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Abstract

We present a general model for the optimal consumption of a nonrenewable
resource under two kinds of uncertainties. One source of uncertainty is in
the resource discovery process and the other is in the economic environment
that affects resource supply and demand conditions, such as exhaustion and
development of a substitute. The problem is formulated as one of optimally
controlling a storage process with Markov additive discoveries. The optimal
value of the resource stock is characterized as the solution of a functional
equation and the existence of an optimal consumption policy is established.
It is shown that, in a given environment, the optimal consumption rate is
increasing and the resource price is decreasing in the level of proven
reserves. A counterexample is provided to show that better environments may
in fact mean higher prices and lower consumption rates. Finally, a variety of
examples is given to illustrate the scope and applicability of the general

model.
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1. INTRODUCTION

Since Hotelling's (1931) classic paper, there has been considerable
research on economic decisions relating to nonrenewable resources; see, for

example, the Review of Economic Studies (1974) symposium on the economics of

exhaustible resources. However, only relatively recent studies have
incorporated the important élement of uncertainty into their models. 1In these
models the uncertainty may be about (1) the total supply of the resource stock
(e.g. Kemp (1976), Cropper (1976), Loury (1978) and Gilbert (1979)), (2) the
process of discovering new supplies of the resource through exploration (e.g.
Arrow and Chang (1980) and Deshmukh and Pliska (1980)), (3) the future demand
for the resource (e.g. Weinstein and Zeckhauser (1975) and Pindyck (1980)), or
(4) the timing of development of a producible substitute (e.g. Dasgupta and
Heal (1974), Kamien and Schwartz (1978) and Dasgupta and Stiglitz (1981)). 1In
Deshmukh and Pliska (1981) we have developed a single model that can be
specialized to represent each of these uncertainties in the resource supply
and demand conditioms.

A shortcoming of all these models is their simplicity. By focussing on a
single source of uncertainty, they are inherently less realistic than a model
that would simultaneously capture all of the uncertain events of interest.

However, the development and analysis of such a comprehensive model is a



formidable undertaking, so as an intermediate step, we present in this paper a
general model of nonrenewable resources that simultaneously captures two kinds
of uncertainties. 1In particular, one source of uncertainty is in the resource
discovery process and the other is in the economic environment that affects
the resource supply and demand conditions outlined in the preceding

paragraph. The problem is then to determine an optimal resource depletion
policy in the presence of these multiple and possibly interrelated
uncertainties.

We formulate this problem as a controlled storage process with Markov
additive discoveries. Since our approach extends the one in Deshmukh and
Pliska (1980), in Section 2 we briefly summarize the model and results from
that paper. The present model that includes the environmental component is
then explained in Section 3 and, utilizing theoretical results in Ozekici
(1979), the properties of the optimal resource consumption rates and prices
are derived in Section 4. It is shown that, in a given environment, the
optimal consumption rate is increasing and the resource price is decreasing in
the level of proven reserves. We also show, by example, a counterintuitive
result that better enviromments may in fact mean higher prices and lower
consumption rates. Section 5 considers certain special cases that illustrate
the scope and applicability of our general model and Section 6 concludes the

paper.

2. REVIEW OF THE PREVIOUS MODEL

In this section we briefly review our (1980) model, thereby establishing
the background and notation for the rest of this paper. Let Xy » 0 denote the
level of proven reserves of the resource at time t » 0. The resource is

depleted according to a consumption rate policy c: 1++ [0, c| and is



augmented by stochastic discoveries that are controlled through an exploration
rate (search intensity) policy e: R++ [0,e], where R+= [0, «) and c and e are
finite upper bounds on the consumption and exploration rates. As a function
of the résource level on hand at time t, the consumption policy specifies the
consumption rate c(X.) and the exploration policy specifies the (search)
effort rate e(Xt). Naturally, c(0) = 0. If e(Xt) = e, discoveries of new
stocks occur at a probabilistic rate A(e), i.e., A(e)dt is the approximate
probability that a discovery will occur during (t, t+dt). Given a discovery,
its magnitude is determined by a probability measure G(e, ¢). Thus, if e(Xt)
= e, A(e) G(e, [y, »)) is the probabilistic rate at which new stocks of size
at least y are discovered, and our basic assumption was that this quantity is
nondecreasing in e for each y » 0, i.e., increased exploration effort
expedites discoveries of larger stocks.
Let D° = {DS, t > 0} be the stochastic discovery process, where
DS » 0 denotes the cumulative amount of the resource discovered by time t.

Then the resource level process X = {X t > O} is a Markov process

t’

controlled by policy = = [c(-), e(-)) and satisfying the storage equation:

0 t
+ Dt - é c(XS)ds, t » 0.

(1) Xt = XO
The resource consumption at rate c¢ provides a social utility at rate
U(c), where the utility function U: |[O, c] » R+ is assumed to be concave and
nondecreasing, with U(Q0) = 0. The resource exploration effort rate e costs
h(e), where the exploration cost function h: [0, e] » l+ is continuous and
nondecreasing with h(0) = 0.
With the discount rate p > 0, the total expected discounted net utility

starting with the resource level XO = X and following a policy wm is given by



m—t
(2) v (x) = E{ f e? [U(c(X )) - h((e(x ))]dt | X. = x}.
m 0 t t 0
The social planner's problem is then to choose from an admissible class of
policies, A, an optimal 7% = (c*(-), e*(-)) that maximizes v"(-) to yield the

optimal value

(3) v(x) = sup v_(x), x > 0.
™
TEA
Under suitable restrictions on A, it was shown in Deshmukh and Pliska
(1980) that
(a) the optimal value function v(+) is the unique nonnegative, strictly
increasing and concave solution of the dynamic programming optimality

equation:

(4-a) pv(x) = sup_{u(c) - h(e) - ev'(x) + A(e) f [v(x +vy) - v(x)]G(e,dy)}, x>0
ce[0,c] 0
ecf[0,e]

and

(4-b) pv(0) = sup_{- h(e) + A(e) [ [v(y) - v(0)] G(e,dy)},
ecf[0,e] 0

(b) there exists an optimal policy m*cA, and under this policy the
optimal consumption c*(+) is nondecreasing and the optimal

exploration effort e*(+) is nonincreasing in the resource level, and

(c) the marginal contribution of the resource (i.e., the shadow price),
v'(Xt), is expected to rise at the social rate of discount p, which

is a stochastic analog of Hotelling's (1931) fundamental result.



3. THE NEW MODEL

The purpose of this paper is to extend the previous model in order to
include certain stochastic aspects of the economic environment which affect
the resource supply and demand gonditions. In the previous model, the process
of discoverying new supplies (as summarized by the functions A, G and h) was
assumed to be stationary over time, thereby ruling out the possibilities of
fewer and smaller discoveries (including total exhaustion) or cost savings due
to advances in the exploration technology. Similarly, the utility function u
(which also implicitly includes the extraction costs) was assumed to be
independent of the environment, implying that the resource demand does not
depend upon development of (partial or perfect) substitutes or advances in the
extraction technology over time. We now wish to enrich this model by
introducing a stochastic environmental component that affects the discovery
process and the utility function and thus permits a consideration of the
above-mentioned changes in the economic conditions. However, to keep the
technical difficulties at a manageable level, the discovery process will be
taken as being uncontrolled, so that the only decision variable in this paper
will be the resource consumption rate.

Let Zt denote the state of the economic environment at time t and suppose

the environmental process Z = {Zt’ t » 0} is a Markov process with a discrete

state space E. If Z = z, the sojourn time in state z is exponentially
distributed with mean 1/u(z), where p is a real-valued nonnegative function on
E satisfying sup u(z) < =, At the end of this random amount of time, the

zeE
environmental state z changes to w with probability Q(z, w), where the

transition kernel (i.e., Markov matrix) Q(es, ¢) satisfies Q(z, z) = 0 and

L Q(z, w) =1 for all z ¢ E. If w=z0, or if E is a singleton set, we
wek



obtain the constant environment model of the previous section as a special
case.

The environmental state affects the discovery process as follows.
Whenever the enviromment changes from z to w, an additional amount of the
resource becomes available according to a probability distribution F(z, w, =),
so that F is a transition kernel on E x E x B_, where B, is the Borel
o — algebra on R+. Later on we shall provide several provocative examples
illustrating the interplay between the state of the environment and the manner
in which new supplies of the resource become available. For now, let

Di represent the cumulative amount of the resource augmented as a result of

1 1

the environmental changes by time t. Then D” = {Dt’ t > 0} is an increasing

pure jump Markov process and will be called the environmental change component

of the total discovery process.

Even when the environment does not change, new supplies of the resource
may be discovered throughvexploration, as in the previous section. We shall
assume throughout this paper that the exploration process cannot be controlled
by the planner but may depend upon the state of the exogenous environment.
Analogous to the notation of the previous section, suppose that if Zt = z, New
sources of supply of the resource are discovered at the probabilistic rate
A(z) and that G(z, +) is the probability distribution of the magnitude of a
discovery, if ome occurs. Here A is a nonnegative function on E satisfying

sup A(z) < » and G is a transition kernel on E x B, . Let Di denote the

zeE
cunulative amount of the resource discovered in this manner by time t. Then

2

e t > 0} is also an increasing pure jump

the stochastic process D2 = {D

process and will be called the compound Poisson component of the total

resource discovery process. Note that D2 is similar to DO, the discovery

process in the old model, except now it depends on the exogenous economic



environment instead of the chosen exploration rate policy.

Finally, in addition to the above two stochastic discovery components D1
and D2, we shall also permit deterministic additions to the resource supply by
the environment. Suppose that whenever Zt = z, the resource level is
continuously augmented at rate d(z), where d is a nonnegative function on E

satisfying sup d(z) < =, For technical reasons, we shall also assume that
zekE
inf d(z) > 0, where B = {zeE; d(z) > 0}. Note that this does not rule out
zeB 3 t
the case of no deterministic inputs, i.e., d = 0. Let Dt = f d(ZS)ds be the
0
cumulative deterministic input by time t and call the continuous increasing

3

e’ t > 0} the deterministic component of the

stochastic process D3 - {p

resource discovery process.

With Dt = Di + Di + Dz, the cumulative total amount of resource

discovered by time t, (where Dy = 0), the discovery process

D= {D t > 0} is an increasing stochastic process as in the previous

t?
section, but it is non-Markovian, in general. The pair (Z, D) of the
environment and discovery processes is an increasing Markov additive process
in the sense of ¢inlar (1972) and represents additions to the proven reserves
of the resource over time. The resource depletion occurs at any time t due to
consumption rate c. that the planner selects as a function of the current

environment Zt and the resource level Xy« As in the previous section, let

c: Ex x++ [0, c] denote the consumption policy that specifies the rate

c(z, x) at which the resource is depleted at time t if Z, = zeE and

Xt =x » 0, Under the policy c(es, ¢), the resource level process
X = {Xt, t > 0} satisfies the storage equation:

t
(5) X, =X, +D -] c(z , X )ds, t > 0,



which is similar to (1) in the previous section. Let C denote the class of
admissible consumption policies which will be specified more precisely in the
next section. Then for any given c € C, our model thus far is that of a
storage process with Markov additive inputs, as in ¢inlar (1973).

To consider the planner's problem of selecting an optimal consumption
policy, suppose the resource consumption generates social utilities and costs
which may also depend upon the economic environment and the resource level.

Let u: E x [0, EJ + R denote the consumption utility function, so that

u(z, c¢) is the utility rate (net of any extraction costs) at time t if the

environment is Zt = zeE and the consumption rate is ct = cgl0, EJ.

Similariy, let r: E x R++ R denote the reward function, where r(z,x) is
the reward rate at time t if the environment is Z. = zeE and the resource
level is X, = x > 0. Thus, at time t the net utility rate to the society is
assumed to be given by u(Zt, ce) + r(Zt, Xt). Note that there are no sign
restrictions on u or r, so one can also interpret these as costs; a later
section will provide some examples. Also, additional restrictions will be
placed on functions u and r in the next section.

Suppose future utilitieé and costs are discounted at rate p > 0, so that

the total expected discounted value of starting with initial states Zy = zeE

and XO = x 2 0 and employing a consumption policy c¢ € C is given by

.-}

(6) v (z,%) = Ef é e u(z,,c(2,,X)) + x(Z,, X))t | Z) = z, X, = x}.

The planner's problem is then to choose a consumption policy ¢ € C so as to

maximize v.(*, *). Denote the optimal value as

(7) v(z, x) = sup v (z, x) , zeE, x > 0.
csg



*
A consumption policy c €€ 1is said to be an optimal policy if

Vc*(z’ x) = v(z, x) for all zeE and x > O.

With the freedom of choosing the consumption policy ¢ € ¢, our
nonrenewable resources model now becomes that of a controlled storage process
with Markov additive inputs. Such a model has been studied by Ozekici (1979),

and in the next section we shall draw extensively on his analysis.

4. THE MAIN RESULTS

Our objective is to characterize the optimal value function v, ensure
that there exists an optimal consumption policy c* € C, and study its
properties. To achieve this, we need to place restrictions on the class of
admissible policies, (, and on the utility and reward rate functions, u and r.
A real-valued function c on E x R+ is said to be an admissible

consumption policy if it satisfies a number of conditions. First, c is

nonnegative and bounded above by ¢ < »; we will also assume c > sup d(z),
thereby permitting the consumption rate tc excead the deterministisEinput
rate. Second, c(z, 0) < d(z) for every zeE, thereby ensuring that the
resource level cannot be come negative. Third, for each zeE, assume that
c(z, ) is left continuous on the left-closed set {x e K: e(z, x) » d(z)} and
right continuous on the right-closed set {x e R: c(z, x) < d(z)}. Finally,
assume that for each zeE and x € R there exists some t; > O and some function
f satisfying

t

£(t) =z + [ [d(z) - c(z, £(s))]ds
0

for all t ¢ {0, tl). Let C denote the set of all such admissible consumption



policies.

The last two assumptions are made by Ozekici (1979) to ensure the
existence of a unique Markov additive process corresponding to the control c.
The third assumption is easy to check and apparently does not rule out any
interesting controls. The fourth assumption is more subtle, but Ozekici
(1979) showed that it is satisfied by ¢ if (i) c satisfies the first three
assumptions, (ii) for each z ¢ E, c¢(z, ) has a finite number of
discontinuities on any finite interval, (iii) for each

z ¢ E, the sets {x e R: c(z, x) > d(z)} and {x e B: c(z, x) < d(z)} are
closed, and finally either (iv-a) for each 2z ¢ E, c(z, *) is nondecreasing or
(iv-b) for each 2z ¢ E, c(z, «) is piecewise Lipschitz.

If ¢(+», ) is an admissible policy and the resource level process X
satisfies the storage equation (5) with Xy » 0, then Ozekici (1979, Theorem
I1.4.2) has shown that (Z, X) is a Markov process with state space E x R+.
Thus, the choice of optimal c¥* ¢ g is a (continuous—-time) Markov control
problem.

As to the utility rate function u: E x [0, c] » R, assume that, for each
z € E, u(z, +) is continuous, concave and increasing. Also suppose that
u(z, ) is twice continuously differentiable with the second derivative
bounded away from zero. This latter assumption about the second derivative
can be weakened somewhat, but then the results become more awkward and
complicated (cf. Ozekici (1979, Assumption IV.1.3)). Similarly, regarding the
reward rate function r: E x R+ + B, assume that for every zeE the function

x + r(z, x) is concave, increasing, bounded above and has a finite right-hand
derivative at the prigin. Our concavity and monotonicity assumptions on u and
r are natural from the economic standpoint, while the others are necessary for

technical reasons and expositional simplicity. With these assumptions, for



any c € G, the expected discounted value function v, given by (6) is well-

defined and bounded.

We are now ready to state our main results, which follow directly from a
lengthy analysis in Ozekici (1979) culminating in his Corollary IV.l.4. This
analysis is somewhat similar to that in Deshmukh and Pliska (1980) in that it
involves first using dynamic programming methods and functional analysis to
characterize the optimal value function v and its properties, then showing
that there exists an optimal policy, and finally characterizing properties of

this policy.

Theorem A: The optimal value function v = sup v_ is the unique bounded
ceC
differentiable solution of the optimality equation:

(8-a) pv(z, x) = sup_ {u(z,c) + [d(z) - ] a_vgi_,g }
ce[0,c]
+ 1(z, x) + M2) [ [v(z,x +y) - v(z, x)]6(z, dy)
0
+ u(z) £ Q(z, w) [ [v(w, x+y) - v(z, x)] F(z, w, dy), zeE, x > 0
wek 0
and
(8-b) pv(z, 0) = sup _ {u(z, ¢) + [d(2) - c] ——BV(zég) J
ce[0,d(z)c]
+1(z, 0) +A(2) [ [v(z, ¥) - v(z, O)] 6(z, dy)
5 .

o0

+ u(z) I Q(Z, W) f [V(W, Y) - v(z, 0)] F(z, w, dy), z € E.
weE 0



Furthermore, for every zeE, the function v(z, ¢) is concave and increasing on
R+. Finally, the function g(+) = lim v(+, x) is the unique bounded function

X >0
on E satisfying

(9) pg(z) = u(z, ¢) + r(z, =) + u(z) I Q(z, w) [g(w) - g(z)], z ¢ E.
wek

The first term on the right hand side of the optimality equation (8)
represents the effect of the continuous resource supply and consumption on the
optimal value, the third term corresponds to the expected jump rate of change
in the optimal value due to the compound Poisson component of the resource
discovery process, and the last term accounts for the jump changes in the
optimal value due to discoveries resulting from the environmental changes. If
the environment is constant over time, then the last term vanishes and
(without a deterministic input but with a controlled discovery process) we
obtain the characterization of v in Deshmukh and Pliska (1980), summarized as
result (a) and equation (4) in Section 2 of this paper. As in Deshmukh and
Pliska (1980, 1981), EX%Elil is the marginal contribution of an additional
resource stock to total optimal value and is interpreted as the shadow price
of the resource at the resource level x in the environment z. Since

v(z, ) is concave, in any given environment zeE, this price is decreasing in
the resource level.

Our next result is similar to the one summarized in (b) of Section 2.

THEQOREM B: There exists an optimal consumption policy c¢* ¢  yielding
Vox = v and it specifies in state (z, x) a consumption rate c*(z, x) that

attains the supremum on the right hand side of the optimality equation (8).

For every zeE, the function c*(z, ¢) is nondecreasing on R+.



The first statement follows from Ozekici (1979) and then the second
statement follows from (8) together with the concavity of u(z, «) and v(z, ).
Thus, in any environment, the greater the resource stock on hand the faster it

. . . av(z,x) .
should be consumed. Equivalently, since the shadow price —s—— is
nonincreasing in the resource level x, the lower the shadow price of the

resource the higher is the optimal consumption rate. Also note that the

characterization of c¢* from the optimality equation (8) yields

au(;, c*(z,x)) - 9v(z, x)

5e % , i.e., at the optimum, the marginal utility of

consumption equals the marginal value of the resource stock.

A next natural problem is to investigate the dependence of the shadow

av(z, x)

% , on the economic environment z, which will enable us to

price
determine how the optimal consumption rate c*(z, x) depends upon the
environment z. The actual relationship will depend upon a particular
interpretation of the environment and the stochastic process governing it. In
general, we would like to compare environments and ask whether, for a given
resource level, the optimal consumption rate is higher and the shadow price is
lower in “better” enviromments. Unfortunately, as the remainder of this
section shows, a general comparison of different environments is not easy, and
even in specific cases the results may turn out to be highly counterintuitive.
The main difficulty in comparing different states of the environment is
that each can be characterized on the basis of more than one criterion.
Associated with each environmental state z, for example, are two return
functions (u(z, ) and r(z, -)) as well as three separate components
(u(z)F(é, ey ), A(2)G(z, ) and d(z)) of the discovery process. Therefore,
even though one state might be clearly superior to another one with respect to

one criterion, the reverse might be true with respect to another criterion, in



which case there is no obvious way to decide which state is better. A further
difficulty in comparing states is due to the fact that the environment changes
from one state to another (according to wu(e) and Q(e+, ¢)). For example,
suppose that a state z is clearly superior to a state w according to all of
the above-mentioned criteria but a third and substantially superior state y is
accessible from w but not from z. Then it may be preferable from a long-run
viewpoint to be in state w than in state z.

One approach to circumventing these difficulties would be to compare two
environmental staes that differ on the basis of only one criterion but are
identical in all other respects (including the probability laws governing the
environmental changes from those states). For example, if d(z) > d(w), all
other things being the same in the two states, then we could say that state z
is better than state w (in the lcng—run‘as well in the short-run). Another,
and more general, approach would be to identify a single criterion that
properly summarizes the competing effects of all factors governing the
utilities and probability laws. The leading candidate for such a criterion is
the maximum expected discounted total value function v. This criterion cannot
always be applied because v is not a scalar; for fixed z it is a function on
R+. However, it does seem reasonable to assert that the environmental state z
is better than state w if v(z, x) » v(w, x) for all x » 0, i.e., starting in
the environmental state z provides a higher long-run optimal return than
starting in w, for all initial resource levels.

With such a reasonable single criterion for comparing environments, we
would then like to show, for example, that in better environments the optimal
consumption rates are higher and the shadow prices are lower. However, the
following counter-example shows that this result may not hold in general.

First, suppose E = {z} (a singleton), A(z) = u(z) = 0 and d(z) = 1/4, so that



we have only deterministic resource inputs and a static environment. Let the

utility and reward rate functions be given by

kx , 0<x <1
1/2

u(z, ¢) = ¢ and r(z, x)

k , x » 1.

where the parameter k > 0. With p =1 let

% = inf {x > 0; ar(z, x) < Su!z,dz! } _ {?, if k <1

3% 3c 1, if k > 1 °

According to Ozekici (1979, Theorem I11.3.45), the optimal consumption rate
satisfies c*(z, x) < d(z) = 1/4 for all x < x and c*(z, x) » d(z) = 1/4 for
all x > X.

Now suppose k » 1, so that Xx = 1. Then we must have c*(z, x) < 1/4 for
some x < 1. To see this, suppose instead that c*(z,x) = 1/4 for all x < 1.

Then Xt = x for all t » 0, whenever XO = x € 1, in which case
u(z, d(z)) + r(z, x) = kx +1/2 , x<1
is the reward rate. Furthermore, since p = 1,
vc*(z, x) =kx +1/2 , x < 1.
If this policy is optimal, then V.x must satisfy the functional equation (8),

which specializes to

v *(z, x)
pvc*(z, X) = sup {u(z, c) + [d(z) - c] } + r(z, x).

cag X



Substituting and differentiating, one computes the maximizing value of

c*(z, x) = 1/(4k2). Substituting this back into the right hand side of the
functional equation, one sees that it is satisfied if k=1 but it is false for
all k > 1. Thus c*(z, x) = d(z) = 1/4 cannot be the optimal consumption rate

for all x < 1, if k > 1, i.e., we must have c*(z, x) < 1/4 for some x < 1.
This preliminary example shows that it may be optimal to let the resource
level rise by forgoing consumption over the short-run, in order to benefit
from more favorable values of the rewrd rate function r over the long run.
Now consider a two—-state model with E = {z, w} and u(z) = py(w) = 0,

so that states z and w do not communicate. The rest of the data is the same
as in the preceding deterministic case, except now the parameter k (which
depends upon the environmental state) is greater than 1 for state z and less

than 1 for state w. Consequently, we have r(z, x) » r(w, x) and v(z, x) > v(w, x),
so that state z is better than state w in terms of both the short-run as well
as the long-run considerations. However, by the analysis in the preceding
deterministic case, the optimal consumption rate satisfies c*(z, x) < d(z) = 1/4 for
some x < 1, whereas c*(w, x) » d(w) = 1/4 for that same x (the x for w equals
zero). Thus, the optimal consumption rate is actually lower in the better

environmental state. Furthermore, since from the optimality equation we have

dv(e, x) _ dule, c*(e, x))
x dc

concavity of u implies that the shadow price at
some level x will be higher in state z than in state w. What seemed to be the
better state turns out to have higher prices and lower consumption rates.
Thus, in certain cases, the dependence of prices and consumption rates on
the economic environment may turn out to be counterintuitive. This is why it
is very difficult, if not impossible, to obtain general results comparing
different statgs of the environment. Nevertheless, for some other specific
cases, such as those considered in the next section, it may be possible to

obtain these kinds of results.



5. ILLUSTRATIVE EXAMPLES

We now specialize the general model of Section 3 to illustrate how it can
capture a variety of economically meaningful situations by appropriately
interpreting the envirommental component. In the first four examples the
environment affects the resource supply and in the last example it also
affects the resource demand conditions. In each case, Theorems A and B of
Section 4 hold, so that the optimal value function is characterized by an
appropriate specialization of the optimality equation, there exists an optimal
consumption policy and, for any given environmental state, the resource
consumption rate is nondecreasing and the resource price is nonincreasing in
the level of proven reserves. We also indicate how the resource
consumption/price may change with the environment. However, we do not provide
any detailed analyses or proofs, as they appear to pose difficult and lengthy

digressions.

5.1 An OPEC Model

Suppose the economy must depend solely upon an external supplier who
controls the continuous resource supply rate, d(+), and/or the resource price
denoted as p(+). If Z . = z, he supplies at a constant rate d(z) > 0 and
charges price p(z) » 0, where z ¢ E = {0, 1,...}. Suppose higher values of z
correspond to worse environments in terms of lower supplier rates and/or
higher prices. The supplier's state of willingness to supply changes

according to a Markov process with data u(e) and Q(-, +). There are no other

sudden discoveries of the resource, so that A 0 and F(z, w, «) is

concentrated at Q. If ul(-)is the consumption utility function, then we have
u(z, ¢) = ul(c) - p(z) and r = 0. In this case, one expects lower

consumption rates (higher shadow prices) in worse environments, i.e.,

ov(z + 1, x) 5 ov(z, x)

*
c*(z + 1, x) € ¢*(z, x) and P N




5.2 A Natiomalization Model

Suppose the resource stock lies in a foreign ground and becomes available
to the economy through stochastic discoveries over time but (in the spirit of
Long(1975)) may be suddenly expropriated due to nationalization at a random
time, thereby abruptly terminating the discovery process. Let E = { 0, 1}
and suppose environmental state Z, = 0 denotes that the discovery process is
"on” at time t and Z, = 1 represents the event of nationalization by t. The
random time, T, of nationalization is exponetially distributed with mean

1/u(0) and the state of nationalization is a trapping state, i.e.,

u(l) = 0. Upon nationalization, there are no new discoveries

(i.e., A(1) = 0) and the planner's problem is then the deterministic
(Hotelling's) problem of optimally consuming the stock Xp over {T, »). Before
nationalization, discoveries occur according to a compound Poisson process
with data X(0) and G(O, +), and there are no other resource inflows, so

that d = 0 and F(z, w, ¢) is concentrated at 0. The utility rates are
U(e, c) = ul(c) and r = 0. Again one expects c*(0, x) » c*(l, x), so that the

consumption rate is higher prior to nationalization.

5.3 An Exhaustion Model

In the preceding model, the discovery process was terminated exogenously
and abruptly. Suppose instead that the discovery process slows down and
eventuallx terminates because the finite but uncertain amount of the total
resource stock in ground gets depleted and exhausted over time. The integer
valued random variable S denotes the total stock size and P(+) is the
planner's subjective probability mass function of S at time t = Q. Let the
"environment"” Zt denote the cumulative amount of the resource discovered by

time t. Then the termination date is a random variable (stopping



time) T = inf {t > 0; z = S}, and again on [T,») we have the Hotelling
problem of optimally consuming Xp without the possibility of further
discoveries.

By the definition of the environment, the times and amounts of increases
in the environment coincide with those in the resource level so that Di = Zt'
To describe the environmental process in detail, note that if Zp = z and S = s
> z, then (s-z) is the amount of resource yet to be discovered, a quantity
that, in general, affects the rate and magnitude of new discoveries. To
describe exploration technology, suppose v(s-z) is the probabilistic rate of
discoveries and H(-ls—z) the probability distribution of the size of a
discovery. Here v(0) = 0 and H(-|s-z) is concentrated on {O,l,...s—z}. A

o«

reasonable assumption is that for any u, v(w) 2 H(ylw) is nondecreasing in w,
. y=u
i.e., the greater the stock remaining to be discovered, the faster are the

discoveries of larger stocks. Given Z, = z, the planner knows S is greater

o«

than z and so revises the probability distribution of S to P(e)/ z P(w) on
w=z
{z,z+l,...}. This yields the expected probabilistic rate of discoveries, namely

-] -}
u(z) = § v(s-2z) P(s)/ | P(s)
s=z s=z
Similarly, the probability that the next discovery is of size y, i.e., that

the environment changes from z to (z+y), is

- -]
Qz,z+y) = | H(y|s-2)B(s)/ ] P(s).
s=z+y s=z
Finally, since the amount of change in the environment is the same as the
quantity of resource discovered, we have F(z,z+y,+) concentrated at y.

With these specifications of u, Q and F, describing the environmental



process, we have Di = Zt' There are no other inputs, sod = A = 0 and D% = Dz
for all t. Under the stated assumption on u(+*)Q(e,+) one would expect to
become more conservative as more of the resource is exploited,
i.e., c*(z+l,x) < c*(z,x).v

This model of uncertain exhaustion extends the ones in the literature
(e.g. Kemp (1976)) cited in Section 1 in that in addition to the uncertainty
about the total stock size, we have also included the uncertainty regarding
the discovery process through which the stock becomes available. The model
also extends our previous one in Deshmukh and Pliska (1980) in that it now

permits slower and smaller discoveries and eventual exhaustion of the resource

stock over time.

5.4 An Exploration Model

As a possible scenerio for the discovery process, suppose the total land
area 1s divided into discrete test sites and more promising sites are explored
first. Let Zt ¢ E={0,1,2,...} denote the number of test sites explored by
time t, so that Q(z,z+1) = 1. If Z, =z, let 1/u(z) be the mean time required
to complete the exploration of the site (z+l) and let F(z, z + 1, =+ ) denote

the probability distribution of the resource stock discovered at the site (z +

1); there are no other inputs, so that A = d 0. A reasonable assumption is
that more promising sites can on average be explored faster and yield larger
supplies, i.e., u(z) is decreasing in z and F(z,z+l,+) is stochastically
decreasing in z. Equivalently, as in Arrow and Chang (1980), the total land
area may be finite and, as more area is explored, less remains available for
further exploitation and hence less fruitful the exploration process

becomes. In any case, we expect greater conservation of the resource as

* *
exploration proceeds over time, i.e., ¢ (2z+1,x) < ¢ (2z,x).

0



5.5 A Model with Technological Advances

Let Z, denote the technological state of the economy that affects the
resource demand or supply conditions at time t. For example, Z, may represent
the state of the exploration or extraction technology and higher states may
correspond to better technologies in terms of lower costs of exploration or
extraction, i.e., r(z+l,x) » r(z,x) or u(z+l,x) » u(z,x). Alternatively, as
in Dasgupta and Heal (1974), Z, may represent the availability of a producible
substitute (e.g., an electric car) for the resource, and suppose that higher

values of Z, correspond to availabilities of closer substitutes, yielding a

du(z+l,c) < du(z,c)
Jc ac *

lower marginal utility of consumption, i.e.,

In either case, the environment changes due to technological advances
that involve time delays and R&D expenditures. If Z = z, the technology
changes after an exponential length of time with mean 1/p(z), requires the
interim R&D expenditures at rate [-r(z,x)], and yields an improved technology
(z+y) with probability Q(z,z+y). The only resource availabilities are due to
stochastic discoveries that occur according to the compound Poisson component
with A and G that are independent of Z, and we have d = 0 and F(z,z+y,+)
concentrated at 0. Then we expect faster resource consumption and lower
prices in better technological environments, i.e.,

*
c*(z+l,x) > ¢ (z,x) and

av(z+l,x) < av(z,x)
X 9xX *

6. Concluding Remarks

We have presented a general model of nonrenewable resource consumption in
the presence of two interrelated sources of uncertainty. First, the
exploration process of discovering new supplies involves uncertainty and

second, the economic enviromnment that affects the discovery process and/or the



consumption utility/cost function may be stochastic. It is shown that the
maximum total expected discounted net utility is characterized as the unique
solution of the dynamic programming optimality equation, that there exists an
optimal consumption policy and that, under this policy, higher levels of the
resource imply lower prices and higher consumption rates. We have also
illustrated the model by indicating how it can be specialized to capture,
among others, the possibilities of the resource exhaustibility or a substitute
availability.

Unfortunately, it seems difficult to show how the optimal value function,
the shadow price and the optimal consumption rate depend on the environmental
state in economically meaningful ways. We look for future research to analyze

these issues for specific cases, such as the ones we mentioned above.
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