = St′ , the decisions specified by the optimal policy for the
two periods are the same.

16The expectations in (1) are under the process obtained by selecting the given alternative in all periods.
17Formally, I∗(SP ) ≡ maxωP∈{ω̂P∈ΩP :SP (ω̂P )>0}I(ωP ).
18That is, the index depends on the state of each alternative in the CS only through the information that the

latter state contains for the state ωS of the search technology.
19Suppose the index for search is computed in period t when the state of the search technology is ωS . Then,

for each period t < s < τ , π selects between further search and the selection of alternatives in the CS at period s
that were not in the CS in period t.
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taking the form of further search – in which case Us is the stochastic cost of search – or exploration

of one of the alternatives brought to the CS by searches following the one for which the index

is computed, in which case Us is the stochastic payoff associated with the exploration of the

alternative), and where the expectations are under the process generated by the rule π.

Definition 1 (Index policy). The index policy χ∗ selects at each period t the option with the

greatest index given the overall state St = (ωS,SP ) of the decision problem: search if IS(ωS) ≥
I∗(SP ), and an arbitrary alternative with index I∗(SP ) if IS(ωS) < I∗(SP ).20

Ties between alternatives are broken arbitrarily. In order to maintain consistency throughout

the analysis, we assume that, when IS(ωS) = I∗(SP ), search is carried out. To characterize the

optimal policy, we first introduce the following notation. Let κ(v) ∈ N ∪ {∞} denote the first

time at which, when the DM follows the index policy χ∗, (a) the search technology reaches a

state in which its index is no greater than v, and (b) all alternatives in the CS – regardless of

when they were introduced into it – have an index no greater than v. That is, κ(v) is the minimal

number of periods until all indexes are weakly below v (κ(v) =∞ if this event never occurs).21

Let V∗(S0) ≡ (1− δ) supχ Eχ [
∑∞

t=0 δ
tUt|S0] denote the supremum expected per-period payoff

the DM can attain across all feasible policies χ, given the initial state S0.

Theorem 1 (Optimal policy).

1. The policy χ∗ is optimal in the sequential experimentation problem with endogenous CS.

2. The index for search, as defined in (2), satisfies the following recursive representation. For

any ωS ∈ ΩS,

IS(ωS) =
Eχ∗

[∑τ∗−1
s=0 δsUs|ωS

]
Eχ∗

[∑τ∗−1
s=0 δs|ωS

] , (3)

where τ ∗ is the first time (strictly after the one at which the index is computed) at which

IS and all the indexes of the new alternatives brought to the CS by current and subsequent

searches fall weakly below the value IS(ωS) of the search index when search was launched,

and where the expectations are under the process induced by the index policy χ∗.

3. The DM’s expected (per-period) payoff under the index policy χ∗ is equal to∫ ∞
0

(
1− Eχ

∗
[
δκ(v)|S0

])
dv. (4)

20Recall that I∗(SP ) is the largest index among the alternatives in the CS.
21Note that between the current period and the first period at which all indexes are weakly below v, if the DM

searches, new alternatives are added to the CS, in which case the evolution of their indexes is also taken into
account in the calculation of κ(v).
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As in the classic multi-armed bandit problem with exogenous CS, independence across alter-

natives is the key assumption behind the optimality of the index policy. That is, the payoffs (and

the signals) from the various alternatives are drawn independently across the alternatives, given

the latter’s categories, and the set of new alternatives brought to the CS at each expansion only

depends on the state of the current CS through the number of alternatives from each category

in the CS. Under such assumptions, the theorem establishes a generalization of the Gittins-index

Theorem, according to which selecting in each period the alternative, or search, with the high-

est index is optimal.22 Part (ii) characterizes the stopping time in the index of search. Such

recursive representation facilitates an explicit characterization of the index in applications, and

permits us to identify various properties of the dynamics of experimentation and CS expansion

that are useful for comparative statics and for our proof of indexability. Finally, part (iii) offers

a convenient representation of the DM’s payoff under the optimal rule that can be used, among

other things, to determine the DM’s willingness to pay for changes in the search technology

with limited knowledge about the details of the environment (see also the discussion in the next

subsection).

3.2 Implications for Exploration and Expansion Dynamics

We now highlight several properties of the dynamics of exploration and CS expansion, under the

optimal policy. To do so, we first describe properties the search technology may satisfy.

Definition 2 (Search technology). (i) A search technology is stationary if , given any two

states of the search technology ωS = (cj, Ej)
m
j=0 and ω̂S = (ĉj, Êj)

m̂
j=0, J(ωS) = J(ω̂S). (ii) A

search technology is deteriorating if, given any state ωS = (cj, Ej)
m
j=0 and subsequent state

ω̂S =
(
(cj, Ej)

m
j=0, (cj, Ej)

m+s
j=m+1

)
, m, s ∈ N, the distribution J(ωS) first-order stochastically dom-

inates the distribution J(ω̂S). (iii) A search technology is improving if, for any state ωS and

subsequent state ω̂S, as defined in part (ii), J(ω̂S) first-order stochastically dominates J(ωS).23

22The reason why indexability of the optimal policy is not obvious is that search is a “meta” arm bringing
alternatives that one needs to process optimally once brought to the CS. While our results imply that search can
effectively be treated as a meta arm with its own index, the result is not a priori warranted. Indeed, problems in
which alternatives correspond to meta arms, i.e., to sub-problems with their own sub-decisions (sometimes referred
to as super-processes), typically do not admit an index solution, even if each sub-problem is independent from
the others, and even if one knows the solution to each independent sub-problem. In the same vein, dependence,
or correlation, between alternatives typically precludes indexability. This is so even if each subset of dependent
alternatives evolves independently of all other subsets, and even if one knows how to optimally choose among
the dependent alternatives in each subset in isolation. We provide an example illustrating these difficulties in the
online Supplement.

23That is, the search technology is deteriorating if, regardless of the outcome of past searches, for any k and
any upper set A ⊂ R × N|Ξ| (that is, any set A ⊂ R × N|Ξ| such that for each a1, a2 ∈ R × N|Ξ| with a2 ≥ a1,
a2 ∈ A if a1 ∈ A), one has that Pr((−ck+1, Ek+1) ∈ A) ≤ Pr((−ck, Ek) ∈ A). This definition is quite strong. In
more specific environments, such as those in Sections 4 and 5 where there is an order on the set of categories Ξ,
weaker definitions are consistent with the results below.
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The next result uses the recursive characterization in Theorem 1 to identify various properties

of the dynamics of exploration and expansion of the CS, which are useful in applied work.

Proposition 1 (Properties of the optimal exploration vs CS expansion dynamics).

1. Invariance of expansion to CS composition: At any period, the decision to expand

the CS is invariant to the composition of the CS, conditional on the value I∗(SP ) of the

alternative with the highest index, and the state ωS of the search technology.

2. Independence of Irrelevant Alternatives: At any period t, for any pair of alternatives

i, j ∈ Ct with i 6= j, the choice between exploring alternative i or exploring alternative j is

invariant to the period-t state ωS of the search technology.

3. Possible irrelevance of improvements in search technology: An improvement in

the search technology increasing the probability of finding alternatives of positive expected

value (vis-a-vis the outside option) need not affect the decision to expand the CS even at

histories at which, prior to the improvement, the DM is indifferent between expanding the

CS and exploring one of the alternatives already in it.

4. Stationary value function: If the search technology is stationary, for any two states S,

S ′ at which the DM expands the CS, V∗(S) = V∗(S ′).

5. Stationary replacement: If the search technology is stationary or improving and search

is carried out at period t, without loss of optimality, the DM never comes back to any

alternative in the CS at period t.

6. Single search ahead: If the search technology is stationary or deteriorating, at any

history, the decision to expand the CS is the same as in a fictitious environment in which

the DM expects she will have only one further opportunity to search.

7. Pricing formula: Consider two states S0 = (SP , ωS) and Ŝ0 = (SP , ω̂S) that differ only

in terms of the state of the search technology. The DM’s willingness-to-pay to change the

state of the search technology from ωS to ω̂S is equal to

P∗(SP , ωS , ω̂S) =

∫ ∞
0

(
E
[
δκ(v)|SP , ω̂S

]
− E

[
δκ(v)|SP , ωS

])
dv.

Part 1 of the proposition is an implication of Theorem 1. The result is not trivial, however,

because the opportunity cost of expanding the CS (i.e., the value of continuing with the current

CS) may well depend on the entire composition of the CS, beyond the information contained in

I∗(SP ) and ωS.
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Part 2 also follows from Theorem 1. Starting with each period t, the relative amount of

time the DM spends on each pair of alternatives in the period-t CS is invariant to what the DM

expects to find by expanding the CS. This is true despite the fact that further expansions of the

CS may bring alternatives that are more similar to one alternative than the other.

Part 3 follows from the fact that improvements in the search technology need not imply an

increase in the index of search. This is because, as shown in part (ii) of Theorem 1, the optimal

stopping time in the index of search is the first time at which the index of search and the indexes

of all alternatives brought to the CS by the current and future searches fall weakly below the

value of the search index at the time the current search is launched. As a result, any improvement

in the search technology affecting only those alternatives whose index at the time of arrival is

below the value of the search index at the time search is launched does not affect the value of

the search index, and hence the decision to expand the CS.

Part 4 of the proposition says that the continuation value when search is launched is invariant

to the state of the CS. This follows from the fact that, without loss of optimality, the DM never

comes back to any alternative in the CS after search is launched. The same property holds in

case of improving search technologies. For Part 5, note that since the state of an alternative

changes only when the DM selects it, if, in period t, IS(ωS) ≥ I∗(SP ), under a stationary or

improving search technology, the same inequality remains true in all subsequent periods. Hence,

in this case, search corresponds to disposal of all alternatives in the current CS. Each time the

DM searches, she starts fresh.

Part 6 follows from the recursive characterization of the stopping time in the index of search,

as per part (ii) of Theorem 1. Recall that this time coincides with the first time at which the index

of any physical alternative brought to the CS by the current or future searches, and the index of

search itself, drop below the value of the search index at the time the current search is launched.

If the search technology is stationary, or deteriorating, the index of search falls (weakly) below

its current value immediately after search is launched. Hence, IS(ωS) is invariant to the outcome

of any search following the current one, conditional on ωS.

The final part of the proposition follows from part (iii) in Theorem 1, and can be used to price

changes in the search technology, with limited knowledge about the details of the environment.

To see this, suppose that the econometrician, the analyst, or a search engine, have enough data

about the average time it takes for an agent with an exogenous outside option equal to v ∈ R+

to exit and take the outside option, under different search technologies. Then by integrating over

the relevant values of the outside option one can compute the maximal price P∗(SP , ωS, ω̂S) that

the DM is willing to pay to change the search technology from ωS to ω̂S.
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4 Pandora’s Problem with Endogenous Set of Boxes

Consider the following variant of Weitzman’s (1979) “Pandora’s boxes problem,” in which the

set of boxes is endogenously expanded over time. Each alternative is a “box” and belongs to a

category ξ ∈ Ξ . To each category corresponds a pair (F ξ, λξ), where F ξ is the distribution from

which the box’s prize v is drawn and λξ is the cost of inspecting (i.e., of opening) the box. As

in Weitzman’s (1979) original setting, each box’s prize v is drawn independently (conditional on

the boxes’ categories) and revealed upon the first inspection.

At each period, the DM can either (a) search for additional boxes to add to the CS, (b) open

one of the boxes in the CS to learn its prize, or (c) stop and either recall the prize of one of the

previously opened boxes, or take the outside option (with a value normalized to 0), with either

one of the last two choices ending the decision problem. For simplicity (but also motivated by the

application to online consumer search in the next section), assume that each search m ∈ N brings

exactly one box, whose category ξ is drawn from Ξ according to a distribution ρ(m) ∈ ∆(Ξ),

which may depend on the number of past searches m − 1 but is invariant to the realizations of

such past searches. The draw from each ρ(m) is independent of the draw from each ρ(l), l 6= m.

We assume that Ξ ⊂ N, with higher ξ denoting superior boxes, in the sense that, for any

ξ′, ξ′′ ∈ Ξ with ξ′′ > ξ′, F ξ′′ �FOSD F ξ′ and λξ
′′ ≤ λξ

′
(with one of the two relationships strict).

Let ξ ≡ inf Ξ and ξ ≡ sup Ξ. The cost of the m-th expansion of the CS is c(m), where c(·) is a

positive and increasing function. In addition, we assume that, for all m, ρ(m) �FOSD ρ(m+ 1);

that is, the distribution ρ(m) ∈ ∆(Ξ) from which the category of the m-th box is drawn first-

order-stochastically dominates, weakly, the distribution ρ(m+1) ∈ ∆(Ξ) from which the category

of the (m+1)-th box is drawn. The combination of the assumption that c(m) is weakly increasing

in m and the distribution ρ(m) ∈ ∆(Ξ) from which the boxes are drawn “decreases” with m in a

FOSD sense implies that the index of search IS(m) defined below is decreasing in m and can be

characterized using the same properties as when the search technology deteriorates in the sense

of Definition 2 (as per part 6 of Proposition 1).

We denote by ρξ(m) the probability that the m-th search brings a ξ-box, with
∑

ξ∈Ξ ρ
ξ(m) = 1

for all m.24 As in the baseline model, the DM discounts the future according to δ.

The setting described above is one in which the decision to walk away with the prize of

an opened box, or the outside option, brings an end to the DM’s problem. The framework

described in Section 2, instead, has an infinite horizon, and the DM chooses indefinitely among

the alternatives. Despite this difference, we show that the solution to this problem takes the

form of an index policy akin to the one in Definition 1. Proposition 2 below characterizes the

optimal policy, prescribing when to search for an additional box, the order in which existing

boxes should be opened, and when to stop and either recall an opened box or the outside option.

24All the results extend to the case where Ξ is infinite.
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The proof (in the Appendix) maps the Pandora’s boxes problem with an endogenous set of boxes

into an auxiliary problem that fits into the setting of Section 2, and then uses Theorem 1 and

Proposition 1 to identify the properties of the optimal policy in Proposition 2.

Proposition 2 (Pandora’s-boxes with an endogenous set of boxes). For any ξ-box that

has not been opened yet (i.e., for which ωP = (ξ, ∅) for some ξ ∈ Ξ) the reservation price IP (ξ, ∅)
is given by the solution to:

IP (ξ, ∅) =

−λξ + δ
∫∞
IP (ξ,∅)

1−δ
vdF ξ(v)

1 + δ
1−δ

(
1− F ξ

(
IP (ξ,∅)

1−δ

)) . (5)

For any l ∈ R, let Ξ(l) ≡
{
ξ ∈ Ξ : IP (ξ, ∅) > l

}
denote the set of boxes whose reservation price

exceeds l. For any m, the reservation price of search IS(m) is given by the solution to:25

IS(m) =

−c(m) + δ
∑

ξ∈Ξ(IS(m)) ρ
ξ(m)

(
−λξ + δ

∫∞
IS(m)
1−δ

vdF ξ(v)

)
1 +

∑
ξ∈Ξ(IS(m)) ρ

ξ(m)
[
δ + δ2

1−δ

(
1− F ξ

(
IS(m)

1−δ

))] . (6)

The solution to Pandora’s-boxes problem with an endogenous CS takes the following form:

1. If the highest reservation price among all unopened boxes in the CS is greater than the

reservation price IS(m) of search, and is greater than the flow value (1−δ)v of each opened

box and the outside-option, the DM opens one of the boxes with the highest reservation price.

2. If the reservation price of search IS(m) is higher than the reservation price IP (ξ, ∅) of any

unopened box and of the flow value (1− δ)v of each opened box and the outside-option, the

DM searches.

3. If neither of the above two situations applies, the DM stops. He then takes the prize of one

of the opened boxes whose flow value (1− δ)v is the highest among the opened boxes if the

latter value exceeds the outside-option, and takes the outside-option otherwise.

As in Weitzman’s problem, the reservation prices IP (ξ, ∅) of the boxes that have not been

opened yet have the following interpretation.26 Suppose there are only two alternatives. One is

an unopened ξ-box and the other is a hypothetical box, whose prize is an annuity yielding K

in each period, where K is known. The reservation price is the value of K for which the DM

25Because all the relevant information about the state of the search technology is summarized in the number
of past searches, we abuse notation and let IS(m) denote the index for the m-th search.

26Weitzman defines the reservation price ÎP (ωP ) for ωP = (ξ, ∅) as the solution to λξ = δ
∫∞
ÎP (ωP )

(v −
ÎP (ωP ))dF ξ(v)− (1− δ)ÎP (ωP ), which yields
ÎP (ωP ) = [−λξ + δ

∫∞
ÎP (ωP )

vdF ξ(v)]/[1 − F ξ(ÎP (ωP ))]. The reservation prices in (5) are thus equal to those

in Weitzman (1979) multiplied by (1− δ), that is, IP (ωP ) = (1− δ)ÎP (ωP ).
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is indifferent between taking the hypothetical box (yielding a continuation payoff of K/(1− δ))
and inspecting the ξ-box while maintaining the option to recall the hypothetical box once the

prize v of the ξ-box is discovered.

The reservation price IS(m) of search extends this interpretation as follows. Suppose there

are two options: the hypothetical box with known value K described above, and the option of

expanding the CS. The reservation price of search is the value K for which the DM is indifferent

between taking the hypothetical box right away, and expanding the CS, maintaining the option to

take the hypothetical box either (a) once the category ξ of the newly discovered box is discovered

and IP (ξ, ∅) ≤ K, or (b), in case IP (ξ, ∅) > K, after the prize v of the newly discovered ξ-box

is learned and v ≤ K/(1− δ).

5 Application: Online Consumer Search

In the past two decades, internet advertising – and in particular, search advertising – has become

one of the most prominent channels through which consumers learn about, and purchase, goods

and services. Understanding the behavior of consumers in these markets is important in order

to better understand online advertising, its structure, and design.

Search advertising, which accounts for a large fraction of Internet advertising revenues due

to its effectiveness, describes a scenario where sponsored links are displayed alongside the results

of consumers’ search queries online.27 Search advertising has received significant attention, with

a particular focus on the behavior of firms in the auctions used in these markets, such as the

Generalized Second-Price (GSP) auction, and others. However, the behavior of consumers in

these markets – how they read and click ads, and which products they purchase – remains

largely under-explored. In particular, existing models of search advertising have often made

restrictive assumptions about users’ behavior, which do not appear to square well with empirical

studies.

In their analysis of consumer demand for search advertising, Jeziorski and Segal (2015) doc-

ument three properties of users’ behavior that, while ubiquitous, are inconsistent with existing

models of search advertising:

1. Non-sequential clicking : Nearly half of users do not click on ads sequentially in the order

of the positions in which ads are presented.

2. Non-cascading clicking : Over half of users who click more than once click on a higher

position after having clicked on a lower position.

3. Externalities from lower positions : The rate at which an ad at a given position is clicked

depends on which ads are displayed below it.

27The effectiveness of search advertising has been attributed to the fact that consumers’ search inputs are
informative about the products they are interested in, which allows targeting through relevant ads.
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The Pandora’s boxes problem with an endogenous set of boxes of the previous section can shed

light on consumer behavior in these markets, and on the role that ad positions play given such

a behavior. In particular, it provides a theoretical explanation for the patterns documented in

Jeziorski and Segal (2015).

5.1 Consumer’s online search and eventual purchases

Consider the problem of a consumer searching online for a product to purchase. In this envi-

ronment, the consumer brings a product to her CS by reading the product’s ad. Because the

consumer does not know which products are advertised at the various positions before reading

the corresponding ads, assume the consumer reads the ads in the order they are displayed by

the platform. After reading a new ad, the consumer brings the corresponding product to her

CS. At that moment the consumer decides whether to read the next ad or click on one of the

products whose ad the consumer has read already. After clicking on a product’s link, the con-

sumer is directed to the vendor’s website where she learns her value for the vendor’s product

(net of the product’s price). The consumer then decides whether or not to finalize the purchase.

The purchase of a product brings to an end the consumer’s search process. Note that, while the

consumer naturally reads the ads in the order in which they are displayed, she clicks on the links

of the products whose ads have been read in the order of her choice.

Hence, in this problem, reading the next ad displayed by the platform corresponds to expand-

ing the set of boxes in the version of Pandora’s problem with an endogenous set of boxes of the

previous version. Clicking on a product’s link corresponds to opening a box, and purchasing a

product from a visited vendor corresponds to selecting an opened box.

Consistently with the analysis in the previous section, suppose that each category ξ ∈ Ξ

corresponds to a different ad’s type (equivalently, a different type of box), with each type indexing

a different (absolutely continuous) distribution F ξ from which the consumer’s value v for the

corresponding ad’s product is drawn, and a different inspection cost λξ to learn such a value.28

Each position m ∈ N is occupied by the ad of one and only one firm, with the same firm

possibly advertising at multiple positions. Reading the m-th ad reveals to the consumer the ad’s

type of the firm advertising on the m-th position. We denote the ad’s type of the firm occupying

the m-th position by ξ(m) ∈ Ξ. The consumer believes that ξ(m) is drawn from Ξ according to a

distribution ρ(m)∈ ∆(Ξ) that may depend on m but is invariant in the ads’ types of those firms

occupying the upstream positions l < m. For example, the consumer may expect lower positions

to be occupied, on average, by lower-quality ads (that is, by products that are more costly to

learn about, i.e., higher λξ, and deliver, on average, lower values, i.e., “smaller” F ξ, in the sense

of FOSD), but does not change her beliefs based on the ads’ types ξ(l), l < m, encountered at

28The assumption that each F ξ is absolutely continuous is made in order to avoid the need to keep track of
possible indifferences in the consumer’s optimal behavior which affect the formulas but not the qualitative results.
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upstream positions.

Let c(m) denote the cost of reading the m-th ad. We then have that the index for the decision

to read the m-th ad is equal to IS(m), with IS(m) as in (6), whereas the index for the decision

to click on the m-th ad, after discovering the ad’s type ξ(m), is equal to Im ≡ IP (ξ(m), ∅), with

IP (ξ(m), ∅) as in (5).

One can use the model to endogenize the probability with which the consumer reads the ads,

clicks on them, and finalizes her purchases. Furthermore, one can derive a structural relationship

between the various positions and their click-through-rates (CTRs), accounting for the uncer-

tainty that the consumer faces about the ads displayed at the various positions – a feature that

the model with exogenous CSs does not capture.

In a similar setting, but with an exogenous CS, Choi, Dai and Kim (2018) – and, indepen-

dently, Armstrong (2017) – derive a static condition characterizing eventual purchasing decisions

based on a comparison of “effective values.” Proposition 3 below extends their characterization to

search problems with an endogenous CS. Let vm denote the value to the consumer for the product

sold by the firm advertising at the m-th position. For all m ≥ 1, let wm ≡ min{Im, vm(1 − δ)}
be the “effective value” of the product advertised at the m-th position (for brevity, product

m) when the product is already in the consumer’s CS, as in Choi, Dai and Kim (2018), and

dm ≡ min{wm, IS(m)} the product’s “discovery value,” when the product must be brought to

the CS before it can be explored (that is, before the consumer learns the product’s ad type ξ(m)).

Let product m = 0 correspond to the consumer’s outside option, with w0 = d0 = 0. Note that

wm and dm are learned by the consumer only after reading the m-th ad (which reveals its type

ξ(m)) and clicking on it which reveal its value vm.

Proposition 3 (Eventual purchases). The consumer purchases product m if, for all l ∈
N ∪ {0}, l 6= m, dl < dm (and only if dl ≤ dm, for all l 6= m).

As in Choi, Dai and Kim (2018), purchasing decisions are determined by a static comparison

of the products’ values, as in canonical discrete-choice models. Contrary to Choi, Dai and Kim

(2018), however, such values account for the uncertainty the consumer faces over the products

occupying the various positions (equivalently, over each product’s ad type ξ(m) prior to reading

the ad displayed in the m-th position). Allowing for such an uncertainty is important. When all

products are already in the consumer’s CS, positions do not play any specific role and there is

no reason why downstream positions should be expected to receive fewer clicks than upstream

ones.

In contrast, when the consumer faces uncertainty about the ads occupying the various posi-

tions and chooses how to alternate between reading new ads and clicking on the links of those ads

she read already, the model delivers useful structural relationships linking the positions’ CTRs

to the primitives of the problem. In particular, Proposition 3 implies that, when the reading cost

c(·) is non-decreasing and the probability of finding “attractive” ads declines (weakly) with the
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positions, all other things equal, the further down a product is on the list, the lower the ex-ante

probability the product is purchased (and hence its ex-ante demand), a property often assumed,

but not micro-founded, in the models considered in the pertinent literature.

The result in Proposition 3 follows from the fact that the optimal policy is an index rule, along

with the fact that the search index IS(m) declines with m. Heuristically, if a consumer reads

the m-th ad, it must be that the reservation prices Il of all products l < m already in her CS, as

well as the discovered values vl(1− δ) of those products l < m that have been inspected already,

are no greater than IS(m). When the search index IS(·) is non-increasing, IS(m+ 1) ≤ IS(m).

Hence, if after reading the m-th ad, Im ≥ IS(m), the consumer necessarily clicks on the m-th ad,

thus learning product m’s value vm. Once vm is learned, if (1− δ)vm ≥ Im, the consumer stops

the search and purchases product m. The above properties imply the result in the proposition.

The formal proof is in the Appendix.

5.2 Non-sequential, non-cascading clicking

The question of interest is then what does it take for the index of search to decline with the

position. One can use the recursive characterization of the index of search of Theorem 1 to

answer the question. For simplicity, let Ξ = N and label the ads’ types according to their

attractiveness, with higher ξ denoting “higher” distributions F ξ and lower inspection costs λξ,

that is, for any ξ′, ξ′′ ∈ Ξ with ξ′′ > ξ′, F ξ′′ �FOSD F ξ′ and λξ
′′ ≤ λξ

′
(with one of the two

relationships strict). Let ξ ≡ inf Ξ and ξ ≡ sup Ξ. Suppose the cost of reading c(m) is non

decreasing in m and the consumer expects lower positions to be occupied by less attractive

ads, in the sense that, for all m, the distribution ρ(m) ∈ ∆(Ξ) over Ξ first-order-stochastically

dominates, weakly, the corresponding distribution ρ(m + 1) ∈ ∆(Ξ). Then IS(m + 1) ≤ IS(m)

for all m. Furthermore, for all m, IS(m) ≤ IP (ξ, ∅), that is, the index of search is smaller than

the index of any ad whose type is the most attractive one. We then have the following result:

Proposition 4 (Clicking behavior). Suppose that cost of reading c(m) is non decreasing in

m and that the consumer expects lower positions to be occupied by less attractive ads, in the

sense that, for all m, ρ(m) �FOSD ρ(m + 1). The consumer’s search for the optimal product is

consistent with non-cascading and non-sequential clicking, and generates externalities from lower

positions.

The clicking dynamics under the index policy of Proposition 2 are thus consistent with the

consumer behavior documented empirically in Jeziorski and Segal (2015). Importantly, these

dynamics do not obtain under the search model of Athey and Ellison (2011). They can emerge

in models of consumer search with an exogenous CS à la Weitzman’s (1979) if one assumes a

specific relationship between the positions and the ads’ types. In such a model, the consumer’s

beliefs over the ads displayed at the various positions are degenerate, as the consumer knows

20



(exogenously) which ad occupies each position. Hence, there is no reason why firms would want

to bid more for higher positions, in contrast with what is documented in the literature on bidding

for sponsored search.

Our model of consumer search with an endogenous CS can also generate dynamics under which

the probability of non-cascading and non-sequential clicking is non-monotone in the positions.

To see this, suppose that Ξ = {ξ, ξ} and that the conditions in Proposition 4 hold. Because

IS(m) is decreasing in m and IS(m) ≤ IP (ξ, ∅) for all m, when IS(0) > IP (ξ, ∅), there exists

a position m∗ such that: (a) for any m < m∗, the consumer clicks on the m-th ad immediately

after reading it if and only if it is of type ξ, whereas (b) for any m > m∗, the consumer clicks on

the m-th ad immediately after reading it, regardless of the ad’s type. When, for any m < m∗,

the probability that the m-th ad is of type ξ is strictly decreasing in m, we then have that the

probability of non-sequential and non-cascading clicking is single-peaked (increasing in m for

m < m∗, and equal to zero for m > m∗). In turn, it can be shown that the probability that the

m-th ad is occupied by a firm of type ξ is indeed decreasing in m when firms’ profits for selling

to the consumer are drawn from a distribution that is related to the ads’ types by MLRP and

the assignment of the ads is governed by an auction that induces monotone bidding.

5.3 Click-through-rates

The results in the previous subsection can also be used to characterize the positions’ click-through

rates (hereafter, CTRs), i.e., the fraction of ads at each position that, once read, are clicked upon.

Formally, for each position m, the corresponding CTR is equal to

CTR(m) ≡ Pr (m’s ad is clicked) .

Depending on the problem of interest, the information used to compute the above probability

may contain the type of the firms advertising at the different positions (as when firms know the

attractiveness of each others’ ads at the bidding stage and the above probability is computed

by the firms given the induced allocation) or only the knowledge of the rules used by the search

engine to assign the ads to the various positions (as when the probability is computed by a

platform that does not know the attractiveness of the firms’ ads, or by a firm that also lacks such

information).

The next proposition relates the CTRs to the effective and discovery values introduced above.

Proposition 5 (Click-through rates). For each position m ≥ 1, the click-through-rate is given
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by29

CTR(m) = Pr
(
IS(m) ≥ maxl<m{wl} ∩ Im ≥ {maxl<m{wl},maxl>m{dl}}

)
.

In order for the ad in position m to be read, it must be that IS(m) ≥ maxl<m{wl}, for

otherwise the consumer selects one of the products advertised in one of the preceding positions

before reading the ad displayed in the m-th position. Once product m is read, in order for it to

be clicked upon, it must be that its index Im exceeds the effective value of each product brought

to the consumer’s CS prior to m, but also the discovery value of all products advertised further

down the list, for otherwise the consumer selects one of the other products before clicking on

m. Note that the property that IS(l) is weakly decreasing in l is important here. It implies

that, if for some position l > m, dl > Im, then for all j = m + 1, ..., l, IS(j) > Im, meaning

that the consumer will necessarily read the ad of any product displayed between position m and

position l before clicking on m. If for any of such product the discovery value exceeds Im, the

consumer purchases one of these products before clicking on m, and hence never clicks on the

m-th product.

Take the perspective of an observer (e.g., a platform, a firm, or a savvy consumer) knowing

the rules used to assign the ads to the positions but not the attractiveness of the ads. While the

probability each ad is read is decreasing in m, Pr (Im ≥ maxl>m{dl}) need not be decreasing in

m. Hence, from the observer’s perspective, CTRs need not be monotone in positions, consistently

with what has been noticed in the empirical literature.

5.4 Implications for equilibrium bidding in sponsored-search auctions

We now show how the results above can be put to work to identify important properties of bidding

in sponsored-search auctions. For simplicity, suppose there are only two firms, with each firm

advertising a single product (the results below extend to auctions with more than two positions

and more than two bidders). The two firms compete for placing their ads on a platform offering

two different positions. The platform uses the ascending-clock version of the GSP auction of

Edelman et al. (2007) to allocate the two positions. The firm dropping out first is allocated

the second position and pays nothing, whereas the other firm is allocated the first position and

pays the price at which the other firm drops out, per click. As in the analysis above, each firm’s

product can be of multiple types, with each type ξ∈ Ξ parametrizing the attractiveness of the

firm’s product/ad (formally, the distribution F ξ from which the consumer’s value is drawn) and

the consumer’s exploration cost λξ. Let z denote the profit each firm derives from selling its

product and assume that each z is drawn from [z, z̄] according to a distribution Fz, with the

29For simplicity, the formula in the proposition assumes that, in case of indifference, the consumer favors position
m (both when it comes to reading and clicking it). This is what justifies the weak inequalities in the formula.
The proof in the Appendix discusses how alternative ways of breaking the indifferences must be accounted for if
one were to compute bounds for such probabilities.
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draws independent across firms. Assume that the payoff the consumer expects from learning her

value for each firm’s product (net of the exploration cost λ) exceeds her outside option, and that

this is true for all possible types ξ.

The search model introduced above delivers a structural characterization of the CTRs, the

purchasing probabilities, and the firms’ values per click (VPC), for each possible profile of firms’

types (ξ1, ξ2) and each possible assignment of the positions to the firms. It also delivers a

characterization of the same variables from the perspective of an observer who does not know

the firms’ types. Formally, and consistently with the notation above, an assignment is a vector

(ξ(1), ξ(2)) where the first entry denotes the type of firm occupying the top position, and the

second entry the type of firm occupying the second position. For each position m = 1, 2 and each

assignment (ξ(1), ξ(2)), let P (m; ξ(1), ξ(2)) denote the probability that the consumer purchases

the product advertised in position m under the assignment (ξ(1), ξ(2)). Clearly, the consumer

does not know the assignment (ξ(1), ξ(2)) at the beginning of the search process and learns it by

reading the various ads.

Let CTR(m; ξ(1), ξ(2)) denote the probability that the consumer clicks on the ad displayed

in the m-th position under the assignment (ξ(1), ξ(2)). Finally, for any position m, assignment

(ξ(1), ξ(2)), and unit profit z, let

V PC(m; ξ(1), ξ(2), z) ≡ z
P (m; ξ(1), ξ(2))

CTR(m; ξ(1), ξ(2))
(7)

denote the value-per-click (VPC) that a firm with unit profit z assigns to occupying the m-th

position under the assignment (ξ(1), ξ(2)). Note that, contrary to Edelman et al. (2007) and

Athey and Ellison (2011), the values per click here are not only heterogeneous across firms but

also position-specific, reflecting the property that the probability the consumer finalizes a trade

after clicking on a firm’s ad depends on the position at which the ad is displayed, a property

also documented by the empirical literature. In the online supplement, we provide a parametric

example where all the above variables can be computed in closed form.

Suppose that the two firms commonly know the attractiveness of their ads/products, possi-

bly as a result of past experiences with consumers who searched similar products on the same

platform. We then have the following result:

Proposition 6 (Firms’ bidding behavior). Consider the sponsored-search model described

above and assume that firms do not follow weakly dominated strategies. For any profile of ad

types (ξ1, ξ2), there exists a threshold b(z; ξ1, ξ2) such that each firm with unit profit z drops out

at price b(z; ξ1, ξ2) irrespective of whether its ad is more or less attractive than the rival’s.

To gather some intuition, consider a state (ξ1, ξ2) in which firm 1’s ad is more attractive than

firm 2’s (in the sense that λξ1 < λξ2 , meaning that the cost to the consumer to learn her value for
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firm 1’s product is lower than for firm 2’s product, and F ξ1 �FOSD F ξ2 , meaning that product 1

delivers, on average, more utility than product 2).

Consider the interesting case in which the consumer finds it optimal to click on the ad encoun-

tered at the first position before reading the ad in the second position, irrespective of whether

the ad in the first position is firm 1’s or firm 2’s. That is, the index I1 ≡ IP (ξ(1), ∅) for clicking

on the ad displayed in the first position is higher than the index IS(2) for reading the ad in the

second position, irrespective of the type ξ(1) of ad encountered in the top position. When this

property does not hold, firms are indifferent between advertising in the first and second position

given that the consumer always clicks first the ad of the most attractive firm irrespectively of

the position at which the ad is displayed. Firm 1 then finds it optimal to drop out at a price b

implicitly defined by

[V PC(1; (ξ1, ξ2, z)− b]CTR(1; ξ1, ξ2) = V PC(2; ξ2, ξ1, z)CTR(2; ξ2, ξ1). (8)

The above indifference condition reflects the fact that both the CTRs and the VPCs are not only

position-specific but also ad-specific. Equivalently, using the relation between VPCs, CTRs and

selling probabilities P in Condition (7) above, we have that the price at which firm 1 drops out

is equal to

z[P (1; ξ1, ξ2)− P (2; ξ2, ξ1)].

Because the first position is clicked with probability one, the firm optimally drops out when

the price reaches a value equal to the extra profit the firm expects from placing its ad on the

first position instead of the second one. Note that the term in square brackets is the difference

between the probability the firm assigns to selling its product when listed in the top position

(that is, under the assignment (ξ1, ξ2)) and when listed in the second position (that is, under the

assignment (ξ2, ξ1)).

Likewise, firm 2, given its markup z, drops out when the price reaches the value b implicitly

defined by

[V PC(1; ξ2, ξ1, z)− b]CTR(1; ξ2, ξ1) = V PC(2; ξ1, ξ2, z) · CTR(2; ξ1, ξ2). (9)

Note that Condition (9) differs from Condition (8) because the two firms expect different CTRs

and have different VPCs for the two positions. Equivalently, using again the relationship in (7),

we have that the price at which firm 2 drops out is equal to

z[P (1; ξ2, ξ1)− P (2; ξ1, ξ2)].

Clearly, the probability P (1; ξ2, ξ1) that firm 2 assigns to selling its good when advertising in the

top position is different from the probability P (1; ξ1, ξ2) that firm 1 assigns to selling its product
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when occupying the same position, reflecting the difference in the distributions from which the

consumer’s values are drawn, the exploration costs, and the probability the consumer clicks on

the second ad when encountering an ad of type ξ1 or of type ξ2 in the first position. However,

the differential in the probability of selling when occupying the first and second position is the

same for the two firms; that is,

P (1; ξ2, ξ1)− P (2; ξ1, ξ2) = P (1; ξ1, ξ2)− P (2; ξ2, ξ1). (10)

As a consequence, in equilibrium, the price at which the two firms drops out is the same, despite

the fact that one firm is more attractive than the other. Because, in each state, the two firms

follow identical bidding strategies, a consumer who understands the rules of the auction should

hold beliefs about the type of firms displaying in the second position that are invariant in the

type of firm encountered in the first position, consistently with what assumed in the rest of this

section.

The property in Proposition 6 has important implications for the efficiency of the equilib-

rium allocations under the ascending-clock implementation of the GSP auction considered in the

literature. To see this, consider any welfare objective that assigns strictly positive weight to

consumer surplus. We then have the following result:

Corollary 1 (Inefficiency of equilibrium ad-allocation). Assume that firms do not follow

weakly dominated strategies. In each state in which the attractiveness of the firms’ products is not

homogeneous across firms, the positions are assigned inefficiently with strictly positive probability.

Note that efficiency requires that, in each state in which the attractiveness of the two firms’

products is different across firms (that is, ξ1 6= ξ2), whenever the difference |z1 − z2| between

the two firms’ profits is small, the firm whose product is the most attractive be assigned the top

position. This is because the top position is clicked more often. Hence, when the first position is

occupied by the most attractive firm, the chances the consumer purchases the product she values

the most (formally, for which her ex-post net value v is the highest) are higher than when the top

position is occupied by the least attractive firm. Hence, no matter the weight the planner assigns

to consumer surplus in the welfare objective function, as long as the latter is strictly positive,

the auction allocates the positions inefficiently with positive probability. The result is a direct

consequence of the fact that, in each state, the two firms follow symmetric bidding strategies,

which implies that the assignment of the two positions is based entirely on the firms’ unit profits

z and not their attractiveness.

The result in the corollary applies also to settings with more than two firms and more than

two positions. To see this, it suffices to note that the situation described above continues to

represent a valid description of the problem each firm faces when there are only two firms left in
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the auction.30

The two key properties responsible for the result are (1) that firms possess some information

about their attractiveness at the bidding stage, and (2) that the differential in the selling prob-

abilities is equalized across the remaining firms, which is always the case when the remaining

firms expect the buyer to purchase one of their products with certainty.

5.5 Detrimental effect of additional ad space

The model introduced above can also be used to investigate the effects of additional ad space

on firms’ profits. Typically, a firm receiving additional ad space expects larger profits. This,

however, is not guaranteed when consumers’ CS are endogenous. To see this, consider the

following situation. There are three types of ads, i.e., ξ ∈ Ξ = {A,B,C}. The consumer’s initial

CS contains three products, each from a different firm and each of a different type. By searching,

the consumer is presented with a fourth product whose ad’s type is drawn from Ξ according to

ρ ∈ ∆(Ξ). As above, the consumer believes that an ad of type ξ, when clicked upon, yields the

consumer a net value v drawn from a distribution F ξ, independently across products.31 The cost

to the consumer of learning the value of a product whose ad’s type is ξ is λξ. The consumer has

unit demand and each firm makes the same profit from selling one of its products.

Suppose that each firm’s ads are all of the same type and that the ads of different firms are

of different type (in other words, in this example, ξ also indexes the identity of each firm). As

we show in the online Supplement, an increase in the probability that the new search brings an

additional product of type ξ (equivalently, an additional product from firm ξ) may reduce the

index of search, inducing the consumer to visit the website of one of firm ξ’s competitors before

searching for the new product. When strong enough, such an effect may reduce the probability

that one of firm ξ’s products is eventually purchased, and hence firm ξ’s profits. See the online

Supplement for the details.

6 Conclusions and Extensions

We introduce a model of experimentation in which the decision maker alternates between ex-

ploring alternatives already in the consideration set and searching for new ones to explore in the

future. Each search brings stochastically a new set of alternatives of different types that is added

to the current consideration set. The consideration set is thus constructed gradually over time in

response to the information the decision maker collects. We characterize the optimal policy and

30The selling probabilities P (m; ξ(1), ξ(2)), click-through rates CTR(m; ξ(1), ξ(2))), and values-per-click
V PC(1; (ξ1, ξ2, z), for positions m = 1, 2 should then be interpreted as given the assignment (ξ(m))m>2 of the
lower positions observed by the two remaining firms.

31If the extra product the consumer is presented when searching is from firm ξ, the value the consumer derives
from such a product is also drawn from F ξ, independently from the value derived from the three products already
in the CS.
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study how the tradeoff between the exploration of existing alternatives and the expansion of the

consideration set depends on the search technology. The evolution of this tradeoff is driven by

a comparison of independent indexes, where the index for search is computed in recursive form,

accounting for future optimal decisions.

The analysis may be of interest to dynamic problems in which the decision maker is unable to

consider all feasible alternatives from the outset, either because of limited attention, or because

of the sequential provision of information by interested third parties such as online platforms and

search engines.

The results accommodate several extensions that may be relevant for applications.

Multiple expansion possibilities. In certain problems of interest, the decision to search also

involves an intensive margin, as when the DM chooses“how much”to invest in search. As we show

in the online Supplement, in general, such problems do not admit an index solution because of

the correlation in the search outcomes. Instead, the analysis readily extends to an environment in

which there are multiple search possibilities with independent outcomes, by allowing for multiple

“search arms”.

No discounting. All results above assume that δ < 1. However, they extend to δ = 1 (i.e.,

no discounting). As noted in Olszewski and Weber (2015), bandit problems in which δ = 1 can

be thought of as problems with non-discounted “target processes” where arms reaching a certain

(target) state stop delivering payoffs. A well-known result for such problems is that the finiteness

they impose allows one to take the limit as δ → 1 (e.g., Dumitriu, Tetali, and Winkler, 2003).

Irreversible Choice. In many decision problems, in addition to learning about existing options

and searching for new ones, the DM can irreversibly commit to one of the alternatives, bringing

to an end the exploration process. In general, such problems do not admit an index solution. In

the online Supplement, we derive a sufficient condition under which the optimality of an index

rule extends to such problems. We assume the DM must explore each alternative of category

ξ at least Mξ ≥ 0 times before she can irreversibly commit to it (for example, a consumer

must visit a vendor’s webpage at least once to finalize a transaction with that vendor, as in

the consumer search problem of Section 5). The condition guarantees that, once an alternative

reaches a state in which the DM can irreversibly commit to it, its “retirement value” (that is,

the value of irreversibly committing to it) either drops below the value of the outside option, or

improves, weakly, with the number of future explorations. This property is related to a similar

condition in Glazebrook (1979), who establishes the optimality of an index policy in a class of

bandit problems with stoppable processes. Our proof, however, is different and accounts for the

fact that the set of alternatives evolves endogenously over time.

Relative length of expansion. In order to allow for frictions in the search for new alternatives,

we assume that, whenever the DM searches, she cannot explore any of the alternatives in the CS,

with search occupying the same amount of time as the exploration of any of the alternatives in
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the CS. All the results extend to a setting in which both the time that each search occupies and

the time that each exploration takes vary stochastically with the state.32 Furthermore, because

the time that each exploration takes can be arbitrary, by resccaaling the payoffs and adjusting

the discount factor appropriately, one can make the length of time during which the exploration

of the existing alternatives is paused because of search arbitrarily small. The results therefore

also apply to problems in which search and learning occur “almost” in parallel.
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7 Appendix

Proof of Theorem 1. Below we first establish the result in part (ii) and then use the recursive

representation of the search index in (3) to show that, when the DM follows an index policy,

her expected (per-period) payoff satisfies the representation in (4), thus establishing part (iii).

In the online Supplement, we also show how the representation of the DM’s payoff in (4), along

with the recursive representation of the search index in part (ii) and an appropriate description

of the state space that exploits the classification of the alternatives into categories, permits us to

establish part (i), i.e., the optimality of the index policy, by means of a novel proof that shows

that the DM’s payoff under such a policy satisfies the Bellman equation for the dynamic program

under consideration.

Part (ii). Let τ̂ be the optimal stopping time in the definition of IS(ωS). Note that, at τ̂ ,

the index of each alternative brought to the CS by the search under consideration (initiated in
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state ωS), as well as the index of search itself, must be weakly smaller than IS(ωS). Otherwise,

by continuing to search, or by selecting one of the alternatives brought to the CS by the search

under consideration for which the index is larger than IS(ωS) and stopping optimally from that

moment onward, the DM would attain an average payoff per unit of average discounted time

Eπ
[∑τ−1

s=0 δ
sUs|ωS

]
Eπ
[∑τ−1

s=0 δ
s|ωS

]
strictly greater than IS(ωS), contradicting the optimality of τ̂ in the definition of IS(ωS).33 This

implies that τ̂ is weakly greater than τ ∗, where the latter is the first time at which the index of

search and the index of each alternative brought to the CS by the search under consideration

are weakly below IS(ωS). Moreover, since at τ ∗ the index of search and of each alternative

brought to the CS by the search under consideration are weakly below IS(ωS), if τ̂ > τ ∗, the

average payoff per unit of average discounted time between τ ∗ and τ̂ must be equal to IS(ωS).

Hence, under the optimal selection rule in the definition of IS(ωS), the average payoff per unit

of average discounted time from 0 to τ ∗ must also be equal to IS(ωS). This implies that the

optimal stopping time in the definition of IS(ωS) can be taken to be τ ∗. Because the index policy

χ∗ selects in each period between 0 and τ ∗ the alternative for which the average payoff per unit

of average discounted time is the largest (including search), we have that the optimal selection

rule π in the definition of IS(ωS) must coincide with the index policy χ∗. That IS(ωS) satisfies

the representation in part (ii) then follows from the arguments above.

Part (iii). We construct the following stochastic process based on the values of the indexes,

and the expansion of the CS through search, under the index policy χ∗. Starting with the initial

state S0 = (SP0 , ωS0 ), let v0 ≡ max{I∗(SP0 ), IS(ωS0 )}. Let t(v0) be the first time at which, when

the DM follows the policy χ∗, all indexes are strictly below v0, with t(v0) =∞ if this event never

occurs. Note that t(v0) differs from κ(v0), as κ(v0) = 0 is the first time at which all indexes are

weakly below v0. Next let v1 ≡ max{I∗(SPt(v0)), IS(ωSt(v0))} be the value of the largest index at

t(v0), where St(v0) = (SPt(v0), ω
S
t(v0)) is the state of the decision problem in period t(v0). Note that,

by construction, t(v0) = κ(v1). Furthermore, when t(v0) <∞, if v0 > IS(ωS0 ), then ωSt(v0) = ωS0 .

We can proceed in this manner to obtain a strictly decreasing sequence of values (vi) i≥0, with

corresponding stochastic times (κ(vi))i≥0. Note that the values vi are all non-negative, as the

DM’s outside option is normalized to zero.

Next, for any i = 0, 1, 2, ..., let ηi ≡
∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us denote the discounted sum of the

net payoffs between periods κ(vi) and κ(vi+1)− 1, when the DM follows the index policy, and let

(ηi)i≥0 denote the corresponding sequence of discounted accumulated net payoffs, with ηi = 0 if

33Since infinity is allowed as a value of the stopping time, the supremum in the definitions of IS (and IP ) is
attained, that is, an optimal stopping time exists (the arguments are similar to those in Mandelbaum, 1986, and
hence omitted).
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κ(vi) =∞.

Denote by V(S0) the expected (per-period) net payoff under the index policy χ∗, given the

initial state of the problem S0. That is, V(S0) = (1− δ)Eχ∗ [
∑∞

t=0 δ
tUt|S0]. By definition of the

processes (κ(vi))i≥0 and (ηi)i≥0, V(S0) = (1−δ)Eχ∗
[∑∞

i=0 δ
κ(vi)ηi|S0

]
. Next, using the definition

of the indexes (1) and (2), observe that

vi =
(1− δ)Eχ∗

[
ηi|Sκ(vi)

]
Eχ∗

[
1− δκ(vi+1)−κ(vi)|Sκ(vi)

] . (11)

To see why (11) holds, recall that, at period κ(vi), given the state of the decision problem Sκ(vi),

the value of the highest index is vi. Now suppose that the alternative corresponding to vi is

a physical alternative and that all other physical alternatives’ indexes, as well as the index of

search, are strictly below vi. Recall that the optimal stopping time τ in the definition of the

index of the physical alternative corresponding to vi in (1) is the first period (strictly above κ(vi))

at which the alternative’s index falls below vi. While it is convenient to take this fall to be weak,

it is well known that one can equivalently take the fall to be strict. That is, stopping at the

first period at which the index reaches a value equal to or smaller than the value at the time the

index was computed is optimal, but so is stopping at the first period at which the index reaches

a value strictly below the one at the time the index was computed. Now recall that t(vi) is the

first time at which all indexes are strictly below vi. Because the CS in period κ(vi) contains only

one alternative with index equal to vi (the physical one under consideration), t(vi) also coincides

with the first period at which the index of the specific alternative under consideration drops

strictly below vi. Recall that vi+1 is the largest index at period t(vi) and that t(vi) = κ(vi+1).

The definition of the index in (1), along with the optimality of stopping at the first time the

index drops strictly below its initial value, and the definition of ηi, then imply that

vi =
Eχ∗

[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us|Sκ(vi)

]
Eχ∗

[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)|Sκ(vi)

] =
Eχ∗

[
ηi|Sκ(vi)

]
Eχ∗

[
1−δκ(vi+1)−κ(vi)

1−δ |Sκ(vi)

]
which corresponds to the formula in (11).

Next, suppose that the alternative with the highest index at period κ(vi) is search, and that

all physical alternatives in the CS in period κ(vi) have an index strictly smaller than vi. As

shown above, the optimal stopping time in the definition of the index of search in (2) is the first

period (strictly above κ(vi)) at which the index of search and of all the alternatives introduced

through search, fall weakly below vi. Equivalently, as discussed above, the optimal stopping time

can also be taken to be the first period at which the index of search and of all the alternatives

introduced through search fall strictly below vi. Because all physical alternatives in the CS at

period κ(vi) have an index strictly below vi, such a period coincides with t(vi), that is, with the
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first period at which the index of search and of all alternatives in the CS are strictly below vi.

Using the above property of the optimal stopping time in the definition of the search index in

(2), along with the fact that t(vi) = κ(vi+1) and the definition of ηi, we then have that the search

index evaluated at period κ(vi) also satisfies the condition in (11).

Finally, suppose that, at period κ(vi), there are multiple options (“physical” alternatives

and/or search) with index vi. Then observe that the average sum Eχ∗
[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)Us|Sκ(vi)

]
of the discounted net payoffs from utilizing all options whose period-κ(vi) index is equal to vi

till the first period t(vi) = κ(vi+1) at which the indexes of all options are strictly below vi,

normalized by the average per unit discounted time Eχ∗
[∑κ(vi+1)−1

s=κ(vi)
δs−κ(vi)|Sκ(vi)

]
is the same

as the average sum Eχ∗
[∑T−1

s=κ(vi) δ
s−κ(vi)Us|Sκ(vi)

]
of the discounted net payoffs from utilizing

each individual option with index (at period κ(vi)) equal to vi till the first time T at which that

option’s index (and, in case the option is search, also the indexes of all alternatives brought to the

CS by the search initiated at κ(vi)) fall strictly below vi, normalized by the average discounted

time Eχ∗
[∑T−1

s=κ(vi) δ
s−κ(vi)|Sκ(vi)

]
. This follows from the independence of the processes. Hence,

Condition (11) also holds when, at κ(vi), there are multiple options with index vi.

Multiplying both sides of (11) by δκ(vi), rearranging terms, and using the fact that δκ(vi) is

known at κ(vi), we have that

(1− δ)Eχ∗
[
δκ(vi)ηi|Sκ(vi)

]
= viEχ

∗
[
δκ(vi) − δκ(vi+1)|Sκ(vi)

]
.

Taking expectations of both sides of the previous equality given the initial state S0, and using

the law of iterated expectations, we have that

(1− δ)Eχ∗
[
δκ(vi)ηi|S0

]
= Eχ

∗
[
vi
(
δκ(vi) − δκ(vi+1)

)
|S0

]
.

If follows that

V(S0) = Eχ
∗

[ ∞∑
i=0

vi
(
δκ(vi) − δκ(vi+1)

)
|S0

]
. (12)

Next, note that δκ(vi) = 0 whenever κ(vi) =∞, and that, for any i = 0, 1, ..., κ(v) = κ(vi+1)

for all vi+1 < v < vi. It follows that (12) is equivalent to

V(S0) = Eχ
∗
[∫ ∞

0
vdδκ(v)|S0

]
= Eχ

∗
[∫ ∞

0

(
1− δκ(v)

)
dv|S0

]
=

∫ ∞
0

(
1− Eχ

∗
[
δκ(v)|S0

])
dv. (13)

The construction of the integral function (13) is illustrated in Figure 1.

Proof of Proposition 2. Consider a relaxed problem in which the DM gets a flow payoff equal

to (1− δ)v each time she selects an opened box with value v, and can revert her decision at any

period. The solution to such a problem is the index policy of Theorem 1 and has the property
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Figure 1: An illustration of the function δκ(v) and the region∑∞
i=0 v

i
(
δκ(vi) − δκ(vi+1)

)
=
∫∞

0 vdδκ(v), for a particular path with κ(v3) =∞.

that, once an opened box is selected, it continues to be selected in all subsequent periods. The

index policy for such a problem is thus feasible (and hence optimal) also in the primitive problem.

To see that the index of a ξ-box that has not been opened yet is given by (5), note that the

index of an opened box is equal to (1−δ)v. Because the optimal stopping time τ ∗ in the definition

of the index IP (ωP ) in (1) is the first time at which the value of the index drops below its value

IP (ωP ) at the time the index is computed, we then have that τ ∗ = 1 if (1− δ)v ≤ IP (ωP ) and

τ ∗ =∞ otherwise.

Turning to the index for search, the combination of the assumption that c(m) is weakly

increasing in m with the assumption that the distribution ρ(m) ∈ ∆(Ξ) from which the boxes

are drawn “decreases” with m in a FOSD sense implies that the optimal stopping-time τ ∗ in (2)

is equal to (a) τ ∗ =∞ if the box identified at the m-th search has a reservation price IP (ωP ) >

IS(m) and its realized flow payoff satisfies v(1 − δ) > IS(m), (b) τ ∗ = 1 if IP (ωP ) ≤ IS(m),

and (c) τ ∗ = 2 if IP (ωP ) > IS(m) and v(1− δ) ≤ IS(m). �

Proof of Proposition 3. Since product 0 corresponds to the outside option, a product is always

purchased. Let l 6= m be such that dl < dm. We show that product l will not be purchased.

Case 1: l > m (i.e., l is read after m is read). First, suppose that dl = IS(l). Because

IS(l) ≤ IS(m) and because min{Im, (1 − δ)vm} ≥ dm > IS(l), under the index policy of

Theorem 1, product l is read only after product m is clicked upon. Once m is clicked, however,

because (1 − δ)vm > IS(l), l is never read. Hence, l will not be purchased. Next suppose that

dl = Il. Then, min{Im, (1− δ)vm} ≥ dm > Il. Thus, product l is clicked only after m is clicked.

But again, once m is clicked, because (1 − δ)vm > Il, l is never clicked, implying that l is not

purchased. Finally, suppose dl = (1− δ)vl. Then, because min{Im, (1− δ)vm} ≥ dm > (1− δ)vl,
m must be clicked before l is purchased. Because vm > vl, l is not purchased after m’s value is

learned.

Case 2: l < m (i.e., l is read before m is read). Because

IS(m) ≥ dm > dl ≡ min{Il, (1− δ)vl, IS(l)},
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and because IS(m) ≤ IS(l), it must be that dl = min{Il, (1− δ)vl} and hence

min{Il, (1− δ)vl} < dm ≤ min{Im, (1− δ)vm}. (14)

Furthermore, because the search technology is non-improving, IS(l + 1) ≥ ... ≥ IS(m − 1) ≥
IS(m). Along with the fact that dl = min{Il, (1 − δ)vl} < dm ≤ IS(m), this implies that

min{Il, (1− δ)vl} < IS(k) for all (l+ 1) ≤ k ≤ m. This last property in turn implies that either

clicking on l, or purchasing l, is dominated by reading any product k, with (l + 1) ≤ k ≤ m. If

m is read, then (14) implies that l will not be purchased (the arguments are similar to those for

case 1). If, instead, m is not read, it must be that another product k 6= l,m is purchased. In

either case, product l is not purchased. �

Proof of Proposition 5. The proof is in two steps. Step 1 shows that IS(m) ≥ maxl<m{wl}
is necessary for product m to be read and that IS(m) > maxl<m{wl} implies that product m is

necessarily read. Step 2 shows that product m is clicked only if

IS(m) ≥ maxl<m{wl} and Im ≥ max {maxl>m{dl},maxl<m{wl}} (15)

and that, when both of the above inequalities are strict, product m is necessarily clicked. The

result in the proposition then follows directly from the above properties.

Step 1. To see that IS(m) ≥ maxl<m{wl} is necessary for product m to be read, suppose

that, for some l < m, wl > IS(m). That is, both the index corresponding to clicking on product

l, Il, and the one corresponding to purchasing product l, (1 − δ)vl, are strictly greater than

IS(m). Because product l is read before product m is read, by Theorem 1, m is never read.

Next, we show that, when IS(m) > maxl<m{wl}, product m is always read. To see this,

note that since the search cost c(·) is increasing, IS(1) ≥ ... ≥ IS(m − 1) ≥ IS(m). Therefore,

IS(m) > maxl<m{wl} implies that, for any 1 ≤ l ≤ m, IS(l) > wl−1 = min{Il−1, (1 − δ)vl−1}.
Hence, by Theorem 1, for any 1 ≤ l ≤ m, it cannot be that product l − 1 is purchased before

product l is read. Repeatedly applying this argument for all 1 ≤ l ≤ m implies product m must

be read before any product l < m is purchased.

Step 2. To see that both inequalities in (15) must hold for product m to be clicked, first

observe that we already established in Step 1 that the first inequality in (15) is necessary for

product m to be read. Thus assume that such inequality holds. To see that the second inequality

in (15) must also hold, suppose that Im < max {maxl>m{dl},maxl<m{wl}}. Then either there

exists a product l < m such that wl > Im, or a product l > m such that dl > Im, or both.

Suppose there is a product l < m such that wl > Im. Then product m cannot be clicked,

because product l is necessarily read before m and, because both Il and (1 − δ)vl are strictly

greater than Im, product l is purchased before m is clicked. Next, suppose that there exists a

product l > m such that dl = min{IS(l), Il, (1− δ)vl} > Im. By the monotonicity of the search
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indexes, IS(m) ≥ IS(m + 1) ≥ ... ≥ IS(l). That IS(l) > Im, then implies that IS(k) > Im for

any k = m,m + 1, ..., l. In turn, this last property implies that clicking on m is dominated by

reading product k, for any k = m+ 1, ..., l. If product l is read, because both Il and (1− δ)vl are

strictly greater than Im, product m is not clicked. If, instead, product l is not read, it must be

that another product k 6= l,m, with k ∈ {m+ 1, ..., l − 1}, is purchased. In either case, product

m is not clicked. Hence, the two inequalities in (15) are necessary for product m to be clicked.

Next, we show that when the two inequalities in (15) are strict, product m is necessarily

clicked. We already established in Step 1 that, when the first inequality in (15) is strict, product

m is read. Now suppose that the second inequality is also strict. That Im > maxl<m{wl} implies

that, for each product l < m, either Il or (1− δ)vl are strictly smaller than Im. Because product

m is read, by Theorem 1, it cannot be that any product l < m is purchased before product m

is clicked. Similarly, that Im > maxl>m{dl} implies that, for each l > m, either IS(l), or Il,
or (1 − δ)vl are strictly smaller than Im, which again guarantees that no product l > m can

be purchased before product m is clicked. Since one of the products is necessarily purchased

(product 0 representing the outside option), it must be that product m is clicked. Hence, we

conclude that when the two inequalities in (15) are both strict, product m is necessarily clicked.

�

Proof of Proposition 6. Consider any state of the world in which the two firms’ attractiveness

differs, that is, ξ1 6= ξ2, and, without loss of generality, assume that firm 1’s product is the

most attractive one. As explained in the main text, when the index for clicking IP (ξ2, ∅) of the

least attractive firm is smaller than the index for reading the second ad, each firm drops out

instantaneously because it expects the consumer to click on the ad of the most attractive firm

first, irrespective of the position at which such an ad is displayed. That the two firms drop out at

the same price then follows from the analysis in the main text after the proposition by observing

that, given any assignment (ξ(1), ξ(2)), P (2; ξ(1), ξ(2)) = 1 − P (1; ξ(1), ξ(2)), which in turn is

due to the assumption that the payoff the consumer expects from discovering her value for each

firm’s product exceeds her outside option.

That firms’ bidding strategies are symmetric in states in which their attractiveness coincides

is obvious (and hence the proof is omitted). �
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