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Abstract: A buyer and a seller bargain over the price of an object. Both players can build repu-
tations for being obstinate by offering the same price over time. Before players bargain, the seller
decides whether to adopt a new technology that can lower his production cost and the buyer cannot
observe this adoption decision. We show that players’ reputational incentives can lead to inefficient
adoption and significant delays in reaching agreement, and that these inefficiencies arise in equilib-
rium if and only if the social benefit from adoption is large enough. As a result, an increase in the
social benefit from adoption may lead to a lower adoption probability and a longer expected delay.

Keywords: hold-up problem, inefficient technology adoption, reputational bargaining, delay.

1 Introduction

Suppose a supplier needs to decide whether to adopt a new technology that can lower his cost of

production. Even when the gain from adoption outweighs its cost, the supplier might be reluctant

to adopt due to the concern that after his investment becomes sunk cost, his clients will offer low

prices and expropriate the gains from adoption. This is the well-known hold-up problem, which is

a fundamental determinant of people’s incentives to make relationship-specific investments, firms’

incentives to adopt new technologies, as well as the boundaries of firms and organizations.

The severity of the hold-up problem depends on the bargaining process that determines the

terms of trade as well as players’ information about others’ investment decisions. For example,

Grossman and Hart (1986) assume efficient Nash bargaining and that investments are publicly

observed. They show that investments are inefficient unless the player who makes the investment

decision has all the bargaining power. Gul (2001) shows that investments are approximately efficient

even when the investing player cannot make any offer and hence has no bargaining power, as long

as his opponents frequently revise their offers and cannot observe how much he has invested.

∗An earlier version was circulated under the title “Reputational Bargaining with Unknown Values”. We thank
Dilip Abreu, Sandeep Baliga, Francesc Dilmé, Jack Fanning, Lucas Maestri, Juan Ortner, Karthik Sastry, Bruno
Strulovici, Chris Udry, and Alex Wolitzky for helpful comments and NSF Grant SES-1947021 for financial support.
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1 INTRODUCTION 2

This paper revisits the hold-up problem by incorporating an important concern in practice,

that players may have incentives to build reputations for being obstinate in the bargaining process

and therefore, might be reluctant to revise their offers. Our main result shows that even when

investment decisions cannot be observed by other players, players’ reputational incentives can lead

to inefficient investments and costly delays in reaching agreements. We also show that under-

investment occurs in equilibrium if and only if there are large social gains from investment.

We augment the reputational bargaining model of Abreu and Gul (2000) with a technology

adoption stage before the bargaining stage. A buyer and a seller bargain over the price of an

object. The buyer’s value is commonly known. The seller’s production cost depends on his choice

of production technology before the bargaining stage, which is his private information. In our

baseline model, the seller either uses a default technology, or adopts a new technology that has a

lower production cost compared to the default one but requires a positive adoption cost. Section 5

extends our results to settings where the seller chooses between a finite set of technologies.

In the bargaining stage, the buyer offers a price. The seller either accepts the buyer’s offer, or

demands a higher price after which players engage in a continuous-time war-of-attrition.1 With

positive probability, each player is one of the commitment types who makes an exogenous offer

and never concedes. With complementary probability, they are rational and decide what to offer

and whether to concede in order to maximize their payoff. To be consistent with the reputational

bargaining literature pioneered by Abreu and Gul (2000), we focus on the limiting case where there

is a rich set of commitment types and the probability of commitment types goes to zero.

Theorem 1 characterizes the equilibria of a reputational bargaining game where the distribution

of the seller’s production cost is exogenous. It shows that inefficient delays arise in equilibrium if

and only if (i) the difference between the two production costs is large enough, and (ii) the seller

has a low production cost with probability above some cutoff. Our inefficient bargaining result

stands in contrast to the results in Kambe (1999), Abreu and Gul (2000), and Abreu, Pearce and

Stacchetti (2015), which show that bargaining is efficient when players have no private information

about their preferences, or when the only private information is about their discount rate.

The bargaining inefficiencies in our model stem from the buyer’s incentive to screen the seller,

that is, to induce sellers with different production costs to offer different prices. The buyer cannot

1The uninformed player making the offer first is also assumed in Abreu, Pearce and Stacchetti (2015) and Fanning
(2022). In a working paper version, we consider the case where players make offers simultaneously, in which case the
qualitative features of our results remain robust. When players endogenously decide who makes the first offer, there
always exists an equilibrium in which the uninformed buyer makes their offer before the informed seller does.



1 INTRODUCTION 3

screen the seller when she faces uncertainty about the seller’s discount rate, as shown in Abreu,

Pearce and Stacchetti (2015), but she can do so when she faces uncertainty about the seller’s cost.

Why can the buyer screen the seller? Recall from Abreu and Gul (2000) that when each player

chooses their offer, they face a trade-off between demanding more surplus and increasing their speed

of building reputation. After the buyer offers a price between the two production costs, the high-cost

seller’s payoff from conceding is negative, so he can credibly commit not to concede. Due to his

commitment power, the high type does not need to increase his speed of building reputation. This

motivates him to demand a larger share of the surplus. Due to the low type’s incentive to speed up

reputation building, he has less incentive to pool with the high type when the latter demands more

surplus. When the high type’s demand approaches the entire surplus, the low type will separate

from the high type and demand a low price. This explains why the buyer can induce different

types of the seller to demand different prices. In equilibrium, the high type will demand the entire

surplus, never concede, and trade with delay due to the low type’s incentive constraint.

When is screening profitable? As in Abreu, Pearce and Stacchetti (2015), the buyer can offer

a high price (we refer to as a pooling offer which, in equilibrium, equals the high-cost seller’s

Rubinstein bargaining price) and induce both types of the seller to trade immediately. She can also

offer a low price that is between the high and the low production costs (we refer to as a screening

offer), after which she will lose all her surplus when she faces the high-cost type. Hence, screening

is profitable for the buyer only if (i) she can pay a lower price to the low type, and (ii) the low type

occurs with high enough probability. The former is true if and only if the difference between the

two costs is large enough. This is because when the cost difference is small, all the screening offers

are too low relative to the low type’s Rubinstein bargaining price, in which case the low type can

demand something greater than the high type’s Rubinstein bargaining price while still inducing

the buyer to concede immediately. If this is the case, then screening is unprofitable for the buyer

under all cost distributions since she ends up paying a higher price to the low type.

Theorem 2 shows that, in the game with endogenous technology adoption, the seller’s adoption

decision is bounded away from efficiency (under an open set of adoption costs) if and only if

bargaining is inefficient under some exogenous distribution over production costs. Otherwise, his

adoption decision is approximately efficient regardless of the adoption cost. Our theorems imply

that inefficient adoption occurs in equilibrium if and only if there are inefficient delays in bargaining,

and the latter occur if and only if the social benefit from adoption is large enough. Therefore, an

increase in the social benefit from adoption may decrease the probability of adoption.
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In order to understand why, let the seller’s private gain from adoption be the increase in his

payoff from bargaining once he lowers his production cost. We use an observation that the seller’s

private gain from adoption equals the social benefit from adoption when the buyer makes the

pooling offer, but is bounded below the social benefit when the buyer makes the screening offer.

Let us focus on the case where the adoption cost is between the seller’s private gain from

adoption and the social benefit from adoption. In equilibrium, the buyer cannot strictly prefer the

screening offer, since the seller’s gain from adoption will be lower than his adoption cost, in which

case he will never adopt and screening will be unprofitable. The buyer cannot strictly prefer the

pooling offer, since the seller’s gain from adoption will exceed his adoption cost, in which case he

will adopt for sure, which will provide the buyer a strict incentive to make the screening offer.

Therefore, in every equilibrium, the buyer must be indifferent between the screening offer and

the pooling offer, and the seller must be indifferent between adopting and not adopting. When the

social benefit from adoption is large enough such that the buyer prefers the screening offer under

some distribution over production costs, the seller will adopt with a probability that makes the

buyer indifferent between the screening offer and the pooling offer, and the buyer will mix between

the pooling offer and the screening offer. There will be costly delay in reaching agreement since

the screening offer is made with positive probability. The equilibrium adoption decision will be

inefficient since it is efficient to adopt yet the seller’s adoption probability is bounded below 1.

In the complementary scenario where the social benefit from adoption is small, Theorem 1

suggests that the buyer prefers to make the pooling offer regardless of the adoption probability,

in which case the seller’s private gain from adoption equals the social benefit, which is assumed

to be strictly greater than the cost of adoption. This seems to suggest that there is no adoption

probability under which the seller is indifferent between adopting and not adopting.

The above contradiction arises since Theorem 1 cannot be applied to settings where the distri-

bution of production cost is endogenous: It only applies once we fix the distribution of production

cost as the probability of commitment types vanishes. But in the game with endogenous technol-

ogy adoption, the distribution of production cost may depend on the probability of commitment

types. We show that in equilibrium, the adoption probability approaches 1 as the probability of

commitment types vanishes. The buyer makes a screening offer, the low-cost seller accepts with

probability close to 1, and the high-cost seller counteroffers a higher price and trades with delay.

However, the expected loss from delay is close to 0 since the adoption probability is close to 1.

Our inefficient adoption result suggests an explanation for the under-adoption of cost-saving
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technologies, which is widely documented in agriculture and in other industries. Wolitzky (2018)

provides a complementary explanation based on social learning, which fits applications where pro-

ducers do not know the effectiveness of the new technology. Our theory fits when (i) producers know

that the new technology is effective from earlier adoption results, (ii) it is hard for potential buyers

to observe the producers’ adoption decisions (unlike in Grossman and Hart 1986 where investments

are observable), but (iii) producers are reluctant to adopt due to the fear of being held-up.

One example that fits our setting is the under-adoption of Bt cotton and other genetically-

modified crops. It is well-known among farmers that Bt cotton can significantly reduce insecticide

applications which can lower the cost per unit yield (Qaim and de Janvry 2003). It is hard for

potential buyers to observe the farmers’ adoption decisions: Although Bt cotton is more resistant

to pests compared to traditional cotton, it is hard to distinguish the two from their appearances.

However, the adoption rates of Bt cotton are very low in developing countries inspite of its effec-

tiveness in lowering production costs. For example, Ali and Abdulai (2010) find that the adoption

rate is only 62% in the Punjab province of Pakinstan. Although there are other explanations, such

as the lack of access to credit markets, farmers’ concerns about the hold-up problem also seem to be

relevant since (i) the adopted farmers in Pakistan are more likely to be members in organizations

that have more bargaining power over prices, and (ii) the farmers’ share of surplus in Pakistan

is much lower than that in countries that have higher adoption rates (Falck-Zepeda, Traxler, and

Nelson 2000). We conclude this section by discussing our contributions to the related literature.

Hold-Up Problem: Grossman and Hart (1986) assume that investments are observable and

show that investments are bounded below the socially optimum unless the player who invests has

all the bargaining power. In order to protect players against others’ opportunism, one needs ad-

ditional tools such as vertical integration (Williamson 1979), relational incentives (Baker, Gibbons

and Murphy 2002), and investing over time (Che and Sákovics 2004). When investments are un-

observable, Gul (2001) shows that investments are approximately efficient even when the investing

player has no bargaining power, as long as their opponent frequently revise their offers.

We incorporate the concern that players might be reluctant to revise their offers due to their

reputational incentives. We show that the hold-up problem emerges even when investments are

unobservable,2 and that inefficiencies occur if and only if the benefit from investment is large enough.

2When the seller’s investment can be observed by the buyer in a reputational bargaining game, bargaining will be
efficient but the seller’s adoption decision is socially inefficient unless he is arbitrarily more patient than the buyer.
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Reputational Bargaining: We contribute to the reputational bargaining literature from two

angles. First, compared to the seminal works of Kambe (1999), Abreu and Gul (2000), and Compte

and Jehiel (2002), we incorporate heterogeneity in players’ costs in reputational bargaining.3 In

contrast to the heterogeneity in players’ discount rates in Abreu, Pearce and Stacchetti (2015,

or APS), heterogeneity in players’ costs or values enables the uninformed player to screen the

informed player, leading to inefficient delays.4 Fanning (2022) shows that bargaining is efficient

when players’ values or costs are drawn from a rich set. In contrast, we show that bargaining is

inefficient as long as there exist two adjacent types who have sufficiently different production costs.

This violates Fanning’s richness assumption.5 His assumption fits when investment is a continuous

choice variable (e.g., human capital). Our assumption fits when the cost heterogeneity is driven

by the differences in production technologies, since adoption decisions are usually indivisible and

adopting an innovative technology may significantly reduce the cost of production.

Second, compared to APS and Fanning (2022) that focus on the case where the distribution

of preference is exogenous, we also analyze the case where the distribution of production cost is

endogenous. To the best of our knowledge, this has not been studied in the existing literature

on reputational bargaining. We explain why the existing characterization results on reputational

bargaining with exogenous type distributions cannot be applied to settings with an endogenous

type distribution. The arguments in our proof are portable to other settings with endogenous type

distributions, such as reputational bargaining with endogenous information acquisition.

Bargaining with Incomplete Information: Our paper is also related to the literature on

bargaining with incomplete information such as Gul, Sonnenschein and Wilson (1986), Ausubel

and Deneckere (1989), Kim (2009), Strulovici (2017), and Liu, Mierendorff, Shi and Zhong (2019).

Our bargaining inefficiencies stem from players’ reputational incentives, which are conceptually

different from the ones that are caused by higher-order uncertainty (Feinberg and Skrzypacz 2005),

3Ekmekci and Zhang (2022) study reputational bargaining where a player’s payoff from their outside option
depends on whether the other player is the commitment type. Their model has interdependent values and only one
rational type for each player. In contrast, we study a private value model where the seller has multiple rational types.

4APS also consider the case in which there are commitment types using non-stationary strategies. We assume
that all commitment types demand the same price over time. This is because our motivation is to revisit the hold-
up problem when players are unwilling to revise their offers (due to their incentives to build reputations for being
obstinate). This can be better captured by commitment types who demand the same price over time.

5Both our model and Fanning (2022) assume that there is a rich set of commitment types, that is to say, a player
can be a commitment type with positive probability regardless of the price they offer. The key difference is that
Fanning (2022)’s efficiency result requires another richness assumption on the set of production costs, namely, every
production cost occurs with positive probability and is much greater compared to the probability of commitment
types. This assumption is violated in our model in the case whenever there are bargaining inefficiencies.
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interdependent values (Deneckere and Liang 2006, Baliga and Sjöström 2023), costly concessions

(Dutta 2022), risk aversion (Dilmé and Garrett 2022), and new arrivals (Fuchs and Skrzypacz 2010).

Ortner (2017) shows that when a durable good monopolist’s cost may decrease over time, the

bargaining outcome is efficient if and only if the consumers’ values are drawn from an interval.

Although our analysis reaches a similar conclusion that bargaining is efficient if and only if the gap

between adjacent types’ production costs is small enough, the underlying logic is different from

Ortner (2017): The gap in production cost in our model makes it profitable for the uninformed

buyer to screen the informed seller when both of them can build reputations for being obstinate.

2 Baseline Model

Time is continuous, indexed by t ∈ [0,+∞]. A buyer (she) and a seller (he) bargain over the price

of an object. The buyer’s value is common knowledge, which is normalized to 1.

Time 0 consists of two stages. In the first stage, the seller decides whether to adopt a new

technology at an adoption cost c > 0. This adoption decision determines his cost of producing

the object, which cannot be observed by the buyer. If he adopts the new technology, then his

production cost is θ1. If he uses the default technology, then his production cost is θ2. We assume

that 0 < θ1 < θ2 < 1. Therefore, trade is efficient regardless of the seller’s production cost.

In the second stage, the buyer makes an offer pb ∈ [0, 1].6 The seller either accepts the offer

and sells at price pb, or rejects the offer and counteroffers ps ∈ (pb, 1], after which players engage

in a continuous-time war-of-attrition. If a player concedes, then players trade at the price offered

by their opponent. If players concede at the same time, then they trade at price pb+ps
2 .

Players have the same discount rate r > 0. If trade happens at time τ ∈ [0,+∞) and at price

p ∈ [0, 1], then the buyer’s payoff is e−rτ (1 − p) and the seller’s payoff is e−rτ (p − θ) − c̃, where

θ stands for the seller’s production cost and c̃ ∈ {0, c} stands for his adoption decision. If players

never trade, then τ = +∞, in which case the buyer’s payoff is 0 and the seller’s payoff is −c̃.

Each player is rational with probability 1−ε and is one of the commitment types with probability

ε > 0. Each commitment type of the buyer is characterized by pb ∈ Pb ≡ {p1
b , p

2
b , ..., p

Nb
b }, who

offers pb and never accepts any price greater than pb. Each commitment type of the seller is

characterized by ps ∈ Ps ≡ {p1
s, p

2
s, ..., p

Ns
s }, who offers ps and never accepts any price lower than

ps. Let µb ∈ ∆(Pb) and µs ∈ ∆(Ps) be the distributions of players’ types conditional on being

6The uninformed player making the offer first is also assumed in APS and Fanning (2022).
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committed. We assume that 0 = p1
b < p2

b < ... < pNbb = 1 and 0 = p1
s < p2

s < ... < pNss = 1. Let

ν ≡ max
i∈{s,b}

max
j∈{2,...,Ni}

∣∣∣pji − pj−1
i

∣∣∣. (2.1)

Intuitively, ν measures the richness of the sets of commitment types. In order to be consistent with

Abreu and Gul (2000), our analysis focuses on the case where both ν and ε are close to 0, that is,

both sets of commitment types are rich and players are rational with probability close to one.

The public history consists of players’ offers and whether any player has conceded. The buyer’s

private history consists of the public history and whether she is committed. The seller’s private

history consists of the public history, whether he is committed, and his adoption decision. The

buyer’s strategy consists of her offer σb ∈ ∆[0, 1] and a mapping from players’ offers to her concession

time τb : [0, 1]2 → ∆(R+ ∪ {+∞}). The seller’s strategy consists of his adoption decision, or

equivalently, the distribution of his production cost π ∈ ∆{θ1, θ2}, a mapping from his production

cost and the buyer’s offer to his offer σs : {θ1, θ2} × [0, 1] → ∆[0, 1], and a mapping from his

production cost and players’ offers to his concession time τs : {θ1, θ2} × [0, 1]2 → ∆(R+ ∪ {+∞}).

The solution concept is Perfect Bayesian equilibrium (or equilibrium for short).

Benchmark: Observable Adoption Decision Suppose the buyer can observe the seller’s

adoption decision, or equivalently, the buyer knows the seller’s production cost θ. Abreu and

Gul (2000) show that as ε → 0, players will trade with almost no delay at price approximately

pθ ≡ 1+θ
2 . We call pθ type-θ seller’s Rubinstein bargaining price, since it is the equilibrium price in

the bargaining game of Rubinstein (1982) between a buyer with value 1 and a seller with cost θ.

The intuition is that the buyer can secure payoff 1− pθ by offering pθ and the seller can secure

payoff pθ − θ by demanding pθ. Their guaranteed payoffs are their equilibrium payoffs since the

sum of these payoffs equals the social surplus from trade 1− θ. The seller’s gain from adoption is

(pθ1 − θ1)− (pθ2 − θ2) =
θ2 − θ1

2
. (2.2)

Hence, the seller will adopt when c ≤ θ2−θ1
2 . Since it is socially efficient to adopt as long as

c < θ2 − θ1, the equilibrium adoption decision is inefficient when c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. In summary,

when the seller’s adoption decision is observable, bargaining will be efficient but the seller’s adoption

decision will be inefficient. Later on, we compare this to the case with unobservable adoption, in

which there is inefficient adoption if and only if there are costly delays in bargaining.
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Remarks: Our baseline model assumes that the seller chooses between two production technolo-

gies. Section 5 extends our results to settings where the seller chooses between three or more

technologies. Our baseline model assumes that players have the same discount rate and the same

commitment probability. In Section 6, we comment on extensions of our results to environments

with heterogeneous discount rates and heterogeneous commitment probabilities. We also discuss

how players’ bargaining powers affect the severity of the hold-up problem and the expected delay.

We only analyze the benchmark in which the buyer observes the seller’s adoption decision and

the case in which the buyer cannot observe the seller’s adoption decision. If the buyer observes a

noisy private signal of the seller’s adoption decision, then it introduces further complications such

as higher-order uncertainty about the seller’s cost, which we abstract away from in our analysis.

We assume that every obstinate type demands the same price over time, which is also assumed

in Abreu and Gul (2000), Ekmekci and Zhang (2022), and Fanning (2018, 2022). In contrast,

Abreu and Pearce (2007), Wolitzky (2012), and APS allow obstinate types to make time-dependent

demands. Our assumption that obstinate types’ demands are time-independent is motivated by

the concern that once a player lowers their demand, it might be hard for them to convince others

that they are obstinate. This assumption fits the motivation of our analysis, which is to revisit the

hold-up problem when players find it costly to revise their offers due to their reputation concerns.

Our baseline model assumes that the uninformed buyer makes their offer before the informed

seller. This assumption is standard in reputational bargaining models with one-sided uncertainty

about players’ payoffs, such as APS and Fanning (2022). In a working paper version, we assume

that players make their initial offers simultaneously and obtain qualitatively similar results. Section

6 revisits this issue by commenting on the case where the timing of offers is endogenous.

While our results are stated in environments where the seller decides whether to lower their

production cost, they can be applied to several other settings, such as (i) when the seller decides

whether to divest and receive benefits for becoming less cost-efficient, (ii) when the buyer chooses

whether to increase her value, such as a downstream firm investing to expand its customer base.

3 Main Results

Section 3.1 analyzes a reputational bargaining game in which the distribution of production cost

is exogenous. Theorem 1 provides conditions under which players will reach an agreement after

significant delays and highlights the sources of inefficiencies. Section 3.2 analyzes the reputational
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bargaining game with endogenous technology adoption. Theorem 2 shows that reputation concerns

lead to inefficient adoption if and only if there are large social gains from adoption. We explain

the subtleties when analyzing reputational bargaining games with endogenous type distributions.

3.1 Reputational Bargaining with Exogenous Production Cost

This section analyzes a reputational bargaining game when θ is drawn from an exogenous full

support distribution π ∈ ∆{θ1, θ2}. We refer to the rational seller with production cost θ as type θ.

Our result in this section characterizes the common properties of all equilibria as the probability

of commitment types vanishes and the set of commitment types Pb and Ps are rich enough.

We describe players’ limiting equilibrium strategies and later explain why they arise in equi-

librium. Let σb denote the buyer’s strategy of offering min{pθ1 , θ2}. Let σb denote the buyer’s

strategy of offering pθ2 . By definition, pθ2 > min{pθ1 , θ2}. Let σ∗s(·) ≡
{
σ∗s,θ(·)

}
θ∈Θ

, where

σ∗s,θ(pb) ≡


1, if pb ≤ θ1, or pb ∈ (θ1, θ2] and θ = θ2,

max
{
pb, 1 + θ1 − pb

}
, if pb ∈ (θ1, θ2] and θ = θ1,

max
{
pb, 1 + θ2 − pb

}
, if pb > θ2.

(3.1)

Intuitively, σ∗s,θ(·) stands for type-θ seller’s counteroffer as a function of the buyer’s offer pb. We

adopt the convention that if a type θ accepts the buyer’s offer, then his counteroffer is pb.

In order to understand the expression for σ∗s,θ, we explain the intuition behind max
{
pb, 1 + θi−

pb
}

. Recall that in a reputational bargaining game where it is common knowledge that θ = θi, for

any pair of offers pb and ps with θi < pb < ps < 1, the seller will concede at rate

λs ≡
r(1− ps)
ps − pb

, (3.2)

and the buyer will concede at rate

λib ≡
r(pb − θi)
ps − pb

. (3.3)

As the probability of commitment types ε vanishes, the player with a lower concession rate will

concede at time 0 with probability close to 1. According to (3.2) and (3.3), when θi is common

knowledge, players will concede at the same rate when the seller offers 1+θi−pb. This implies that

the seller can secure a price of approximately max
{
pb, 1 + θi − pb

}
by either accepting the buyer’s

offer or counteroffering something slightly below 1+θi−pb and inducing the buyer to concede with
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probability close to 1 at time 0. Let

π∗ ≡ min
{

1,
pθ2 − θ2

min{pθ1 , θ2} − θ1

}
, (3.4)

which by definition is strictly positive. In addition, π∗ < 1 if and only if

θ2 − θ1 >
1− θ2

2
, (3.5)

that is, the difference between θ1 and θ2 is large relative to the surplus generated by the high-cost

type. Recall that the sets of commitment types are rich when ν → 0. Theorem 1 shows that for

generic π, all equilibria of the reputational bargaining game converge to the same limit point as ν

and ε go to 0.7 It also characterizes the welfare properties of the unique limiting equilibrium.

Theorem 1. There exists at least one equilibrium of the reputational bargaining game with

exogenous production costs. Suppose π ∈ ∆{θ1, θ2} satisfies π(θ1) /∈ {0, π∗, 1}. For every η > 0,

there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν) and

every equilibrium (σs, σb, τs, τb) under (ε, ν):

1. If π(θ1) < π∗, then σb is η-close to σb and σs is η-close to σ∗s on the equilibrium path. The

expected welfare loss from delay is less than η conditional on every θ ∈ Θ.

2. If π(θ1) > π∗, then σb is η-close to σb and σs is η-close to σ∗s on the equilibrium path.

Conditional on θ = θ1, the expected welfare loss from delay is less than η. Conditional on

θ = θ2, the buyer’s equilibrium payoff is 0 and the expected welfare loss from delay is η-close

to

(1− θ2)

{
1−

max
{
pθ1 , 1− (θ2 − θ1)

}
− θ1

1− θ1

}
. (3.6)

The proof is in Section 4.1 with some details relegated to the Online Appendix. According to

Theorem 1, the qualitative features of the limiting equilibrium depend on (i) the difference θ2 − θ1

between the two production costs, and (ii) the distribution π over production costs. In particular,

1. When the difference between θ1 and θ2 is small in the sense that θ1 and θ2 violate (3.5), the

buyer offers a high price pθ2 and the seller accepts immediately. The same limiting equilibrium

arises when θ1 and θ2 satisfy (3.5) and the low type occurs with probability less than π∗.

7Throughout the paper, we measure the distance between two distributions (e.g., two mixed strategies) using the
Prokhorov metric, defined in Billingsley (2013a). Intuitively, two distributions µ and µ′ are close if for every Borel
set A, the value of µ(A) is close to that of µ′(A′) for some small neighborhood A′ of A.
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2. When θ1 and θ2 satisfy (3.5) and π(θ1) > π∗, the buyer offers a low price min{pθ1 , θ2}. The

high type demands the entire surplus 1 and the buyer concedes after some delay, which leads

to an expected welfare loss of (3.6). The low type trades immediately either by accepting the

buyer’s offer or by offering 1− (θ2 − θ1), depending on the comparison between pθ1 and θ2.

Theorem 1 suggests that costly delay occurs in equilibrium if and only if the difference between

the two production costs is large enough and the seller is likely to have a low production cost. Our

inefficient bargaining result stands in contrast to the efficiency results in reputational bargaining

games without private information about payoffs (Kambe 1999, Abreu and Gul 2000), as well

as those in games where one of the players has private information about their discount rate

(Abreu, Pearce and Stacchetti 2015). Those papers show that when there is a rich set of stationary

commitment types and the probability of commitment types vanishes, players will trade at the

strongest type’s (e.g., the most patient type) Rubinstein bargaining price with almost no delay.

We argue that inefficient delay arises whenever the buyer (i.e., the uninformed player) uses

her offer to screen the seller, that is, to induce sellers with different costs to demand different

prices. Screening is feasible when players can build reputations and the uninformed player faces

uncertainty about her opponent’s cost. Screening is profitable for the uninformed player when both

the probability of the low type and the difference between the two costs are large enough.

To elaborate, we start from an auxiliary game where both types of the seller are required to

demand the same price. If θ2 < pb < ps < 1, then the seller concedes at rate r(1−ps)
ps−pb , with the high

type starting to concede only after the low type has finished conceding. The buyer first concedes

at rate r(pb−θ1)
ps−pb and then concedes at a lower rate r(pb−θ2)

ps−pb after the high type starts to concede. As

ε→ 0, the buyer spends most of her time conceding at rate r(pb−θ2)
ps−pb , so her average concession rate

is close to r(pb−θ2)
ps−pb . As in Abreu and Gul (2000), each player faces a trade-off between demanding

more surplus and increasing their average concession rate relative to their opponent’s. As long as

both types of the seller counteroffer the same price, it is optimal for the buyer to offer pθ2 by which

she can secure payoff of 1−pθ2 regardless of the seller’s offer. This leads to the efficient equilibrium.

However, instead of offering a high price pθ2 and inducing both types of the seller to trade

immediately, the buyer can also screen the seller by offering a low price that belongs to (θ1, θ2]. To

see why different types of the seller will counteroffer different prices, note that type θ2 obtains a

negative payoff from conceding, so he can credibly commit not to concede. Due to his commitment

power, the usual trade-off between demanding more surplus and increasing his concession rate is no

longer relevant, which motivates him to demand a high price. Type θ1 receives a strictly positive
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payoff from conceding, so he faces a trade-off between (i) demanding more surplus, (ii) increasing

his concession rate, and (iii) pooling with the high type. When the high type’s demand increases,

it is more costly for the low type to imitate the high type since doing so will further lower his

concession rate. When the high type’s demand is close to the entire surplus, the low type prefers

to offer a low price even at the expense of separating from the high type.

What will the high type offer in equilibrium after the buyer offers pb ∈ (θ1, θ2]? An important

observation is that for every ps, p
′
s ∈ Ps with ps > p′s, offering ps leads to a higher expected price

but a longer expected delay. As a result, the highest offer made by the low type cannot be greater

than the lowest offer made by the high type. Let ps ≡ max{Ps \ {1}}, which is the seller’s highest

commitment demand below 1. If the high type demands anything ps that is below ps, then the low

type will never demand anything more than ps. This leads to a contradiction since the buyer will

concede immediately after the seller demands ps, which is a profitable deviation for the low type.

In Section 4.1, we rule out equilibria where the high type demands ps. This implies that in all

equilibria, the high type demands the entire surplus and never concedes to the buyer. The buyer

concedes after some delay in order to discourage the low type from imitating the high type.

In summary, the buyer faces a trade-off when she chooses between making a screening offer

pb ∈ (θ1, θ2] and a pooling offer pθ2 : Screening reduces the surplus she can extract from the high

type but may lower the price she pays to the low type. The latter is true if and only if the

difference between θ1 and θ2 is large enough. This is because when θ1 and θ2 are too close, every

screening offer pb ∈ (θ1, θ2] is too low relative to the Rubinstein bargaining price of the low type

pθ1 . If θ2 + pθ2 ≤ 2pθ1 or equivalently θ2 − θ1 ≤ 1−θ2
2 , then for any pb ∈ (θ1, θ2], the low type

can counteroffer something greater than pθ2 and induce the buyer to concede almost immediately,

in which case screening is unprofitable for the buyer. This explains the logic behind (3.5). When

θ2−θ1 >
1−θ2

2 , (3.4) is the probability of the low type under which the buyer’s benefit from screening

equals her cost of screening, so the buyer prefers to screen the seller if and only if π(θ1) > π∗.

Expected Delay & Welfare: We pin down the expected delay and social welfare in the ineffi-

cient equilibrium using the two types of the seller’s incentive constraints. Formally, the expected

delay is π(θ2)
{

1− E[e−rτb |θ = θ2]
}

and the expected welfare loss from delay is π(θ2)(1− θ2)
{

1−

E[e−rτb |θ = θ2]
}

, both are decreasing functions of E[e−rτb |θ = θ2]. In equilibrium, the low-cost type
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θ1 cannot find it profitable to demand 1, which implies an upper bound for E[e−rτb |θ = θ2]:

(1− θ1)E[e−rτb |θ = θ2]︸ ︷︷ ︸
type θ1’s payoff from demanding 1

≤ max{pθ1 , 1− θ2 + θ1} − θ1︸ ︷︷ ︸
type θ1’s equilibrium payoff

. (3.7)

The high-cost type θ2 cannot find it profitable to demand ps ≈ 1 and then wait for the buyer to

concede. Recall the definition of λ1
b in (3.3), which is the buyer’s concession rate when the low-type

seller is conceding. When players’ offers are pb and ps, let T1 be the time it takes for type θ1 to

finish conceding and let cb be the probability with which the buyer concedes at time 0, both of

which depend on the buyer’s posterior belief. Type θ2 has no incentive to deviate to ps ≈ 1 when

(1− θ2)E[e−rτb |θ = θ2]︸ ︷︷ ︸
type θ2’s equilibrium payoff

≥ (ps − θ2)

(
cb + (1− cb)

(
1− e−(r+λ1b)T1

)min{pθ1 , θ2} − θ1

ps − θ1

)
︸ ︷︷ ︸

type θ2’s payoff from deviating to ps ≈ 1

. (3.8)

This leads to a lower bound for E[e−rτb |θ = θ2]. In particular, we show in Section 4.1 that, as

ps → 1 and ε→ 0, the right-hand-side of (3.8) is bounded below by

max{pθ1 , 1− θ2 + θ1} − θ1

1− θ1
(1− θ2), (3.9)

which is attained when the buyer assigns zero probability to the seller having a high cost after

observing offers (pb, ps). The upper and the lower bounds for E[e−rτb |θ = θ2] coincide in the limit,

which implies that these two bounds pin down the value of E[e−rτb |θ = θ2].

The equilibrium value of E[e−rτb |θ = θ2] implies that, compared to the efficient equilibrium, the

high-cost seller’s payoff is weakly greater in the inefficient equilibrium. Hence, the buyer obtains a

higher payoff from screening at the expense of the low-cost seller. That is to say, the low-cost seller

not only bears the cost of delay but is also expropriated by the buyer.

Comparative Statics: We apply Theorem 1 to examine how the expected welfare loss and the

expected delay of reaching agreement depend on the primitives, such as the distribution of the

seller’s production cost π(θ1), his production cost under the new technology θ1, and that under the

default technology θ2. As in Theorem 1, we focus on the limit where (ε, ν)→ (0, 0). We start from

the effect of an increase in the fraction (or the probability) of low-cost seller:

Corollary 1. Both the expected welfare loss and the expected delay are zero when π(θ1) < π∗,

and are strictly decreasing in π(θ1) when π(θ1) ∈ (π∗, 1).
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This follows directly from Theorem 1. Intuitively, bargaining is efficient in the limit when

π(θ1) < π∗. When π(θ1) > π∗, bargaining is inefficient only when the seller’s production cost is θ2,

and conditional on θ = θ2, the expected welfare loss is independent of π(θ1).

Corollary 2. Both the expected delay and the expected welfare loss are weakly decreasing in θ1.

Intuitively, improving the efficiency of the new technology (i.e., a decrease in θ1) has two effects,

both of which lead to a longer delay. First, a lower θ1 makes screening more profitable for the buyer,

which expands the range of π under which the buyer prefers to make the screening offer. Second,

when π(θ1) > π∗, the expected delay after the high type offers 1 weakly increases as θ1 decreases,

and strictly increases whenever θ2 ≤ pθ1 . This is driven by the two incentive constraints that pin

down the expected delay: the low type’s incentive constraint leads to a lower bound on the expected

delay and the high type’s incentive constraint leads to an upper bound. According to (3.7) and

(3.8), as θ1 decreases, the low type’s payoff from deviation increases and the high type’s payoff from

deviation decreases. Hence, the expected delay that satisfies both incentive constraints increases.

Corollary 3. The expected delay is weakly increasing in θ2. The expected welfare loss is weakly

increasing in θ2 when θ2 ∈ (θ1, pθ1) and is weakly decreasing in θ2 when θ2 ∈ (pθ1 , 1).

Intuitively, improving the efficiency of the default technology (i.e., a decrease in θ2) has two

effects. First, a lower θ2 makes screening less profitable, which reduces the range of π under which

the buyer prefers to make the screening offer. This decreases the expected delay as well as the

expected welfare loss from delay. However, there is another effect, namely, a lower θ2 increases the

surplus from trading with type θ2, which makes each unit of delay more costly in terms of social

welfare. Hence, players will reach an agreement sooner when the default technology becomes more

efficient, and the expected welfare loss also decreases if and only if θ2 is lower than pθ1 .

Remarks: We conclude this section with several remarks. First, what will happen when π satisfies

π(θ1) = π∗? Although the buyer will be indifferent between the pooling offer pθ2 and her optimal

screening offer pb ∈ (θ1, θ2] in the limit where ε→ 0, she will have a strict preference under a generic

ε. In fact, the cutoff belief π∗ will play a crucial role when we analyze the reputational bargaining

game with endogenous technology adoption. By choosing an investment probability that is close to

π∗, the seller makes the buyer indifferent between pθ2 and her optimal screening offer. The buyer’s

mixing probabilities are pinned down by the seller’s indifference condition at the adoption stage.
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Second, in the inefficient equilibrium of our model, the buyer screens the seller by offering

a price such that only the low type has an incentive to concede. In contrast, when the only

uncertainty is about a player’s discount rate, as in APS, there is no offer under which some type

has a strict incentive to concede while other types have no incentive to concede. This explains why

the uninformed player cannot induce different types of the informed player to offer different prices

in APS, but she can do that in our model.

Third, in our model, inefficient delay occurs only when the cost difference between adjacent

types is large enough. We generalize this finding in Section 5, showing that inefficient delay occurs

if and only if there exist two adjacent types whose cost difference is large enough. This contrasts

to the efficiency results in Fanning (2022), which require a rich set of production costs. His richness

assumption fits applications where the heterogeneity in production cost is driven by differences

in human capital, which are continuous in nature. However, when cost heterogeneity arises from

differences in production technologies, it is natural to assume that there is a gap between the

production costs. This is because decisions on whether to adopt a new technology are usually

indivisible, for example, it might be infeasible to adopt half of the technology.

3.2 Reputational Bargaining with Endogenous Technology Adoption

This section analyzes the reputational bargaining game in which the seller’s production cost is

endogenously determined by his adoption decision before the bargaining stage and the buyer cannot

observe whether he has adopted. Recall the definition of π∗ in (3.4) and that π∗ < 1 if and only if

(θ1, θ2) satisfies (3.5). If (θ1, θ2) also satisfies a stronger condition that pθ1 < θ2, then π∗ = 1−θ2
1−θ1 .

We state the interesting parts of our equilibrium characterization as our main result, Theorem

2. A full description of the limiting equilibria can be found in Figure 1, with details in Section 4.2.

Theorem 2. There exists at least one equilibrium of the reputational bargaining game with

endogenous technology adoption. For every η > 0, there exists ν̄ > 0 such that when ν < ν̄, there

exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν):

1. Suppose (θ1, θ2) violates (3.5). In every equilibrium, the expected delay is less than η, and the

adoption probability is no more than η if c > θ2 − θ1 and is no less than 1− η if c < θ2 − θ1.

2. Suppose (θ1, θ2) satisfies (3.5). There exists an open interval (c, c) ⊂
(
θ2−θ1

2 , θ2 − θ1

)
such

that for every c ∈ (c, c), there exists an equilibrium where the adoption probability is within

an η-neighborhood of π∗ and the expected delay is bounded above zero.
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Figure 1: Limiting equilibria in the reputational bargaining with endogenous technology adoption

3. Suppose (θ1, θ2) satisfies pθ1 < θ2. If c ∈
(
θ2−θ1

2 , θ2 − θ1

)
, then in all equilibria, the adoption

probability is within an η-neighborhood of π∗ and the expected delay is bounded above zero.

The proof is in Section 4.2. Theorem 2 implies that in the limit where the set of commitment

types is rich and the probability of commitment types is close to 0, the seller’s adoption decision

can be socially inefficient if and only if the social benefit from adoption θ2 − θ1 is large enough.

Under a stronger condition that θ2 is greater than the Rubinstein bargaining price under the low

production cost pθ1 ≡ 1+θ1
2 , inefficient adoption and costly delay occur in all equilibria. It also

implies that inefficient adoption occurs if and only if there are significant delays in bargaining.

In order to understand Theorem 2, we start from a heuristic explanation based on our charac-

terization result for reputational bargaining games with an exogenous cost distribution (Theorem

1). Then we point out a contradiction that results from this line of reasoning and explain why

Theorem 1 cannot be directly applied to settings where the cost distribution is endogenous.

Fix any π ∈ ∆{θ1, θ2} that has full support with π(θ1) 6= π∗. Theorem 1 implies that as ε→ 0,

the difference between the low-cost seller’s equilibrium payoff and that of the high-cost seller’s is

θ2−θ1 in every efficient equilibrium and is approximately (θ2−θ1)α in every inefficient equilibrium
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where

α ≡

 1
2 if pθ1 < θ2

1−θ2
1−θ1 if pθ1 ≥ θ2 and (θ1, θ2) satisfies (3.5).

Intuitively, in every efficient equilibrium, both types of the seller trade immediately at the same

price, in which case the seller captures all the gains from adoption. In every inefficient equilibrium,

the high type’s payoff is approximately the same as his payoff in the efficient equilibria, so the low

type not only bears the welfare losses from delay but also transfers some of his gains to the buyer.

Fix (θ1, θ2) and any adoption cost c that is strictly between (θ2−θ1)α and θ2−θ1. In equilibrium,

the seller cannot adopt with zero probability since the buyer will offer the high price pθ2 , in which

case the seller’s gain from adoption is θ2− θ1, providing him a strict incentive to adopt. He cannot

adopt with probability 1 since the buyer will then offer pθ1 and type θ2 seller’s payoff is at least

1−θ2
2 when he demands ps ≈ 1 and waits for the buyer to concede. The seller’s gain from adoption

is close to θ2−θ1
2 , in which case he has no incentive to adopt. The seller also cannot adopt with any

interior probability that is not π∗, since his gain from adoption will not equal his cost of adoption.

The above logic suggests that in every equilibrium, the seller must adopt with probability π∗.

However, when (θ1, θ2) violates (3.5), or equivalently π∗ = 1, all equilibria are efficient in the game

with an exogenous cost distribution, so there does not seem to exist an adoption probability that

makes the seller indifferent between adopting and not adopting as long as (θ2− θ1)α < c < θ2− θ1.

The above contradiction is driven by the different orders of limits in Theorems 1 and 2, making

Theorem 1 inapplicable to settings where π is endogenous. Specifically, Theorem 1 characterizes

the set of equilibria for a fixed cost distribution π in the limit where ε→ 0. The same order of limit

applies to other results in reputational bargaining with private information about payoffs such as

those in Abreu, Pearce and Stacchetti (2015) and Fanning (2022). But in the game with endogenous

technology adoption, π depends on the probability of commitment types ε. Hence, it could be the

case that the probability that θ = θ2 also vanishes as ε→ 0.8

This is indeed what happens when (θ1, θ2) violates (3.5) and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. We show

that for every ξ > 0, there exists ε > 0 such that the conclusion of Theorem 1 applies for all ε < ε

and π with π(θ1) ∈ [0, 1− ξ]. However, the qualitative features of the equilibrium are different for

any fixed ε > 0 as π(θ1) → 1. Although for any fixed π ∈ ∆{θ1, θ2}, the buyer will offer a high

price pθ2 and will trade with both types of the seller immediately as ε → 0, she has an incentive

8A related issue appears in Gul (2001) who studies Coasian bargaining with endogenous investments. Unlike Gul,
Sonnenschein and Wilson (1986) who fix the distribution of values and then send the frequency of offers to infinity,
the informed player’s investment probability depends on the frequency of offers in Gul (2001).
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to offer a low price pθ1 for any small but fixed ε as π(θ1) goes to 1. In response to the buyer’s

offer, the high-cost seller raises the offer and trades with delay, and the low-cost seller accepts the

offer with probability close to 1 and pools with the high-cost seller with probability close to 0. The

expected delay for the high-cost seller is pinned down by the seller’s indifference condition at the

adoption stage. This delay has negligible payoff consequences from an ex ante perspective since it

is proportional to the probability of θ = θ2 and π(θ2) is arbitrarily close to 0 as ε→ 0.

When c ∈
(
θ2−θ1

2 , θ2− θ1

)
and (θ1, θ2) satisfies not only (3.5) but also a stronger condition that

pθ1 < θ2, one can no longer sustain an approximately efficient outcome where the seller adopts

the technology with probability close to 1. This is because, when the buyer offers pθ1 , the seller

has no incentive to concede when his cost is θ2. As a result, the seller can secure payoff 1−θ2
2 by

not adopting the technology and demanding something close to 1. This guaranteed payoff 1−θ2
2 is

strictly greater than his payoff from adopting the technology and accepting the buyer’s offer pθ1 ,

which contradicts the hypothesis that the seller adopts the technology with probability close to 1.

Therefore, in every equilibrium, the seller will adopt with probability bounded below 1. As ε→ 0,

the equilibrium adoption probability is close to π∗, since it is the only adoption probability that

can make the buyer indifferent between making the screening offer pθ1 and the pooling offer pθ2 .

When c ∈
(
θ2−θ1

2 , θ2−θ1

)
and (θ1, θ2) satisfies (3.5) but pθ1 ≥ θ2, there exist inefficient equilibria

where the seller adopts with probability close to π∗ since Theorem 1 applies uniformly to all π with

π(θ1) bounded below 1. However, there are also efficient equilibria where the seller adopts with

probability close to 1. We explain in detail why there are multiple limit points in Section 4.2.

The above explanation also sheds light on why inefficient adoption occurs if and only if there

are significant delays in bargaining. Intuitively, if the equilibrium adoption decision is bounded

away from efficiency, then it cannot be the case that both types of the seller trade immediately.

This is because otherwise, both types must trade at the same price and the seller can capture all

the gains from adoption, providing him an incentive to make the efficient adoption decision. If the

adoption decision is approximately efficient, then the probability with which the seller does not

adopt must be arbitrarily close to zero.9 Since inefficient delay cannot occur when the seller has a

low cost, the welfare losses from delay must be negligible from an ex ante perspective.

9In our model, inefficient adoption is caused by the hold-up problem. Therefore, the seller will not adopt when his
adoption cost is greater than the social benefit from adoption. This implies that inefficiency can only take the form
of under-adoption. Thus, the only relevant case to consider is the one in which the seller’s adoption cost is strictly
less than the social benefit from adoption but he does not adopt with probability bounded above 0.



3 MAIN RESULTS 20

Comparative Statics: We apply Theorem 2 to study the effects of an increase in the benefit

from adoption (i.e., a decrease in θ1) or a decrease in the cost of adoption (i.e., a decrease in c) on

the equilibrium probability of adoption and on the expected delay of reaching agreement. Similar

to Section 3.1, we focus on the limiting scenario where (ε, ν)→ (0, 0).

One challenge comes from the multiplicity of limiting equilibria when (θ1, θ2) satisfies (3.5) but

pθ1 > θ2, that is, the social benefit from adoption θ2−θ1 is intermediate. We provide sufficient con-

ditions under which an increase in the benefit from adoption decreases the probability of adoption,

as well as conditions under which an increase in the benefit from adoption increases the expected

delay. The conclusions we obtain are robust to the selection of equilibria. Formally, we measure

the expected delay according to 1− E[e−rmin{τs,τb}], where τs and τb are players’ concession times.

Corollary 4. For every θ1, θ2, and c that satisfy

θ2 − θ1 >
1− θ2

2
, and max

{1

2
,
1− θ2

1− θ1

}
(θ2 − θ1) < c < θ2 − θ1,

and every θ̂1 < θ1 that satisfies 1+θ̂1
2 < θ2 and θ̂1 ∈ (θ2 − 2c, θ2 − c). There exist ε > 0 and ν > 0

such that for every ε < ε and ν < ν,

1. The probability of adoption in any equilibrium under (θ1, θ2, c, ε, ν) is strictly greater than the

probability of adoption in any equilibrium under (θ̂1, θ2, c, ε, ν).

2. The expected delay in any equilibrium under (θ1, θ2, c, ε, ν) is strictly less than the expected

delay in any equilibrium under (θ̂1, θ2, c, ε, ν).

We depict the complete comparative statics with respect to θ1 and c in Figures 2a and 2b, where

the white region represents parameter values under which there are multiple limiting equilibria.

Corollary 4 implies that when the production cost under the new technology decreases from θ1 to

θ̂1, i.e., adoption becomes more socially beneficial, the probability of adoption decreases as long as

θ2 − θ̂1 is intermediate: It is large enough so that the buyer has an incentive to screen the seller,

but is not too large relative to the adoption cost c so that the seller has no incentive to adopt if

he knew that the buyer will offer p
θ̂1

. It also implies that a decrease from θ1 to θ̂1 when θ2 − θ̂1 is

intermediate can also lead to longer delays, which leads to further efficiency losses.

If the cost of adoption decreases from c to ĉ, except for the parameter values under which there

are multiple limit points, the probability of adoption weakly increases, which follows from Theorem

2. The effects on the expected delay is ambiguous. This is because there is no delay when c > θ2−θ1
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(a) Adoption probability (b) Expected delay

Figure 2: Comparative statics on the equilibrium outcomes. The white region represents parameter
configurations under which there are multiple limiting equilibria. In the region in which the unique
limiting equilibrium is inefficient, the values of π(θ1) and 1−E[e−rmin{τs,τb}] are depicted in panels
(a) and (b), respectively, in ascending order according to the color bar on the right of the figure. In
the remaining regions, the adoption probability is fixed at the efficient level, which equals 0 when
c > θ2 − θ1, and equals 1 when c < θ2 − θ1, and the expected delay is zero in the limit.

or when c < θ2−θ1
2 , in which cases the seller either never adopts the new technology or adopts the

new technology for sure, so there is no delay in trade. In contrast, when c ∈ ( θ2−θ12 , θ2 − θ1), there

are inefficient equilibria in which the seller adopts with probability strictly between 0 and 1 and

the buyer offers pθ1 with positive probability, leading to significant delays in equilibrium.

4 Proofs of Theorems 1 and 2

We prove Theorem 1 in Section 4.1 and Theorem 2 in Section 4.2. Our proofs can be modified

to establish the general results in Section 5, which focus on environments where the seller chooses

between more than two production technologies with different costs of production.

4.1 Proof of Theorem 1

Our proof proceeds in four steps. First, we describe the equilibrium in the war-of-attrition game

under (pb, ps). Next, we use the continuation payoffs in the war-of-attrition game to characterize

the seller’s equilibrium offer after observing the buyer’s offer pb. Then, we use the buyer’s sequential

rationality to show that she offers either pθ2 or min{pθ1 , θ2}, and which one she offers is determined

by the comparison between π(θ1) and the cutoff π∗. These three steps together establish uniqueness

of the equilibrium limit point. In Online Appendix A, we establish the existence of equilibrium.
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Fix π ∈ ∆{θ1, θ2}. Let (σb, σs, τb, τs) be an equilibrium strategy profile of the bargaining game,

where σb is the distribution of the buyer’s initial offer, σs is the distribution of the seller’s initial

offer as a function of his production cost and the buyer’s initial offer, and (τb, τs) is the distribution

of players’ concession times. We sometimes abuse notation by using σb(pb) and σs(ps|θ, pb) to

denote the probability with which σb and σs(θ)(pb) assign to offers pb and ps, respectively.10 Let

Pb denote the support of σb. Let

ε̂b(pb) =
εµb(pb)

εµb(pb) + (1− ε)σb(pb)
(4.1)

ε̂s(pb, ps) =
εµs(ps)

εµs(ps) + (1− ε)[π{θ1}σs(ps|θ1, pb) + π{θ2}σs(ps|θ2, pb)]
(4.2)

π̂j(pb, ps) =
(1− ε)π{θj}σs(ps|θj , pb)

εµs(ps) + (1− ε)[π{θ1}σs(ps|θ1, pb) + π{θ2}σs(ps|θ2, pb)]
, for every j ∈ {1, 2}.

(4.3)

Intuitively, ε̂b(pb) and ε̂s(pb, ps) are the probabilities with which the buyer and the seller, respec-

tively, are commitment types conditional on their offers (pb, ps), and π̂j(pb, ps) is the probability

assigned to the seller being the rational type and having production cost θj .

First, we characterize the equilibrium in the continuation game after players offer (ps, pb) ∈

Ps × Pb with 1 > ps > pb > θ1. Fix (pb, ps) and the resulting (ε̂b, ε̂s, π̂1, π̂2). We denote the

resulting continuation game by Γ(pb, ps, ε̂b, ε̂s, π̂), and a pair of equilibrium strategies for the buyer

and the seller of type θ by τb ∈ ∆(R+ ∪ {∞}) and τs : Θ→ ∆(R+ ∪ {∞}), respectively. Let

m ≡ max{j ∈ {1, 2} : θj < pb},

which is well defined given that pb > θ1. Recall that λs ≡ r(1−ps)
ps−pb is the seller’s concession rate.

For every j ∈ {1, ...,m}, recall that λjb ≡
r(pb−θj)
ps−pb is the buyer’s concession rate that keeps type θj

seller indifferent between conceding and waiting. For convenience, let λm+1
b = π̂m+1 = 0.

If the seller of type θj doesn’t concede at time zero with positive probability and his strategy is

to concede at a constant rate equal to λs over the interval (T j−1, T j), with 0 = T 0 ≤ T 1 ≤ ... ≤ Tm,

then the probability with which the buyer’s posterior belief assigns to the following event:

• the seller is either committed or has a production cost strictly above θj

10As will become clear later, this probability is always well defined, since in equilibrium the buyer’s and the seller’s
strategies over bargaining postures are supported on a subset of, respectively, Pb and Ps which are finite sets.



4 PROOFS OF THEOREMS 1 AND 2 23

reaches 1 at time:

T js ≡
− log(ε̂s +

∑
i>j π̂i)

λs
. (4.4)

Likewise, if the buyer doesn’t concede at time zero and concedes at rate λjb over the time interval

(T j−1, T j), then the buyer finishes conceding at time:

Tb ≡
− log(ε̂b)−

∑m−1
j=1 (λjb − λ

j+1
b )T j

λmb
.

In equilibrium, both players must finish conceding at the same time. Therefore, one of them

concedes with positive probability at time 0 as long as Tb 6= Tms . Let

L ≡ −λs log ε̂b

−
m∑
j=1

(λjb − λ
j+1
b ) log(ε̂s + π̂j+1)

. (4.5)

One can verify that L < 1 if and only if Tb < Tms . Hence, the seller concedes with positive

probability at time 0 if and only if L < 1 and the buyer concedes with positive probability at time

0 if and only if L > 1. We refer to the player who concedes at time zero with strictly positive

probability as the weak player. In order to derive the probability with which the weak player

concedes to their opponent at time zero, let

ĉis ≡ 1−

(
ε̂−λss

m∏
j=i

(ε̂s + π̂j+1)λ
j
b−λ

j+1
b

)1/λib

for every i ∈ {1, ...,m}

ĉb = 1− ε̂b exp
{ m∑
j=1

λjb(T
j
s − T j−1

s )
}
.

Let j∗ ≡ min{j ∈ {1, ...,m} : ĉjs <
∑

i≤j π̂i}. Suppose first that the buyer is the weak player. Then,

ĉb is the probability with which the buyer concedes at time zero so that the seller’s belief that the

buyer is the commitment type reaches one at time Tms . Likewise, if the seller is the weak player

and j∗ = 1, then ĉ1
s is the probability with which the type θ1 seller concedes at time 0 so that the

buyer’s belief that the seller is either committed or that θ ≥ pb reaches one at time Tb. However, if

j∗ > 1, it is not enough to have the rational type-θ1 seller conceding with probability one in period

zero to make both players finish conceding at the same time. In those cases, we need to have all

types strictly below θj∗ conceding at time 0 with probability one and possibly type θj∗ doing so

as well with positive probability. As a result, when the seller is the weak player, his concession
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probability at time 0 equals ĉj∗s . Lemma 4.1 summarizes the above findings:

Lemma 4.1. Fix offers (pb, ps) with 1 > ps > pb > θ1. In any equilibrium of Γ(pb, ps, ε̂b, ε̂s, π̂),

the buyer concedes with positive probability at time zero if and only if L > 1 and the seller concedes

with positive probability at time 0 if and only if L < 1. Players’ concession probabilities at time 0

are cb ≡ max{0, ĉb} and cs ≡ max{0, ĉj
∗
s }, respectively.

A formal proof of Lemma 4.1 can be found in APS, which we omit in order to avoid repetition.

Next, consider the continuation game after no player has conceded at time 0. In equilibrium,

the seller of type θj , with j ∈ {j∗, ...,m− 1}, finishes conceding at time

T j = T js +
log(1− cs)

λs
. (4.6)

In addition, the rational types of the buyer and the seller finish conceding at the same time, given

by:

Tm ≡ min

{
− log(ε̂b)−

∑m−1
j=j∗(λ

j
b − λ

j+1
b )T js

λmb
, Tms

}
. (4.7)

Lemma 4.2 completes the characterization of players’ strategies in the war-of-attrition game:

Lemma 4.2. In every equilibrium of the war-of-attrition game Γ(pb, ps, ε̂b, ε̂s, π̂) in which pb >

θ1 and ps < 1, players’ equilibrium concession times τb and τs(θ) must satisfy:

1. For every j ∈ {j∗, ...,m}, the buyer concedes at rate λjb when t ∈ (T j−1, T j) with T j
∗−1 = 0.

2. The seller with production cost θ ∈ {θj∗ , ..., θm} concedes at rate λs when t ∈ (T j−1, T j) with

T j
∗−1 = 0.

3. The seller never concedes if his production cost is strictly greater than θm.

Next, we characterize players’ concession probabilities at time 0 in the limit where ε → 0.

Formally, consider an infinite sequence {εk}+∞k=0 satisfying εk → 0 as k → ∞. Let (σkb , σ
k
s ) be

players’ equilibrium bargaining strategies when the ex ante probability of commitment types is

εk. Without loss of generality, we focus on the case where (σkb , σ
k
s ) converges to (σ∞b , σ

∞
s ).11 Let

(ε̂kb , ε̂
k
s , π̂

k) be given by (4.1), (4.2) and (4.3) using (εk, σkb , σ
k
s ), and let limk→∞ π̂

k
j = π̂∞j for every

j ∈ {1, 2} and ε̂∞i ≡ limk→∞ ε̂
k
i for every i ∈ {b, s}.

11This is because otherwise, we can apply the Helly’s selection theorem (Billingsley, 2013b), that ∆[0, 1] is sequen-
tially compact in the topology of weak convergence, and find a converging subsequence and focus on that subsequence.
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Lemma 4.3. Suppose {εk}∞k=1 is such that εk → 0 as k →∞. Let (ckb , c
k
s)
∞
k=1 be given according

to Lemma 4.1 in the game Γ(pb, ps, ε̂
k
b , ε̂

k
s , π̂

k) with θ1 < pb < ps < 1, and let (c∞b , c
∞
s ) be the limit

as k →∞. Then

(1) If σ∞s (ps|θ1, pb) + σ∞s (ps|θ2, pb) > 0 and λ2
b > λs, then c∞s (pb, ps) = 1.

(2) If σ∞b (pb) > 0, π̂∞2 (ps, pb) > 0, and λs > λ2
b or pb ≤ θ2, then c∞b (pb, ps) = 1.

(3) If σ∞b (pb) > 0, and ε̂∞s (pb, ps) > 0 or λs > λ1
b , then c∞b (pb, ps) = 1.

One consequence of Lemma 4.3 is that as long as the buyer assigns strictly positive probability

to θ = θ2, the identity of the player who concedes at time 0 is determined by the comparison of

concession rates between the buyer and the seller with a high production cost.

Next, we use the above results to derive players’ equilibrium choices of initial offers in the limit

where ε → 0. Let pθ(pb) be the supremum of the support of σs(·|pb, θ). Lemma 4.4 states a key

property of the seller’s equilibrium strategy.

Lemma 4.4. For every η > 0, there exists ε > 0 such that, if ε < ε, then σs(·|pb, θ2) assigns

probability less than η to offers below pθ1(pb), for any pb in the support of σb(pb).

Intuitively, Lemma 4.4 says that following any of the buyer’s on-path offer, the high-type seller’s

offer is weakly greater than the low-type seller’s offer with probability 1.

Proof. Fix any pb in the support of σb(pb). Without loss of generality, we focus on the case

where pb ∈ Pb ∩ (θ1, pθ2 ], since all other offers are strictly dominated for the buyer. Let ps be an

offer in the support of σs(·|pb, θ1), and suppose by contradiction that there is p′s < ps such that

σs(·|pb, θ2) assigns probability bounded away from zero to p′s. First, suppose that pb > θ2, and let

p2(pb) = max{p ∈ Ps : p ≤ 1 + θ2 − pb}. If p′s > p2(pb), by part (1) of Lemma 4.3, the high type

has to concede immediately to pb after offering p′s, and therefore his payoff is pb − θ2. If otherwise

p′s ≤ p2(pb), by part (2) of Lemma 4.3, the buyer concedes with probability close to one after the

seller offers p′s, and thus the high type’s payoff is approximately p′s − θ2. Let

P (p′s, pb) ≡


pb, if p′s > p2(pb)

p′s, if p′s ≤ p2(pb).

We can write the high type’s payoff as P (p′s, pb)− θ2.
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Suppose p′s 6= p2(pb), and thus P (p′s, pb) < p2(pb). We argue that it must be the case that type

θ1 offers p2(pb) with positive probability, and that type θ2 does so with probability close to zero.

Suppose by way of contradiction that this is not the case. According to parts (2) and (3) of Lemma

4.3, the buyer would concede with probability close to 1 after the seller offers p2(pb), which implies

that type θ2 would profit from deviating from p′s to p2(pb). This leads to a contradiction.

For the low type to be willing to offer p2(pb) instead of p′s, it must be the case that cbp2(pb) +

(1− cb)pb − θ1 ≥ P (p′s, pb)− θ1, where cb is the probability with which the buyer concedes at time

0 after the seller offers p2(pb). The high type’s payoff from deviating to p2(pb) and waiting for the

buyer to concede is approximately

{
cb + (1− cb)

pb − θ1

p2(pb)− θ1

}(
p2(pb)− θ2

)
≥ P (p′s, pb)− θ1

p2(pb)− θ1

(
p2(pb)− θ2

)
> P ′(p′s, pb)− θ2.

This leads to a contradiction, since the high type strictly benefits from deviating to p2(pb). It

remains to consider the possibility that p′s = p2(pb). If so, the buyer concedes almost immediately

by part (2) of Lemma 4.3. Type θ1 has to concede immediately when his offer ps is strictly greater

than p2(pb). Hence, type θ1’s payoff is pb − θ1. This leads to a contradiction, since type θ1 can

profitably deviate by offering p2(pb) instead of something strictly greater than p2(pb).

Second, suppose that pb ∈ (θ1, θ2]. Let p̄s = max{Ps \ {1}}. Since p′s < ps ≤ 1, the buyer

concedes immediately following p′s by part (2) of Lemma 4.3. Therefore, type θ2’s payoff is approx-

imately p′s − θ2. It cannot be that p′s = p̄s, since then the low type has to concede to pb when he

makes an offer above p̄s, and therefore, receives a strictly higher payoff by deviating to p′s. Next, if

p′s < p̄s, then it must be the case that type θ1 offers p̄s with strictly positive probability, and that

type θ2 does so with probability close to zero. This is because otherwise, the buyer will concede at

time 0 with probability 1 after the seller offers p̄s, in which case type θ2 has a strictly profitable

deviation. This requires that cbp̄s + (1 − cb)pb − θ1 ≥ p′s − θ1. By deviating to p̄s and waiting for

the buyer to concede, type θ2’s expected payoff is at least(
cb + (1− cb)

pb − θ1

p̄s − θ1

)
(p̄s − θ2) ≥ p′s − θ1

p̄s − θ1
(p̄s − θ2) > p′s − θ2

as ε→ 0. This leads to a contradiction.

We now describe the seller’s equilibrium strategy σs. First, we show that when the buyer offers

pb ∈ (θ2, pθ2 ], both types of the seller will offer the same price that is approximately p2(pb). Suppose
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by way of contradiction that type θ2 offers some ps < p2(pb). According to Lemma 4.4, type θ1’s

offer is weakly lower than ps with probability one. This implies that, if type θ2 were to deviate to

p2(pb), then the buyer will concede with probability close to 1 at time 0 by Lemma 4.3. This leads

to a contradiction. Similarly, if type θ2 offers ps > p2(pb) with probability bounded away from

zero, she has to concede to pb at time zero, and can therefore do strictly better by offering p2(pb)

instead. Since type θ2 makes an offer close to p2(pb) with probability close to one, it immediately

follows that type θ1 finds it optimal to do so as well.

If the buyer offers anything greater than pθ2 , then her payoff is approximately 1 − pb. This is

because the seller is in a weak bargaining position if he offers anything greater and would therefore

have to concede with probability close to 1 in the limit where ε → 0. Combining this with the

above arguments, it follows that any offer pb ∈ Pb such that pb > θ2 with σb(pb) bounded away

from zero must be arbitrarily close to pθ2 , which is the price that maximizes the buyer’s payoff

1−max{pb, 1− p2(pb)} over pb ∈ Pb ∩ (θ2, 1].

Next, we derive the seller’s counteroffer and bound the buyer’s equilibrium payoff when she

offers pb ∈ Pb ∩ (θ1, θ2]. Fix pb ∈ Pb ∩ (θ1, θ2]. First, consider the case in which σb(pb)/ε is

bounded above zero, so the seller’s belief after observing the buyer offering pb assigns probability

bounded below 1 to the buyer being committed. We show that type θ2’s response is to demand

the entire surplus with probability one. To see this, first note that it cannot be that he demands

ps < p̄s = max{Ps \{1}} with positive probability. If he did, then Lemmas 4.3 and 4.4 would again

imply that he can profitably deviate to p̄s which prompts an immediate concession from the buyer.

Second, if he demands p̄s in equilibrium, then Lemma 4.3 implies that the buyer would concede

immediately, and therefore both seller types would strictly benefit from pooling at this offer. But

then, since ν is small, the buyer’s payoff when she offers pb is close to zero. This contradicts

σb(pb) > 0, since the buyer can ensure a strictly positive payoff by offering pθ2 .

Therefore, type θ2 demands the entire surplus after the buyer offers pb ≤ θ2. However, it cannot

be that type θ1 pools with type θ2 by demanding 1 as well. If type θ1 demands 1 as well, the

fact that pb > θ1 implies that, in equilibrium, the buyer would wait until type θ1 concedes before

making a concession, in which case it is unprofitable for type θ1 to demand 1. Therefore, type

θ1’s offer is different from type θ2’s, so it is optimal for him to demand max{pb, p1(pb)}, where

p1(pb) ≡ max{p′s ∈ Ps : p′s ≤ 1− (pb − θ1)}.

Next, if pb is such that σb(pb)/ε ≈ 0, then the seller’s belief after observing the buyer offers

pb will assign probability close to 1 to the buyer being committed. This will lead to immediate
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concession by type θ1, and thus a payoff of approximately π(θ1)(1−pb) for the buyer. In summary,

the buyer’s payoff when she offers pb ∈ Pb ∩ (θ1, θ2] is approximately π(θ1)(1 − max{pb, p1(pb)}),

which is maximized at pb ≈ min{pθ1 , θ2}.

Hence, there are two candidate offers that the buyer will make with probability bounded above

zero in equilibrium: pθ2 or min{pθ1 , θ2}. Moreover, if π(θ1) < π∗, the buyer strictly prefers offering

pθ2 over min{pθ1 , θ2}, and thus limiting equilibrium strategies in this case are characterized by the

first part in Theorem 1. The resulting equilibrium outcome is approximately efficient, with an

agreement being reached with negligible delay at a price arbitrarily close to pθ2 .

If π(θ1) > π∗, the buyer strictly prefers to make the screening offer min{pθ1 , θ2}, and therefore,

the equilibrium strategies must be close to those described in part two of Theorem 1. If pθ1 ≤ θ2,

the buyer offers pθ1 and type θ1 accepts. Otherwise, the buyer offers θ2 in equilibrium, after which

type θ1 raises the price to p1(θ2) ≈ 1− (θ2 − θ1) > θ2 and triggers a war-of-attrition.

However, Lemma 4.3 shows that the expected delay in the resulting war-of-attrition vanishes

as ε→ 0 and thus the equilibrium outcome, conditional on the seller’s cost is θ1, is approximately

efficient. If the seller’s cost is θ2, he will respond to the buyer’s equilibrium offer by demanding

the entire surplus 1. In order to deter a deviation from the low type, the buyer must wait a

considerable amount of time before conceding to this demand. As argued in Section 3.1, the

incentive constraints of the seller pin down the expected welfare loss from delay to be approximately

given by (3.6). To complete the argument provided there, we show how to derive (3.9) from (3.8).

In order to avoid the buyer from conceding immediately after the seller demands ps, which would

in turn give rise to a profitable deviation for the seller, it must be that type θ1 demands ps with

positive probability (by Lemma 4.3). As a result, the low type’s incentive compatibility requires

that cbps + (1 − cb) min{pθ1 , θ2} − θ1 ≈ max{pθ1 , 1 − θ2 + θ1} − θ1. Plugging this into (3.8) and

using the fact that T1 → +∞ as ε→ 0, we obtain (3.9).

We just showed that every equilibrium must satisfy the properties stated in Theorem 1. In

order to complete the proof of Theorem 1, it remains to establish the existence of at least one

equilibrium. We relegate the existence proof to Online Appendix A.

4.2 Proof of Theorem 2

First, we study the equilibria of a reputational bargaining game in which ν and ε are fixed and the

probability with which θ = θ2 goes to zero. We characterize the limiting equilibrium strategies of

the low-cost seller and the buyer. Since the probability of the high type vanishes, these strategies
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are sufficient to pin down limiting equilibrium outcomes. Let σb,1 be the buyer’s strategy that

assigns probability 1 to pθ1 ≡ 1+θ1
2 . Let

σs,1 ≡


1, if pb ≤ θ1

max{pb, 1 + θ1 − pb}, if pb > θ1.

Lemma 4.5 characterizes limiting equilibrium strategies of the buyer as well as the low-type seller,

for an exogenous sequence of π with π(θ1) converging to 1.

Lemma 4.5. For every η > 0, there exist ε̄, ν̄ > 0 such that when ε < ε̄ and ν < ν̄, there exists

π̄ε,ν ∈ (0, 1) such that for every π(θ1) ∈ (π̄ε,ν , 1]: σb is η-close to σb,1, σs(θ1) is η-close to σs,1 on

the equilibrium path, and the expected delay of reaching an agreement is no more than η.

Proof. Fix some small ε > 0 and ν > 0. First, we describe the low-type seller’s offer following any

offer pb in the support of the buyer’s strategy. Without loss of generality, we can restrict attention

to pb ∈ Pb ∩ (θ1, pθ2 ], since offers that do not belong to this set are strictly suboptimal for the

buyer. Suppose first that pb ∈ Pb ∩ (pθ1 , pθ2 ]. Regardless of the strategy of the high-type seller, for

a fixed small value of ε and π(θ1) that is sufficiently close to 1, Lemma 4.1 implies that type-θ1

seller will concede at time 0 with probability close to 1 if he demands anything greater than pb

with probability bounded away from zero. Therefore, the buyer’s payoff when she offers pb > pθ1

is arbitrarily close to 1− pb when π(θ1) is close enough to 1.

If pb ∈ Pb∩(θ1, pθ1 ], then it must be the case that type-θ1 seller responds by offering p1(pb) with

probability close to one. Such an offer leads the buyer to concede at time 0 with probability close

to 1 when ε is small, so any offer below p1(pb) is strictly dominated. If he were to offer p′s > p1(pb)

with probability bounded above zero, then for a fixed small value of ε, if π(θ1) is sufficiently close

to 1, the low-type seller will concede at time 0 with positive probability given the conclusion of

Lemma 4.1. This implies that his payoff when he offers p′s is approximately pb−θ1, which is strictly

lower than his payoff from offering p1(pb).

Therefore, when π(θ1) is sufficiently close to 1, the buyer’s payoff from any offer pb ∈ Pb ∩

(θ1, pθ2 ] is approximately 1 −max{pb, p1(pb)}, which is maximized at pb ≈ pθ1 . This implies that

in equilibrium, the buyer will offer pθ1 with probability close to 1 when π(θ1) is close enough to 1.

The above arguments then imply that, on the equilibrium path, the type-θ1 seller will counteroffer

pθ1 with probability close to 1. This in turn implies that expected delay is negligible.
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We apply the conclusions of Lemma 4.5 and Theorem 1 to describe players’ limiting equilibrium

strategies in the bargaining game with endogenous technology adoption. Throughout, we use Vθ

to denote the equilibrium payoff type θ net of the adoption costs, and we use π(θ1) to denote

the seller’s equilibrium adoption probability. The following series of lemmas provides necessary

conditions for the limiting equilibria under every parameter configuration.

First, consider the case in which c > θ2 − θ1, in another word, the cost of adoption strictly

exceeds the social benefit from adoption. Obviously, the seller adopts with zero probability in

every equilibrium. This in turn implies that the buyer has no incentive to offer anything strictly

below θ2. As a result, she will offer pθ2 ≡ 1+θ2
2 in equilibrium, which is summarized as Lemma 4.6.

Lemma 4.6. If c > θ2 − θ1, then for every η > 0, there exists ν̄ > 0 such that when ν < ν̄,

there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν), the adoption probability and the expected delay

are less than η in any equilibrium.

Proof. Suppose c > θ2−θ1. Suppose by way of contradiction that the seller adopts with probability

greater than η. If π(θ1) < π∗, then the equilibrium characterization in Theorem 1 applies and there

is almost immediate trade at a price arbitrarily close to pθ2 . Thus, Vθ1−c ≈ pθ2−θ1−c < pθ2−θ2 ≈

Vθ2 , which contradicts π(θ1) > 0. If π(θ1) > π∗, then either the second part of Theorem 1 or Lemma

4.5 applies, and the low type trades immediately at a price p∗, where p∗ = max{pθ1 , 1 + θ1 − θ2} if

π(θ1) is bounded away from 1, and p∗ = pθ1 if π(θ1) is sufficiently close to 1. However, the seller

can always deviate to not adopt and trade immediately at the price p∗, which yields a payoff of

p∗ − θ2 > p∗ − θ1 − c, a contradiction.

In the rest of this proof, we assume that c < θ2 − θ1. Lemma 4.7 examines the case in which

pθ1 < θ2 and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. The first condition states that the gap between θ2 and θ1 is

large enough so that the buyer benefits from screening the seller under certain values of π(θ1). The

second condition implies that the adoption cost is neither too high nor too low, so as to ensure that

the seller is willing to mix at the adoption stage with probabilities that make the buyer indifferent

between the screening offer pθ1 and the pooling offer pθ2 . The buyer’s mixing probabilities over pθ1

and pθ2 are chosen in order to make the seller indifferent at the adoption stage. We show in Lemma

4.7 that the limiting equilibrium outcome is unique under these two conditions.

Lemma 4.7. If pθ1 < θ2 and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
, then for every η > 0, there exists ν̄ > 0

such that when ν < ν̄, there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν), the adoption probability is

η-close from π∗ and the expected delay is bounded above zero.
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Proof. Suppose that pθ1 < θ2 and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. Suppose by contradiction that π(θ1) is

bounded away from π∗. If π(θ1) > π∗, then Lemma 4.5 and Theorem 1 imply that the seller’s payoff

when he adopts is Vθ1− c ≈ pθ1−θ1. If he instead chooses the default technology θ2, by demanding

the entire surplus after the buyer offers pθ1 < θ2, he can ensure a payoff of approximately 1−θ2
2 .

This is strictly greater than pθ1 − θ1 − c, whenever c > θ2−θ1
2 , which contradicts π(θ1) > 0.

Next, suppose that π(θ1) < π∗. Then, our characterization in Theorem 1 implies that Vθ1 − c ≈

pθ2 − θ1 − c > pθ2 − θ2, where the inequality follows from c < θ2 − θ1. This contradicts π(θ1) < 1.

Thus, in any equilibrium, the seller must adopt with probability close to π∗. This adoption rule

guarantees that the buyer is indifferent between offering pθ1 and pθ2 . After the buyer offers pθ2 ,

trade happens with almost no delay at this price. After she offers pθ1 , there is trade with negligible

delay conditional on the seller being low type, and there is an expected delay of approximately 1
2

(see (3.6)) when the seller’s type is high.

In order to ensure that the seller is indifferent at the adoption stage, it must be that the buyer’s

strategy over bargaining postures satisfies

ρ∗(pθ2 − θ1) + (1− ρ∗)(pθ1 − θ1)− c ≈ ρ∗(pθ2 − θ2) + (1− ρ∗)1

2
(1− θ2) ⇐⇒ ρ∗ ≈ 2c− (θ2 − θ1)

θ2 − θ1

Where ρ∗ is the probability that the buyer offers (approximately) pθ2 . Observe that ρ∗ ∈ (0, 1) if

and only if c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. This implies that an equilibrium with adoption probability close

to π∗ cannot be sustained if pθ1 < θ2 and the adoption cost is outside of this region. This fact will

be invoked in the proof of Lemma 4.9. The expected delay is approximately

(1− π∗)(1− ρ∗)1

2
≈ θ2 − θ1 − c

1− θ1
> 0.

Lemma 4.7 establishes the third part of Theorem 2. To complete the proof of the second

part, it remains to consider the case in which (3.5) is satisfied but pθ1 > θ2, or equivalently

θ2 − θ1 ∈
(

1−θ2
2 , 1− θ2

)
, and the adoption cost intermediate. We characterize limiting equilibria in

this case in Lemma 4.8.

Lemma 4.8. If (θ1, θ2) satisfies (3.5), pθ1 > θ2, and c ∈
(

(1−θ2)(θ2−θ1)
1−θ1 , θ2−θ1

)
, then for every

η > 0, there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν),

in any equilibrium,
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• either the adoption probability is η-close to π∗ and the expected delay is bounded above zero,

• or the adoption probability is greater than 1− η and the expected delay is less than η.

Proof. Suppose that (θ1, θ2) satisfies (3.5), pθ1 > θ2, and c ∈
(

(1−θ2)(θ2−θ1)
1−θ1 , θ2− θ1

)
. Suppose first

that π(θ1) < π∗. Then, by Theorem 1, Vθ1 − c ≈ pθ2 − θ1 − c > pθ2 − θ2 ≈ Vθ2 , which contradicts

π(θ1) < 1. Next, suppose that π(θ1) ∈ (π∗, 1) bounded away from both endpoints. Theorem 1

implies that Vθ1 − c ≈ (1 − θ2) − c < 1−θ2
1−θ1 (1 − θ2) ≈ Vθ2 , where the inequality follows from the

assumption that c > (1−θ2)(θ2−θ1)
1−θ1 . This is in contradiction with the hypothesis that π(θ1) > 0.

Thus, the equilibrium adoption probability must be close to either π∗ or 1. If it is approximately

π∗, then it must be that the buyer mixes between offering θ2 and pθ2 in a way that makes the seller

indifferent at the adoption stage. Similar to Lemma 4.7, this requires:

ρ∗(pθ2 − θ1) + (1− ρ∗)(1− θ2)− c ≈ ρ∗(pθ2 − θ2) + (1− ρ∗)1− θ2

1− θ1
(1− θ2)

⇐⇒ ρ∗ ≈ (1− θ1)c− (1− θ2)(θ2 − θ1)

(θ2 − θ1)2

With ρ∗ ∈ (0, 1) ⇐⇒ c ∈
(

(1−θ2)(θ2−θ1)
1−θ1 , θ2 − θ1

)
, as assumed in the lemma. Therefore, the

expected delay is approximately

(1− π∗)(1− ρ∗)1− θ2

1− θ1
≈ (3θ2 − 1− 2θ1)(θ2 − θ1 − c)

2(θ2 − θ1)2
> 0.

Next, consider the case in which π(θ1) is arbitrarily close to 1. By Lemma 4.5, the buyer offers

pθ1 and Vθ1 ≈ pθ1 − θ1. Conditional on not adopting, the seller counteroffers p2(pθ1). In order to

deter the low type from deviating from pθ1 to p2(pθ1) > pθ1 , it must be that the buyer concedes with

zero probability after the seller offers p2(pθ1). This condition pins down the (very small) probability

that the low type offers p2(pθ1) in equilibrium, which we denote by β.

Let T1 ∈ R+ denote the time that the low-type finishes conceding after players’ offers are

(pθ1 , p2(pθ1)). As ε→ 0, type-θ2 seller’s equilibrium payoff, denoted by Vθ2 , is approximately

Vθ2 ≈ (1− e−(r+λ1b)T1)
(1− pθ1)2

1 + θ2 − pθ1 − θ1
≤ (1− pθ1)2

1 + θ2 − pθ1 − θ1

Since the seller must be indifferent between adopting and not adopting the new technology, the
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time at which type θ1 finishes conceding, T1, must be such that Vθ1 − c = Vθ2 . In equilibrium,

T1 =

− log

(
εµs(p2(pθ1 ))+(1−ε)(1−π(θ1))

εµs(p2(pθ1 ))+(1−ε)(1−π(θ1)+π(θ1)β)

)
λs

The condition can be satisfied by choosing π(θ1) accordingly. Since c > (1−θ2)(θ2−θ1)
1−θ1 >

(1−pθ1 )2

1+θ2−pθ1−θ1
,

it must be that T1 is bounded above, for if not the seller would strictly prefer to not adopt. This

in turn requires that π(θ1) ≈ 1, but not equal to 1.

On the other hand, the type-θ2 seller can always ensure a payoff of pθ1 − θ2, which implies that

Vθ2 ≥ pθ1 − θ2 ≈ Vθ1 − (θ2 − θ1). Therefore, if moreover c < θ2 − θ1, there exists an equilibrium in

which the seller adopts the technology with probability 1 under these parameter values.

Finally, because the seller adopts with probability close to 1 and there is negligible delay con-

ditional on the seller adopting, the expected delay is less than η when ε is small enough.

Lemma 4.8 has two implications. First, as stated in Theorem 2, when (3.5) holds and θ2 < pθ1 ,

there is an open set of production costs, given by

(
(1−θ2)(θ2−θ1)

1−θ1 , θ2 − θ1

)
⊂
(
θ2−θ1

2 , θ2 − θ1

)
such

that there exists an equilibrium with inefficient adoption and delay in bargaining. This equilibrium

shares the same features as the unique equilibrium found in Lemma 4.7.

Second, there is equilibrium multiplicity in this region. In particular, there also exists an

approximately efficient equilibrium where the seller adopts with probability close to one and delay

is negligible. What makes it possible to sustain the efficient outcome when θ2 < pθ1 and the cost

of adoption is high (e.g., it is arbitrarily close to θ2 − θ1)? The answer is that, whenever the buyer

expects the seller to adopt with probability close to one, her optimal strategy is to offer pθ1 , as

she would in the game in which the seller’s type were known to be equal to θ1. Because θ2 < pθ1 ,

the seller cannot commit to wait indefinitely if he chooses to not adopt. Thus, conditional on

not adopting, the seller will concede eventually, and the amount of delay with which he reaches

an agreement ensures that he is willing to adopt with probability close to 1. Moreover, the fact

that π(θ1) is close to one ensures that this delay can be sustained as an outcome of the war of

attrition. However, this reasoning does not apply when θ2 > pθ1 . This is because, conditional on

not adopting, the high-type seller is able to commit to never concede after the buyer offers pθ1 . This

will in turn drive up his non-adoption payoff, giving rise to a profitable deviation from π(θ1) > 0.

Finally, we consider the case in which either (3.5) is violated or the cost of adoption is sufficiently

low. In this case, we have efficient investment and almost no delay in bargaining.
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Lemma 4.9. If the parameters of the model satisfy (3.5) and c < max
{

1
2 ,

1−θ2
1−θ1

}
(θ2 − θ1), or

if (3.5) is violated and c < θ2 − θ1, then for every η > 0, there exists ν̄ > 0 such that when ν < ν̄,

there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν), the adoption probability is greater than 1− η and

the expected welfare loss from delay is less than η.

Proof. Suppose first that (3.5) is violated and c < θ2 − θ1. If the seller adopts with probability

strictly less than one, then by Theorem 1 we have that Vθ1 − c ≈ pθ2 − θ1 − c > pθ2 − θ2 ≈ Vθ2 ,

where the inequality follows from the assumption that c < θ2 − θ1. This contradicts π(θ1) < 1.

Next, suppose that (3.5) is satisfied and c < max
{

1
2 ,

1−θ2
1−θ1

}
(θ2 − θ1). If π(θ1) < π∗, then

Vθ1 − Vθ2 = θ2 − θ1 − c, and the fact that c < θ2 − θ1 implies that the seller would strictly prefer

to adopt, contradicting π(θ1) < 1. Moreover, our proofs of Lemmas 4.7 and 4.8 showed that an

inefficient equilibrium with adoption probability close to π∗ exists only if c > max
{

1
2 ,

1−θ2
1−θ1

}
(θ2−θ1),

so this type of equilibrium is ruled out under the asusmption in Lemma 4.9.

If otherwise π(θ1) ∈ (π∗, 1) is bounded away from both endpoints, then by Theorem 1 we have

that Vθ1 − c ≈ max{pθ1 , 1 + θ1 − θ2} − θ1 − c > max
{

1
2 ,

1−θ2
1−θ1

}
(1− θ2) ≈ Vθ2 , where the inequality

follows from the fact that c < max
{

1
2 ,

1−θ2
1−θ1

}
(θ2− θ1). Thus, the seller must adopt with probability

arbitrarily close to 1 in this case as well.

Finally, by Lemma 4.5, the outcome is approximately efficient conditional on the seller adopting,

and thus the expected delay is arbitrarily small as ε vanishes.

Lemmas 4.6 and 4.9 together imply the first part of Theorem 2. The above argument establishes

the common properties of all equilibria. What remains to be shown is the existence of at least one

equilibrium, which is relegated to Online Appendix B.

5 Extension: Choosing Between Multiple New Technologies

This section extends our theorems to settings where the seller chooses a production technology from

{1, 2, ..., n} before bargaining with the buyer, where θj stands for the production cost of technology

j and cj stands for the cost of adopting technology j. Let Θ ≡ {θ1, ..., θn} and C ≡ {c1, ..., cn}.

We assume that 0 < θ1 < ... < θn < 1 and c1 > ... > cn = 0. This implies that (i) there exists

a default technology θn that is costless to adopt, (ii) all new technologies θ1, ..., θn−1 are costly to

adopt but lead to lower production costs compared to the default one, and (iii) technologies that

have higher adoption costs have lower production costs. The first two assumptions are without loss

of generality. The third assumption rules out technologies that are strictly dominated, which will
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never be adopted in any equilibrium. We focus on the case where there is a unique socially efficient

technology and that the efficient technology is not the default one, that is, there exists jo < n such

that {jo} = arg min k∈{1,2,...,n}

{
θk + ck

}
.

First, we consider a reputational bargaining game where the distribution over production cost

π ∈ ∆(Θ) is exogenous. Theorem 3 characterizes players’ equilibrium strategies in the limit as ν

and ε go to zero. Let σ∗b,i ∈ ∆[0, 1] denote the buyer’s strategy of offering min{pθi , θi+1}. Let

σ∗s,θ(pb) ≡


1, if pb ≤ θ,

max
{
pb, 1 + θj − pb

}
, if pb > θ and θj = max{θ̂ ∈ Θ : pb > θ̂}

(5.1)

be a strategy for type θ. That is, for every pb > θ1 and θj = max{θ̂ ∈ Θ : pb > θ̂}, σ∗s ≡ (σ∗s,θ)θ∈Θ

prescribes all types with production cost strictly greater than θj to demand the entire surplus 1,

and all types with production cost no more than θj to offer a price under which the buyer and the

seller have the same concession rate when the seller’s production cost is known to be θj .

Theorem 3 characterizes the unique limiting equilibrium of the reputational bargaining game

with an exogenous cost distribution under the generic conditions that

arg max
i∈{1,...,n}

π[θ1, θi]
(

min{pθi , θi+1} − θi
)

is a singleton with its unique element denoted by i∗, and that the cost distribution π is interior.

Theorem 3. There exists at least one equilibrium of the reputational bargaining game with

exogenous production costs. Suppose π ∈ ∆(Θ) is such that π(θ) > 0 for all θ ∈ Θ. For every

η > 0, there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν)

and every equilibrium (σs, σb, τs, τb) under (ε, ν),

1. σb is η-close to σb,i∗ and σs is η-close to σ∗s on the equilibrium path.

2. Conditional on θ ≤ θi∗, the expected welfare loss from delay is less than η.

3. Conditional on θ > θi∗, the buyer’s equilibrium payoff is 0 and the expected welfare loss from

delay is η-close to

(1− θ)

{
1−

max
{
pθi∗ , 1− (θi∗+1 − θi∗)

}
− θi∗

1− θi∗

}
. (5.2)
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The proof is in Online Appendix C, which is similar to the one for Theorem 1. The structure

of the equilibrium is analogous to the two-type case analyzed in Theorem 1. By making an offer pb

that belongs to (θi, θi+1] with i ∈ {1, ..., n− 1}, the buyer is able to screen the seller by providing

incentives to all types with cost weakly lower than θi to trade with negligible delay, and all types with

cost strictly greater than θi to separate and demand the entire surplus. Using the same arguments

as those in Section 3, the optimal way in which the buyer can screen types with cost no more than

θi is by offering min{pθi , θi+1}. This ensures the buyer a payoff of π[θ1, θi](min{pθi , θi+1} − θi).

By construction, the buyer will screen the seller in equilibrium if and only if i∗ < n, in which

case she will offer a price weakly below θn instead of offering pθn ≡ 1+θn
2 . Conditional on the buyer

offering min{pθi∗ , θi∗+1} ≤ θn, there will be inefficient delay whenever the seller’s production cost

satisfies θ > θi∗ . This is because delay is necessary in order to satisfy the low-cost types’ incentive

constraints, which is in turn necessary for all types with cost greater than θi∗ demanding the entire

surplus to be an equilibrium outcome. The expected delay in (5.2) is pinned down by the conditions

which ensure that, after the buyer offers min{pθi∗ , θi∗+1}: (i) type θi∗ doesn’t benefit from deviating

to demanding 1, and (ii) type θi∗+1 doesn’t profit from deviating to making an offer slightly below

1 and waiting for the buyer to concede.

In the complementary case in which i∗ = n, the buyer cannot profit from screening and as a

result, she prefers to make the pooling offer pθn . As in Section 3, this leads to an efficient outcome

in which trade happens immediately at price approximately pθn .

Next, we describe the limiting equilibria in the game with endogenous investment. Under the

assumption that jo < n, the investment and the bargaining outcome may be inefficient provided

that the buyer finds it beneficial to screen the seller. To formalize this, we spell out the condition on

the cost-gap under which the buyer may benefit from screening the seller, under some distribution

of cost types. By our previous analysis, this holds whenever

θn − θ1 >
1− θn

2
. (5.3)

Condition (5.3) generalizes (3.5) to the setting with more than two production technologies. As we

explain below, if it is violated, the buyer will never benefit from screening the seller by making an

offer below θjo , since such an offer is dominated by pθn .

Theorem 4. There exists at least one equilibrium of the reputational bargaining game with

endogenous technology adoption. For every η > 0, there exist ν > 0 and ε > 0 such that in every
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equilibrium where ν < ν and ε < ε,

1. If (5.3) is violated, the seller adopts θjo with probability greater than 1− η, and the expected

welfare loss from delay is less than η, in any equilibrium.

2. If (5.3) is satisfied, there exists an open set of adoption costs such that there exists an equi-

librium where the seller adopts θjo with probability bounded below one and the expected delay

is bounded above zero.

3. If pθjo < θn, there exists an open set of adoption costs such that, in all equilibria, the seller

adopts θjo with probability bounded below one and the expected delay is bounded above 0.

The proof is in Online Appendix D, which is similar to the one for Theorem 2. In order to

understand the statement of Theorem 4, consider first the case in which (5.3) is violated. This

condition ensures that, in any equilibrium, the buyer will make an offer equal to the Rubinstein

bargaining price under the highest-cost type in the support of the seller’s adoption decision. In

particular, let π ∈ ∆(Θ) be the distribution over production costs that the seller chooses in equilib-

rium. We relabel the elements of Θ so that supp(π) = {θ̂1, ..., θ̂m}, and let ĉj denote the adoption

cost associated with θ̂j . First, note that the negation of (5.3) implies that for all i ∈ {1, ...,m− 1}

θ̂i+1 ≤ θ1 + 1− pθn < θ̂i + 1− pθ̂i = pθ̂i .

Therefore, if the buyer decides to screen the seller with production cost no more than θ̂i, then she

will offer θ̂i+1. Furthermore, if the buyer screens the seller by offering θ̂i+1 for some i ∈ {1, ...,m−1},

then she obtains a payoff of

π[θ̂1, θ̂i](θ̂i+1 − θ̂i) ≤ π[θ̂1, θ̂i](1− pθn) ≤ π[θ̂1, θ̂i](1− pθ̂m) < 1− pθ̂m

This implies that any such offer is strictly dominated by offering pθ̂m . Given that the equilibrium

price offered by the buyer equals pθ̂m , the seller’s equilibrium payoff is pθ̂m−θ̂m−ĉm ≤ pθ̂m−θjo−cjo ,

with strict inequality if θ̂m 6= θjo . This implies that it is optimal for the seller to adopt the socially

efficient technology with probability close to 1.

Conversely, condition (5.3) is sufficient for inefficiencies to arise in equilibrium under an open

set of production costs. In particular, if (5.3) is satisfied and the adoption costs are such that

jo = 1, we can construct an equilibrium where the seller mixes between adopting θjo and keeping
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the default technology θn, in an analogous manner as in Section 3.2. To do this, the seller’s adoption

strategy must be such that the buyer is indifferent between offering pθn and min{pθjo , θn}, which

is ensured by π(θjo) ≈ pθn−θn
min{pθjo ,θn}−θjo

. Observe that (5.3) guarantees that π(θjo) < 1.

The discussions above imply that the seller with production cost θn trades with delay in equi-

librium when the buyer offers min{pθjo , θn}. Moreover, if cjo > max
{

1
2 ,

1−θn
1−θjo

}
(θn − θjo), then

there exists a mixed strategy over bargaining postures for the buyer that assigns probability to

pθn and min{pθjo , θn} that guarantees that the seller is indifferent between choosing θn and θjo .

An additional condition, which we derive in the Online Appendix, ensures that he doesn’t benefit

from deviating to an alternative technology θ /∈ {θjo , θn}. Thus, an equilibrium with inefficient

investment and bargaining delay exists under an open set of adoption costs when (5.3) is satisfied.

If the stronger condition pθjo < θn is satisfied, then any equilibrium must be inefficient if

cjo ∈
( θn−θjo

2 , θn − θjo
)
. This is because, if he invests efficiently, the seller’s equilibrium payoff

is pθjo − θjo − cjo . Given that θn > pθjo , he can deviate to θn and demand the entire surplus,

which ensures a payoff of approximately 1−θn
2 . This is strictly larger than pθjo − θjo − cjo whenever

cjo >
θn−θjo

2 .

6 Concluding Remarks

We study a reputational bargaining model where a seller’s production cost is determined endoge-

nously by his technology adoption decision before bargaining with a buyer. Due to players’ incen-

tives to build reputations, they are reluctant to revise their offers in the bargaining stage.

In contrast to the case studied by Gul (2001) in which the uninformed player frequently revise

their offers, we show that when players can establish reputations for being obstinate, the seller’s

adoption decision may be bounded away from efficiency even when his adoption decision cannot be

observed by the buyer. Moreover, inefficient adoption and costly delay arise in equilibrium if and

only if the social benefit from adopting the new technology is large enough.

Our results suggest an explanation for the under-adoption of cost-saving technologies in the case

where producers know the effectiveness of the new technologies, their adoption decisions cannot

be directly observed by their trading partners, but they are reluctant to adopt socially efficient

production technologies due to the fear of expropriation by their trading partners. We conclude

with some comments on the robustness of our result once we vary some of our modeling assumptions.
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Timing of Offers: Our baseline model assumes that the uninformed buyer makes their offer

before the informed seller does, which is consistent with the modeling assumptions in APS and

Fanning (2022). In an earlier working paper version, we study the case where players make their

initial offers simultaneously and obtain similar results: In the game with an exogenous distribution

over production costs, bargaining is efficient in all limiting equilibria when the difference between

adjacent types’ production costs is small, and efficient and inefficient limiting equilibria co-exist

when the difference between adjacent types’ production costs is large. The intuition is that when

players make offers simultaneously, the seller does not know whether the buyer will make a screen-

ing offer or a pooling offer, which explains why both can arise in equilibrium. But in the game

with endogenous technology adoption, there is a unique limiting equilibrium, in which the seller’s

adoption decision is socially inefficient if and only if the benefit from adoption is large enough.

Our main results partially extend to a model where the order with which players make offers

is endogenous and, as in Kambe (1999) and Wolitzky (2012), each player becomes committed

with positive probability after making their initial offer. In this game, there exists an equilibrium

where the buyer makes an offer before the seller does, and players’ equilibrium strategies coincide

with those in the baseline model. Nevertheless, there also exist other equilibria due to the seller’s

incentive to signal his production cost. In particular, the off-path belief about the seller’s cost has

a significant effect on players’ incentives when the seller can make an offer before the buyer does.

In the setting where players may only become committed before making an offer, the endoge-

nous timing of offers that arises in equilibrium will depend on the assumptions about when the

commitment types make their offer. This is because a rational player will time her offer so as to

mimic some commitment type. In the presence of temporal commitment types that may make an

offer with delay, APS show that the equilibrium is qualitatively different from the one that obtains

when all commitment types make their offers at time zero. In particular, they show that the strong

type of informed player (the high-cost seller in our model and the more patient player in theirs)

would use delay to signal their type. Solving for the equilibrium under temporal commitment types

is beyond the scope of this paper, but their findings seem to suggest that endogeneizing the timing

of offers in this way would lead to different equilibrium outcomes.

Bargaining Power: In contrast to Gul (2001) in which the uninformed player makes all the

offers and hence has all the bargaining power, we study a reputational bargaining model in which

both players have bargaining power, determined by the ratio of their discount rates. In particular,



6 CONCLUDING REMARKS 40

a player has more bargaining power when they are more patient relative to their opponent.

Our baseline model assumes that players share the same discount rate and hence have equal

bargaining power. By extending our analysis to the case where players have different discount

rates, we can examine the effects of bargaining power on the seller’s adoption decision and on the

expected delay in reaching agreements.

Suppose the buyer’s discount rate is rb and the seller’s discount rate is rs. When the buyer’s

value for the object is 1 and the seller’s cost is θ, the equilibrium price in the Rubinstein bargaining

game is pθ ≡ rb
rs+rb

+ rs
rs+rb

θ. Since the seller obtains a fraction rb
rb+rs

of the total surplus 1− θ, his

bargaining power is rb
rb+rs

and the buyer’s bargaining power is rs
rb+rs

.

Suppose first that rb/rs is small enough that pθ1 < θ2, which is the case in which the buyer’s

bargaining power is relatively high. Then, if π(θ1) is sufficiently high, the limiting equilibrium in

the game with exogenous production costs is inefficient, and features the buyer offering pθ1 and

trading with delay. Otherwise, the limiting equilibrium is efficient. When the seller’s adoption

decision is endogenous, there will be interior adoption and strictly positive delay in equilibrium if

and only if c ∈
(

rb
rb+rs

(θ2 − θ1), θ2 − θ1

)
. In particular, if c < θ2 − θ1 so that adoption is optimal

and rb/rs is arbitrarily small, the limiting equilibrium will be inefficient except for an interval of

adoption costs of vanishing measure.

As in the baseline model, the intuition behind the bargaining inefficiencies comes from the

uninformed buyer’s incentive to screen the informed seller. Screening is more attractive for the

buyer when she has more bargaining power: the price cut that she obtains from making the

screening offer is approximately rs
rb+rs

(θ2 − θ1), which decreases with rb/rs.

Conversely, in the case in which rb/rs is high enough so that pθ1 > θ2, the welfare properties of

the limiting equilibrium will hinge on the size of θ2 − θ1 in a similar way as in Theorems 1 and 2.

Specifically, if θ2 − θ1 <
rb

rb+rs
(1− θ2), then the unique limiting equilibrium is efficient, both under

an exogenous distribution of production cost and under endogenous distributions of production

costs. Otherwise, there always exists an efficient limiting equilibrium, but an inefficient equilibrium

with under adoption and delay may also exist under intermediate values of the adoption cost.

This highlights a stark contrast when we compare equilibrium welfare in the extreme cases in

which one of the player’s discount rate is arbitrarily higher relative to their opponent’s. In order

to see this, suppose that c < θ2 − θ1 (otherwise, the equilibrium is always efficient in the limit). If

the buyer is arbitrarily more patient than the seller, then the unique limiting equilibrium features

under adoption and delay for almost all values of c. If the seller is arbitrarily more patient than the
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buyer, then an efficient limiting equilibrium always exists, although another inefficient equilibrium

may arise under certain parameter configurations.
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[12] Dilmé, Francesc and Daniel Garrett (2022) “A Dynamic Theory of Random Price Discounts,”
Working Paper.

[13] Dutta, Rohan (2022) “Bargaining as a Struggle Between Competing Attempts at Commit-
ment,” Working Paper.

[14] Ekmekci, Mehmet and Hanzhe Zhang (2022) “Reputational Bargaining with Ultimatum Op-
portunities,” Working Paper.
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