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PRELIMINARY

Abstract

Suppose that agents observing informative signals about an unknown parameter

will eventually learn the true parameter. Must the parameter eventually be common

knowledge? We provide an example showing that it need not, and establish sufficient

conditions under which the parameter eventually will be common knowledge.

1 Introduction

Standard models of Bayesian learning provide conditions under which an agent who re-

ceives a stream of signals about an unknown parameter will form posterior beliefs that

converge to the truth. When these conditions are met, an agent who must attain a certain

confidence in the value of the parameter in order to profitably exploit an opportunity can

be assured of eventually doing so.

The issue becomes more complicated when joint actions are required to exploit an

opportunity. Suppose that two agents can each attain a payoff of 1 if they coordinate

on an action whose identify depends on an unknown parameter, as shown in Figure 1.

Miscoordination brings a payoff of −c, while inaction yields a payoff of zero. The players
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A B W

A 1, 1 −c,−c −c, 0

B −c,−c −c,−c −c, 0

W 0,−c 0,−c 0, 0

Parameter θ

A B W

A −c,−c −c,−c −c, 0

B −c,−c 1, 1 −c, 0

W 0,−c 0,−c 0, 0

Parameter θ′

Figure 1: Payoffs from a potential joint opportunity, with actions A, B, or wait (W )

available to each agent in each period.

receive a stream of signals that allow them to draw inferences about the parameter. Their

task in each period is to choose action A, action B, or wait (W ) until the next period.

Other things equal, they would prefer to exploit the opportunity sooner rather than later.

Under what circumstances will the agents be able to make good use of their oppor-

tunity? Choosing action A dominates inaction if an agent attaches probability at least
c
c+1

≡ C to the event that the parameter is θ and the other player chooses A. One possi-

bility is then for the agents to each adopt the rule of choosing A as soon as the posterior

probability they attach to parameter θ reaches C. Given such behavior, however, each

player could increase their expected payoff by instead choosing A as soon as they attach

probability at least C to the event that their opponent attaches probability at least C to

parameter θ. Having adopted this latter rule, however, each agent is then better off play-

ing A when they attach probability at least C to the event that their opponent attaches

probability at least C to the event that their opponent attaches probability at least C

to parameter θ. Continuing in this fashion, coordinating on A in state θ requires that

arbitrarily long strings of the form “there is probability C that my opponent thinks there

is probability C that my opponent thinks ... there is probability C that the parameter is

θ. The parameter must then become common C-belief.

Now suppose that various forms of this opportunity arise, characterized by different

values of the miscoordination penalty c. What does it take to ensure that all of these

opportunities can be exploited? The information process must be such that the parameter

eventually becomes common 1-belief.

We refer to a situation in which the parameter becomes common 1-belief as “common

learning” and say that the agents commonly learn the parameter in this case. In some

cases, of course, the agents’ signals will be sufficiently uninformative that they will have
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no hope of learning the value of the parameter, much less commonly learning this value.

Suppose instead that the signals are rich enough that the players eventually (except for

exceptional cases of probability zero) each learn the parameter. Must the parameter then

be commonly learned?1 We show in this paper that common learning can fail, even though

the information process is such that both agents learn the true state with probability one.

Hence, higher order beliefs matter—learning need not imply common learning. We also

provide sufficient conditions for common learning to occur.

The issue of common learning appears in a variety of dynamic relationships:

Strategic Experimentation. Bolton and Harris (1999) study firms involved in dy-

namic information-gathering, each drawing inferences from their own observations and

from observations of their rival. If the firms are sufficiently patient, each will eventually

learn the underlying state. Will this state be commonly learned? In Bolton and Harris,

the information observed by the firms is public and hence their posterior beliefs are com-

mon knowledge, ensuring that the state eventually becomes commonly learned. Suppose,

however, that the firms can observe the outcomes of their own research and development

experiments but can only observe whether their rival is still pursuing its research (or not).

Posterior beliefs are then no longer common. While we can be certain that sufficiently

patient firms will learn the state, it remains an open question whether the state will be

commonly learned.2

Callibration. Foster and Vohra (1999) and Rustichini (1998) examine models in which

an agent privately observing a stream of data will eventually be able to make good pre-

dictions of how the stream will continue. If there are many such agents, will it eventually

be commonly learned that the agents are predicting well? This remains an open question.

Reputation with Imperfect Monitoring. Consider a repeated game of imperfect

monitoring, with uncertainty about the type of one player, referred to as player 1. As

the game proceeds, the other players will continually update their posterior beliefs about

player 1’s type. In general, the imperfect monitoring will ensure that their posterior beliefs

1Common 1-belief is often (somewhat informally) referred to as common knowledge. In these terms our

question is the following. If both agents eventually know the value of the parameter, must it eventually

be common knowledge?
2The equilibria of this game are the subject of current research (e.g., Moscarini and Squintani (2004),

Rosenberg, Solan and Vieille (2005)). Similar issues arise if firms are making private observations on a

state-dependent demand function, as in Bergemann and Välimäki (1997).
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are private. Conditions are known under which player 1’s reputation will eventually

vanish, in the sense that the other players learn 1’s type. However, we do not know

whether this type ever becomes commonly learned.3

Folk Theorems with an Unknown Payoff Matrix. Consider a repeated game in

which payoffs are generated by a process conditioned on an unknown parameter, with the

agents making noisy and private observations of the payoffs. Establishing that payoffs

eventually become commonly learned may be an important first step in establishing a folk

theorem.4

The following section presents a general model and the tools needed for subsequent

arguments, most notably the notion of common q-belief. Section 3 derives our main

result, establishing sufficient conditions for common learning. Section 4 presents a counter

example to common learning.

2 A General Framework

2.1 A Model of Multi-Agent Learning

Time is discrete and periods are denoted t = 0, 1, 2, .... Before date zero, nature selects a

parameter θ from the finite set Θ according to the prior distribution {pθ}θ∈Θ.

Conditional on θ, there is a stochastic process x ≡ {xt}∞t=0 that generates a signal

profile xt ∈ X for every period. Our notation does not make explicit the dependence of x

on θ. We identify a state as a parameter and a sequence of signal profiles, with the set of

states given by Ω ≡ Θ×X∞. We use P to denote the measure on Ω induced by nature’s

move and the processes (x)θ∈Θ, and use E[·] to denote expectations with respect to this

measure. P θ denotes the measure conditional on a given parameter and Eθ[·] denotes

expectations with respect to this measure.

3Cripps, Mailath and Samuelson (2004) avoid this issue, while showing that the reputation must vanish,

by using player 1’s knowledge of player 2’s actions, and the implications for 1’s actions, to argue that

otherwise a contradictory implication arises for beliefs about player 1 and player 1’s actions. However,

it should be possible to assess whether player 1 can maintain a reputation by examining only beliefs and

without relying on 1’s knowledge of 2’s actions or 1’s induced actions.
4Gossner and Vieille (2003) and Wiseman (2005) examine folk theorems for the case in which the

parameter generating payoffs is commonly known.
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There are 2 agents in the game, denoted n = 1, 2. The signal profile in period t

is denoted by xt ≡ (x1t, x2t) ∈ X, where xnt ∈ Xn is the component of the period t

signal that is observed by agent n. A partial history for agent n is denoted by hnt ≡
(xn0, xn1, ..., xnt−1). On occasion it is convenient to refer to the stochastic process xn ≡
{xnt}∞t=0 that generates agent n’s signals.

We let Hnt ≡ (Xn)
t denote the space of partial histories for agent n and let {Hnt}∞t=0

denote the filtration induced on Ω by agent n’s partial histories. The Hnt-measurable

random variables pnt(θ) ∈ [0, 1], for θ ∈ Θ, is defined by

pnt(θ) ≡ E[1θ | Hnt].

Thus, pnt(θ) denotes agent n’s posterior on the parameter at the start of period t. The

random variables {pnt(θ)}∞t=0 are a bounded martingale with respect to the measure P ,

and so the agents’ priors converge almost surely (Billingsley (1986, Theorem 35.4)).

We will assume throughout that each agent can individually learn the state. At this

point, we simply make this as an assumption. We replace this assumption below with

sufficient conditions on the signal generating process.

Assumption 1 (Learnability) For all n and all θ ∈ Θ, pnt(θ) → 1 P θ-almost surely.

Assumption 1 ensures that the limiting random variable, to which pnt(θ) converges, places

unitary probability on the true state θ. Intuitively, Assumption 1 holds when each agent’s

signals, conditional on the state, do not become uninformative as t increases. Our aim in

this paper is to discuss the additional conditions that must be imposed to ensure not just

that each agent learns the state, but that the agents commonly learn the state.

2.2 Common q-Belief

For any event F ⊂ Ω the random variable E[1F | Hnt] is the probability agent n attaches

to F given her information at time t. We define

Bq
nt(F ) ≡ {ω ∈ Ω | E[1F | Hnt] > q}.

Thus Bq
nt(F ) is the set of states of the world where at time t agent n attaches at least

probability q to event F . Assumption 1 implies (but is not equivalent to) P θ(Bq
nt({θ})) →

1 as t→∞ for all q ∈ (0, 1).

The event that F is q-believed at time t, denoted by Bq
t (F ), occurs if every agent

attaches at least probability q to F , that is,

Bq
t (F ) ≡ ∩nBq

nt(F ).
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The event that F is common q-belief at date t is

Cq
t (F ) ≡ ∩k≥1[B

q
t ]
k(F ).

Hence, on Cq
t (F ), the event F is q-believed and this event is itself q believed and so on.

The parameter θ is common q-belief at time t on the event Cq
t (θ). We say that the

agents commonly learn that the parameter θ if, for any probability q, there is a time

such that, with high probability when the parameter is θ, it is common q-belief at all

subsequent times that the parameter is θ:

Definition 1 (Common Learning) The agents commonly learn parameter θ ∈ Θ if for

each q there exists a T such that for all t > T ,

P θ(Cq
t (θ)) ≥ q.

The agents commonly learn Θ if they commonly learn each θ ∈ Θ.

Because Cq
t (θ) ⊂ Bq

nt(θ), common learning implies individual learning, i.e., the common

learning of θ implies that pnt(θ) → 1 with P θ probability one.

An event F is q-evident at time t if it is q-believed when it is true, that is,

F ⊂ Bq
t (F ).

Proposition 1 (Monderer and Samet (1989)) F is common q-belief at ω ∈ Ω at

time t if and only if there exists an event F ′ ⊂ Ω such that F ′ is q-evident at time t and

ω ∈ F ′ ⊂ Bq
t (F ).

Corollary 1 The agents commonly learn Θ if, for any θ ∈ Θ and q ∈ (0, 1), there exists

a sequence of events F̃t and a period T such that for all t > T , F̃t is q-evident, θ is

q-believed on F̃t, and P θ(F̃t) > q.

2.3 Perfect Correlation and Independence

This section considers two special cases, involving signals that are perfectly correlated

and signals that are completely independent. In either of these two opposite extremes, it

is relatively easy to establish common learning.

Suppose first that the signal process is public, as is commonly assumed in the literature.

This ensures that pnt(θ) = pn′t(θ) for all n, n′, θ and t, and hence that beliefs are always

common knowledge. Assumption 1 thus immediately implies common learning.
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At the other extreme, we have the case of independent signals. Here, the fact that each

agent learns the state while learning nothing about other agents’ signals ensures common

learning.

Proposition 2 Let Assumption 1 hold and suppose that for each θ ∈ Θ, the stochastic

processes {xnt}∞t=0 and {xn′t}∞t=0 are independent. Then the agents commonly learn Θ.

Proof. Our task is to show that under a given parameter θ and for any q < 1, the event

that θ is common q-belief occurs with at least probability q for all sufficiently large t.

From Corollary 1, it is sufficient to find a sequence of events F̃t and time T such that

for all t > T , F̃t ⊂ Bq
t (F̃t) (F̃ is q-evident), F̃t ⊂ Bq

t (θ) (θ is q-believed on F̃t), and

P θ(F̃t) > q.

Let F̃t ≡ {θ} ∩B
√
q

t (θ). Because F̃t ⊂ B
√
q

t (θ) ⊂ Bq
t (θ), state θ is q-believed on F̃t.

We next argue that F̃t is q-evident. We must show that F̃t ⊂ Bq
nt(F̃t) for all n and for

any t sufficiently large. By construction, F̃t ⊂ B
√
q

nt (θ), and hence agent n trivially attaches

probability at least q (indeed, probability 1) to the state being inB
√
q

nt (θ). It then suffices to

show that on the set F̃t(θ), agent n attaches at least probability q to the event B
√
q

n′t(θ)∩{θ},
n′ 6= n, since we would then have F̃t ⊂

(
B1
n(B

√
θ

nt (θ)) ∩Bq
n(B

√
θ

n′t (θ) ∩ {θ})
)
⊂ Bq

n(F̃t). By

Assumption 1, we can choose T sufficiently large that P θ(B
√
q

nt (θ)) >
√
q for all n and

all t > T . The conditional independence of agents’ signals implies that, given θ, hnt is

uninformative about others’ signals, and hence P θ(B
√
q

n′t(θ) | Hnt) >
√
q. But, at any state

in F̃t it is the case that P (θ | Hnt) >
√
q. Multiplying the previous two inequalities gives

the needed result that on the set F̃nt(θ), agent n attaches at least probability q to the

event B
√
q

n′t(θ) ∩ {θ}, n′ 6= n.

Finally, we need to show that P θ(F̃t) > q. Independence implies P θ(F̃t) =
∏

n′ P θ(B
√
q

n′t(θ)) >

q, where the final inequality follows from our choice of T . This completes the proof.

The role of independence in this argument is to ensure that agent n’s signals provide

n with no information about n′’s signals. One would expect common learning to be more

likely the more information n has about n′, so that n has a good idea of n′’s beliefs.

However, when agent n receives no information about n′, as in the case of independent

signals, agent n eventually thinks it quite likely that n′ has learned the parameter. In

addition, we can place a lower bound on the rate of growth of n’s beliefs about n′’s beliefs.

This suffices to establish common learning. When signals are correlated, n’s signals will

often provide useful information about n′’s, accelerating the rate at which n learns about

n′ and reinforcing common learning. Sometimes, however, atypical signal realizations will
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cause n’s beliefs about n′ to go badly wrong. This poses an obstacle that may disrupt

common learning.

This suggests that we may be able to ensure common learning, without independence,

as long as the dependence is such that signals leading one agent too far astray, in terms

of beliefs about the other agent, do not occur too often. The next section pursues this

intuition to establish our main result.

3 Conditions for Common Learning

3.1 Assumptions

To make things notationally less demanding, we will focus in this subsection on the case

where there are only two parameter values. Nothing of any import in the result below

rests on this restriction, whose relaxation requires only the frequent addition of phrases

of the form, “for any θ, θ′.”

Assumption 2 Agents 1 and 2 have finite signal sets, I and J respectively. Conditional

on θ, the signal profile process, {xt}∞t=0 is independent and identically distributed across

t.

We let πθ = (πijθ )I J
i=1,j=1 ∈ ∆(I × J) denote the process generating the agents’ signals

conditional on θ for every period t. That is, πijθ is the probability (x1t, x2t) = (i, j) for

parameter θ and every t. We use φθ(i) ≡
∑

j π
ij
θ , or φθ ≡ (φθ(i))

I
i=1, to denote the

marginal probability of agent 1’s signal i and use ψθ(j) =
∑

i π
ij
θ , or ψθ ≡ (ψθ(j))

J
j=1, to

denote the marginal probability of agent 2’s signal j.

Assumption 3 (Learning)

(3.1) For every pair θ and θ′, there exist signals i and j such that φiθ/φ
i
θ′ 6= 1 and

ψjθ/ψ
j
θ′ 6= 1.

(3.2) For all i, j, and θ, φiθ > 0 and ψjθ > 0.

Note that the first part is equivalent to assumption 1. The second part is merely for

convenience.
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3.2 Preliminary Results: Frequencies are Enough

Let f ijt denote the number of instances in which agent 1 has received the signal i and

agent 2 received the signal j before period t. Let f j2t ≡
∑

i f
ij
t and f i1t ≡

∑
j f

ij
t . Let

the empirical frequencies of the signals be denoted by vectors φ̂t ≡ (f i1t/t)i∈I and ψ̂t ≡
(f j2t/t)j∈J . Given Asssumption 3.2, there exists b > 1 such that for all i, j, θ and θ′,

φiθ/φ
i
θ′ > 1

b
and ψjθ/ψ

j
θ′ > 1

b
.

For any x ∈ RN we will use ‖x‖ to denote the variation norm of x, that is, ‖x‖ ≡
1
2

∑
i∈I |xi|.
We define a pair of matrices that will play a key role in the analysis. Let M1 be a

I × J matrix whose ijth element is
πij

θ

φθ(i)
, i.e. the conditional probability in state θ of

signal j given signal i. With this definition, at any date t, when agent 1 has observed

signals with empirical frequencies φ̂t, agent 1’s expectation of the empirical frequencies

observed by agent 2 is given by the matrix product φ̂tM1. Similarly, define M2 to be the

J × I matrix with ijth element
πij

θ

ψθ(j)
. Note that φ̂t ·M1M2 gives agent 1’s expectation of

agent 2’s expecation of the empirical frequencies observed by agent 1.

The matrix obtained by the product M12 := M1M2 is formally equivalent to a Markov

transition on the set I of signals for agent 1. Much of our analysis will be based on this

analogy.5 To begin with, the transition matrix M12 partitions the set I into recurrent

classes. Two signals i and i′ belong to the same recurrent class iff the probability of

transition from i to i′ (in some finite number of steps) is positive. We let (Rk)
K
k=1 denote

the collection of recurrent classes, and we implicitly re-order the elements of I so that the

recurrent classes are grouped together and in the order of their indices.

Similarly, the matrix M21 := M2M1 is a Markov transition on the set J . Observe

that there is a one-to-one correspondence between the recurrent classes of M21 and M12.

Indeed the relation which associates the class containing i with the class containing j

iff πijθ > 0 is a bijection. It is convenient therefore to group the elements of J by their

recurrent classes in the same order as was done with I. Also we will use the notation Rk

to refer to the kth recurrent class in either I or J when the context is clear. Viewing M12

as a Markov chain leads to the following observation which is central to our analysis.

Lemma 1 There exists r < 1 a natural number n such that for all k ∈ {1, . . . , K} and

for all µ, µ′ ∈ ∆Rk,

‖µ(M12)
n − µ′(M12)

n‖ < r‖µ− µ′‖

and similarly for (M21)
n.

5Samet did something like this.

9



Proof: First note that under M12, there is a positive probability of transition from

any signal i to itself, that is M12 is aperiodic. And, by definition, the restriction of M12

to any given recurrent class is irreducible and hence ergodic. Thus, because signals are

grouped by their recurrent classes, there exists a natural number n such that (M12)
n

has the block-diagonal form. The blocks are the non-zero n-step transition probabilities

between signals within a recurrent class. Note that µ ∈ ∆Rk implies that the product of

µ with (M12)
n is just the product of µ with the kth block of (M12)

n. Because it has all

non-zero entries, a standard result from the theory of Markov processes implies that the

kth block is a contraction mapping. In particular, there exists an r < 1 such that the

displayed inequality in the statement of the lemma holds for all µ, µ′ ∈ ∆Rk.

The preceding result suggests the outline of our proof of common learning. For ex-

ample, suppose that K = 1 so that there is a unique recurrent class, and suppose that

the value of n given by Lemma 1 is equal to 1. Then when agent 1’s frequencies are

close to their expected values in some state θ, i.e. ‖φ̂t − φθ‖ < δ, it will follow that

agent one expects that agent two expects that agent one’s frequencies are even closer, i.e.

‖φ̂t(M12)−φθ‖ = ‖φ̂t(M12)−φθ(M12)‖ < rδ. We will show below (Lemma 3) that for large

enough t whenever the empirical frequencies are close to their expected values in state

θ, an agent assigns high probability to θ. Furthermore, for large enough t, one agent’s

expectation of another agents frequencies is approximately correct with high probability

(Lemma 4). It will follow from these two facts that agent one assigns high probability

to agent two assigning high probability to agent one believing in θ. This is not far from

implying that θ is common p-belief for high p.6

Lemma 2 For any ε > 0, P θ(‖φ̂t − φθ‖ < ε) → 1

Proof: Law of Large Numbers.

Learning the state

Lemma 3 There exist δ > 0 and 0 < β < 1 and a function k(t) such that k(t) → 1 such

that

Pt(θ|h1t) ≥ k(t)

for all h1t such that for all k, ‖φ̂kt −φkθ‖ < δ and β < φ̂t(Rk)
φθ(Rk)

< β−1. Likewise for player 2.

6Common p-belief does not follow immediately from this statement because in general “iterated” p-

belief (one believes that two believes . . . and two believes that one believes . . . ) is strictly weaker than

common p-belief (both believe that both believe. . . ). See Morris. Therefore even in this special case of

K = n = 1, the proof requires some additional steps.
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Proof: Define the log-likelihood ratio as follows

λt =
Prob(θ|ht)

1− Prob(θ|ht)
.

We analyze the evolution of λt and show that β and δ can be chosen to ensure that

λt →∞. Given the i.i.d. process, λt can be expressed as follows.

λt = λ0 +
t−1∑
s=0

log

(
φθ(i)

φθ′(i)

)
where λ0 is the likelihood ratio at time zero, i.e. the prior. We will approximate the last

term. Let

H = Eθ

(
log

φθ
φθ′

)
denote the relative entropy of φθ and φθ′ .

∣∣∣∣∣
t−1∑
s=0

log

(
φθ(i)

φθ′(i)

)
− tH

∣∣∣∣∣ =

∣∣∣∣∣∑
i

f i1t log

(
φθ(i)

φθ′(i)

)
− t

∑
i

φθ(i) log

(
φθ(i)

φθ′(i)

)∣∣∣∣∣
= t

∣∣∣∣∣∑
i

(φ̂t(i)− φθ(i)) log

(
φθ(i)

φθ′(i)

)∣∣∣∣∣
≤ t

∑
i

∣∣∣∣(φ̂t(i)− φθ(i)) log

(
φθ(i)

φθ′(i)

)∣∣∣∣
≤ t log b‖φ̂t − φθ‖

Thus,

λt ≥ λ0 + t
(
H − log b‖φ̂t − φθ‖

)
and we can show that λt →∞ by showing that δ and β can be chosen to ensure log b‖φ̂t−
φθ‖ < H. For this, it is enough to observe that the mapping({

φ̂t(Rk)
}
k
,
{
φ̂kt

}
k

)
→

∑
k

∑
i∈k

∣∣∣φ̂t(Rk)(φ̂
k
t )(i)− φθ(i)

∣∣∣ = ‖φ̂t − φθ‖

is continuous and obtains the value zero when φ̂t(Rk) = φθ(Rk) and φ̂kt = φkθ .

Inferring opponent’s history

Lemma 4 For any ε1 > 0, ε2 > 0, there exists T such that for all t > T ,

P θ(‖φ̂tM1 − ψ̂t‖ < ε1|h1t) > 1− ε2 (1)

P θ(‖ψ̂tM2 − φ̂t‖ < ε1|h2t) > 1− ε2 (2)

for every ht.
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Proof: Conditional on θ and h1t, agent 2’s signals are independent across time but not

identically distributed. In period s, given signal is, we have the conditional distribution

(πisjθ /φisθ )j over agent 2’s signals. The average of the probability that agent 2 observes

signal j over the t periods {0, 1, . . . , t− 1}, conditional on h1t is

ψ̄jt :=
1

t

t−1∑
s=0

πisjθ
φisθ

=
∑
i

φ̂it
πijθ
φiθ
.

Thus, φ̂tM1 gives the vector of these average probabilities.

Consider the probability, conditional on θ, and h1t, that agent one will believe with

high probability that agent two’s empirical frequencies, ψ̂t, are close to the average prob-

abilities.

P θ(‖φ̂tM1 − ψ̂t‖ ≤ ε1|h1t)

We will construct a lower bound for this probability. Obviously,

P θ(‖φ̂tM1 − ψ̂t‖ ≤ ε1|h1t) > 1−
J∑
j=1

P θ
(∣∣∣ψ̄jt − ψ̂jt

∣∣∣ > ε1

J
|h1t

)
. (3)

Now we consider a hypothetical stochastic process, with independent and identically

distributed random variables in each of periods 0, . . . , t − 1, where each such random

variable produces the signal j in each period {0, . . . , t − 1} with probability ψ̄jt . Let

the empirical frequencies generated by this process be denoted by ηt ∈ ∆(J). The true

process, generating frequencies ψ̂t, attaches the same average probability to each signal j

over periods 0, . . . , t− 1 as does the fictitious process, but the true process does not have

identical distributions.

We use this fictitious process to find an upper bound on the terms in the sum in (3).

By Hoeffding (1956 Theorem 4 p. 718) , the true process is more concentrated about its

mean than is the hypothetical process, that is7

P θ(|ψ̄jt − ηjt | > ε1/N) > P θ(|ψ̄jt − ψ̂jt | > ε1/N |h1t), j = 1, 2, ..., J.

Applying this upper bound to (3), we have

P θ(‖φ̂tM1 − ψ̂t‖ ≤ ε1|h1t) > 1−
J∑
j=1

P θ
(∣∣ψ̄jt − ηjt

∣∣ > ε1

J
|h1t

)
. (4)

7The intuition for this result is that 100 flips of a (p, 1−p) coin generates a more dispersed distribution

than 100 flips of 100 biased coins with average probability of heads equal p.
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The event |ψ̄jt − ηjt | > ε1/N is the probability that the empirical frequency of a Bernoulli

process is far from its mean. By Cramér’s Theorem (Shiryaev (1987, p.68)), therefore,

Pr
(
|ψ̄jt − η̄jt | > ε1/N

)
≤ 2e−2tε2/J2

.

Using this bound in (4), we have

P θ(‖φ̂tM1 − ψ̂t‖ ≤ ε1|h1t) > 1− 2Je−2tε2/J2

.

Becuase this formula holds for any history h1t, we can choose t large enough so that the

right-hand side is less than ε2 and the statement of the Lemma follows.

3.3 Common Learning

Our main result establishes convergence to common q-belief.

Proposition 3 Under Assumptions 2 and 3, the agents commonly learn Θ.

Proof: We fix an arbitrary state θ and define a sequence of events Ft and show that for

large enough t it has the three requisite properties. First, Ft will have high probability

conditional on state θ. Second, each agent will assign high conditional probability to θ at

any history consistent with Ft. Finally, Ft will be p-evident for high p.

Take δ > 0 and 0 < β < 1 as given by Lemma 3. Pick ε > 0 such that rδ < δ − 2nε

where r and n are given by Lemma 1. For each date t, we define the event Ft as follows.

First, for each k ∈ 1, . . . K

F k
1t(0) = {‖φ̂kt − φkθ‖ < δ} F k

2t(0) = {‖ψ̂kt − ψkθ‖ < δ} (5)

Next, for any l ∈ {1, . . . , n} and for each k,

F k
1t(2l − 1) = {‖φ̂kt (M12)

l−1M1 − ψkθ‖ < δ − (2l − 1)ε}

F k
1t(2l) = {‖φ̂kt (M12)

l − φkθ‖ < δ − 2lε}

and likewise for agent two:

F k
2t(2l − 1) = {‖ψ̂kt (M21)

l−1M2 − φkθ‖ < δ − (2l − 1)ε}

F k
2t(2l) = {‖ψ̂kt (M21)

l − ψkθ‖ < δ − 2lε}

13



and write

F k
1t = ∩2n−1

l=0 F k
1t(l) F k

2t = ∩2n−1
l=0 F k

2t(l)

Finally, the events

G1t = {β < φ̂t(Rk)

φθ(Rk)
< β−1} G2t = {β < ψ̂t(Rk)

ψθ(Rk)
< β−1}

and we define F1t = ∩kF k
1t ∩G1t and F2t = ∩kF k

2t ∩G2t, and Ft = F1t ∩ F2t.

In view of Lemma 3 it follows immediately from the definition that for any q < 1, we

have Ft ⊂ Bq
t (θ) for all t sufficiently large. Next we show that P θ(Ft) > q for large enough

t. By Lemma 2 it is enough to show that there is an open set U of signal frequencies such

that U ⊂ Ft for every t.

First, note that for each k, the mappings

φ̂kt → ‖φ̂kt − φkθ‖

and

φ̂t(Rk) →
φ̂t(Rk)

φθ(Rk)

are continuous in φ̂t and take values 0 and 1 respectively when φ̂t = φθ. thus, there exists

ε0 such that

{‖φ̂t − φθ‖ < ε0} ⊂
[
F 0

1t ∩G1t

]
and similarly for player two. Next, let8

z = min{‖M1‖, ‖M2‖, ‖M12‖, ‖M21‖ . . . , ‖(M12)
n‖, ‖(M21)

n‖}

Then, for example,

{‖φ̂kt − φkθ‖ <
δ − (2l − 1)ε

z
} ⊂ F k

1t(2l − 1)

Thus Ft is an intersection of sets of frequencies, each of which includes an open neighbor-

hood of (φθ, ψθ). The intersection of these neighborhoods is included in Ft and by Lemma

2 has probability approaching one conditional on state θ.

Finally we show that for any q, Ft is q-evident when t is sufficiently large. The idea

is the following. The event ∩kF k
2t(1) implies that agent two expects that ∩kF k

1t(0) holds.

Moreover, given G2t he also expects that G1t holds because in state θ, G1t = G2t. This is

8Recall that for a linear operator L, the norm ‖L‖ is defined by ‖L‖ = supx
‖Lx‖
‖x‖ .
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becuase, by our definition of recurrent classes, in state θ whenever two sees a signal j in

Rk, it is certain that one has seen a signal i in Rk. We then see by induction that ∩kF k
1t(l)

implies that agent one expects that ∩kF k
2t(l − 1) holds.

However, Ft yields by direct argument only these statements of length 2n−1 and less:

the events F k
1t(2n) and F k

2t(2n) are not included in the definition of Ft. At this point, we

employ Lemma 1 to show that these events are nevertheless implied by Ft, closing the

cycle.

Ft ⊂ F k
1t(2n) ∩ F k

2t(2n) for all k and t. (6)

When we note that φkθ(M12)
n = φkθ and ψkθ (M21)

n = ψkθ , the above follows immediately

from Lemma 1 and our choice of ε and n.

Thus, F1t implies that agent one “expects” that F2t holds. Formally, when F1t holds,

and agent one’s expectation of the frequencies observed by agent two is approximately

correct, then also F2t holds as well.

F1t ∩ {‖φ̂tM1 − ψ̂t‖ <
εminj ψθ(j)

βz
} ⊂ ∩kF k

2t (7)

We now set out to prove (7). Fix k. First, for each l = 1, . . . , n

F k
1t(2l) ∩ {‖φ̂ktM1 − ψ̂kt ‖ <

ε

z
} ⊂ F k

1t(2l) ∩ {‖φ̂kt (M12)
l − ψ̂kt (M21)

l−1M2‖ < ε}

= {‖φ̂kt (M12)
l − φkθ‖ < δ − 2lε} ∩ {‖φ̂kt (M12)

l − ψ̂kt (M21)
l−1M2‖ < ε}

⊂ {‖ψ̂kt (M21)
l−1M2 − φkθ‖ < δ − (2l − 1)ε}

= F k
2t(2l − 1)

where the last inclusion is a consequence of the triangle inequality. Similarly F k
1t(2l−1)∩

{‖φ̂ktM1− ψ̂kt ‖ < ε
z
} ⊂ F k

2t(2(l− 1)). Thus, F1t ∩
⋂
k{‖φ̂ktM1− ψ̂kt ‖ < ε

z
} ⊂ ∩kF k

2t. We can

now prove (7) by showing that for all k

G1t ∩ {‖φ̂tM1 − ψ̂t‖ <
εminj ψθ(j)

βz
} ⊂ {‖φ̂ktM1 − ψ̂kt ‖ <

ε

z
} (8)

To that end, let M1(j) denote the jth column of M1 and

‖φ̂ktM1 − ψ̂kt ‖ =
∑
j∈Rk

∣∣∣∣∣ φ̂t

φ̂t(Rk)
·M1(j)−

ψ̂t(j)

ψ̂t(Rk)

∣∣∣∣∣
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which, because φ̂t(Rk) = ψ̂t(Rk)

=
1

φ̂t(Rk)

∑
j∈Rk

∣∣∣φ̂tM1(j)− ψ̂t(j)
∣∣∣

≤ 1

φ̂t(Rk)
‖φ̂tM1 − ψ̂t‖

and when G1t holds,

<
β

minj ψθ(j)
‖φ̂tM1 − ψ̂t‖

which proves (8) and hence (7).

We can now conclude the proof of q-evidence. Pick p < 1 so that p2 + p− 1 > q. We

have already shown that for all sufficienty large t,

F1t ⊂ Bp
1t(θ). (9)

Hence by Lemma 4,

F1t ⊂ Bp2

1t ({‖φ̂tM1 − ψ̂t‖ <
ε

βz
})

and clearly

F1t ⊂ Bp2

1t (F1t ∩ {‖φ̂tM1 − ψ̂t‖ <
ε

βz
})

which by (7) implies

F1t ⊂ Bp2

1t (F1t ∩
⋂
k

F k
2t) (10)

In state θ, agent one observes a signal in Rk if and only if agent two does as well. It

follows that G1t ∩ θ = G2t. Together with (9), this implies

F1t ⊂ G1t ⊂ Bp
1t(G2t).

Putting together (10) and (3.3) we have

F1t ⊂ Bp2+p−1
1t (Ft)

for all sufficiently large t. A similar argument applies for agent two and thus Ft ⊂
Bp2+p−1
t (Ft) ⊂ Bq

t (Ft).
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4 A Counter Example to Common Learning

In this counter example there will be two equally likely parameter values, θ ∈ {0, 1}, and

two agents, with agent 1 perfectly informed about the parameter. Nevertheless, there will

not be common learning.

The idea in the example is to ensure that the probability agent 2 attaches to the event

θ = 1 is contained in the set pt ∈ {t−1, 1 − t−1} at period t, but that agent 1 is very

confused about which of these beliefs agent 2 has. This confusion comes from a signal

process that mimics the characteristics of the faulty message exchange in Rubinstein’s

(1989) email game. In each period of our example, agent 1 receives a signal from the

set {0, 1, . . .}, while agent 2 either receives the same signal or a signal one higher. We

can interpret these signals as the number of messages a agent has received, in a process

in which agent 1 first sends a message to agent 2, each successful message prompts a

confirmation, and each message is lost with probability βt.

The remainder is routine. The signal structure ensures that regardless of the realized

signal profile, one of the agents will assign probability close to 1
2

to the event that the

other agent assigns probability close to 1
2

to the event that . . . agent 2 assigns probability

t−1 to state 1. This will be true even when both agents are almost certain the state is 1.

In constructing this example, we rely heavily on the fact that (in contrast to the

sufficient conditions for common learning presented in the preceding section) the signals

are generated by a Markov process with a countable number of states. In essence, the

state space is ∪∞t=1{t−1, 1− t−1}).
One might conjecture that if the space of signals were finite, then the uncountable

number of states in the generating Markov process would lose their force and common

learning could be ensured (given individual learning). However, the example can be

modified to have only two signals at each date, with the agents still not commonly learning.

The idea is to consider longer and longer finite truncations of the Rubinstein process, and

to have these processes unfold one message per period. With this modification, common

learning fails, though in a less dramatic way. In most periods, a message will get through

and beliefs will be almost common-knowledge. However, with probability 1 there will be

a future date at which a message gets lost, in which case the agents will be nowhere close

to common belief. Hence, even a limitation to a finite message set does not suffice for

common learning if the Markov process generating the messages has infinite states.

We will proceed by inductively defining the signals the agents receive and the resulting

priors. It simplifies the notation to assume that the parameter value is realized in period

0 and agent 1 is informed of the parameter value in period 1. Signals begin to arrive, and
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we begin to track of the agents’ posteriors, in period 2.

Let p(h2t) denote agent 2’s posterior that the parameter is θ = 1 given the history of

signals h2t. We will construct a signalling structure to ensure that in period t > 1 agent

2’s posteriors are contained in the set {t−1, 1− t−1}.
In period 2, p(h22) = 1/2 ∈ {t−1, 1 − t−1}. Now suppose that in period t > 2 agent

2’s priors are in {t−1, 1− t−1}. We will define the signal structure so that in period t+ 1

agent 2’s priors are either (t + 1)−1 or 1 − (t + 1)−1. In period t, agent 1 will observe a

signal that is a non-negative integer x1t ∈ {0, 1, ...} and agent 2 will observe a correlated

signal that is either the same as agent 1’s or one greater, so that x2t ∈ {x1t, x1t + 1}. The

joint distribution of these signals depends both upon the state and upon agent 2’s current

posterior, p, and a time-dependent parameter βt = (t3 − 1)−1, as follows:

P θ((x1t, x2t) | p(h2t) = p) =


1− γtθ(p), if (x1t, x2t) = (0, 0);

γtθ(p)βt(1− βt)
x2t+x1t−1, if x2t ∈ {x1t, x1t + 1};

0, otherwise.

We will choose the functions γtθ(·) for θ = 0, 1 so that when agent 2 observes x2t = 0 he

will revise his beliefs to p(h2t+1) = (t+ 1)−1. This is ensured by the condition:

p(1− γt1(p))

p(1− γt1(p)) + (1− p)(1− γt0(p))
=

1

t+ 1
. (11)

In addition, we choose the functions γtθ(·) to ensure that when agent 2 observes x2t > 0

he will revise his beliefs to p(h2t+1) = 1− (t+ 1)−1. This is ensured by the condition:

pγt1(p)

pγt1(p) + (1− p)γt0(p)
= 1− 1

t+ 1
. (12)

Straightforward algebra shows that for p ∈ {t−1, 1 − t−1} there exists solutions γtθ(p) ∈
((t+ 1)−3, 1− (t+ 1)−3), for θ = 0, 1, to the equations (11), (12).

This describes what happens to agent 2’s beliefs, but does not yet confirm that agent

2 actually learns the state given this structure. However, this follows immediately from

the fact that his posteriors in period t have the support {t−1, 1 − t−1}. When θ = 1,

there cannot be positive probability attached to the limiting posterior being zero, and

conversely in state zero.9 This completes our description of agent 2’s beliefs.

9Hence, when θ = 1, the values γt
θ must converge to one, so that the signal x2t and hence posterior

t−1 becomes increasingly unlikely.
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Now consider agent 1’s beliefs. Her posteriors about the state are trivial, since she

knows the value of θ. Let us focus on agent 1’s information about agent 2’s posterior

p. Since agent 2’s beliefs are concentrated on {t−1, 1 − t−1}, it suffices to describe 1’s

beliefs about 2’s beliefs to define φ ≡ P (pt = 1 − t−1|H1t). Conditional on φ and the

parameter θ, let µt(φ, θ) denote agent 1’s posterior probability that in date t agent 2 will

see no signals, x2t = 0, and (as a result) agent 2 has a posterior pt+1 = (t+ 1)−1. We can

calculate µt(φ, θ) as

µt(φ, θ) = φ

(
1− γtθ

(
1− 1

t

))
+ (1− φ)

(
1− γtθ

(
1

t

))
.

The bounds γtθ(p) ∈ ((t+ 1)−3, 1− (t+ 1)−3) imply that µt(φ, θ) > (t+ 1)−3.

Suppose that agent 1 sees no signals himself, x1t = 0, then the updated probability

that agent sees x2t = 0 is given by

µt(φ, θ)

µt(φ, θ) + (1− µt(φ, θ))βt
≥ 1

1 + (t3 − 1)βt
=

1

2
,

where the first inequality substitutes our bound on µt(φ, θ) and the equality substitutes

for βt. Thus, regardless of the previous history, conditional on x1t = 0 agent 1 assigns

probability at least 1
2

to the event that agent 2 assigns probability 1
2

to state 1.

Finally, to show that common learning fails, consider an arbitrary signal pair (x1t, x2t)

and the higher order beliefs of agent x1t + x2t + 1 (mod 2). For example, suppose this

is agent 2. Whatever the current agent-2 posterior pt and whatever the parameter θ, the

conditional probability that agent 1 has seen x1t = x2t is

γtθ(pt)(1− βt)
2x2t−1βt

γtθ(pt)(1− βt)2x2t−1βt + γtθ(pt)(1− βt)2x2tβt
=

1

2− βt
≥ 1

2
.

Therefore, regardless of any other beliefs, agent 2 assigns probability at least 1
2

to x1t =

x2t. Likewise, agent 1 would assign probability at least 1
2

to agent 2 having observed

x2t = x1t− 1. Now by the usual contagion argument, we conclude that with probability 1

there exists an integer k such that the k-iterated statement “agent i assigns probability at

least 1
2

to agent 3− i assigning probability at least 1
2

to . . . , agent 2 assigning probability
1
t

to state zero” is true at date t.
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