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Abstract

Basing resource allocation on the recipients’ actions can improve alloca-
tion decisions but distort action choices. A mechanism designer optimizes this
tradeoff by adjusting how intensely actions affect outcomes. We show that
market power—in the form of centralized action choices—affects this design
problem in a novel way by considering settings where strategic agents choose
actions on behalf of multiple recipients. In sufficiently competitive settings the
mechanism designer optimizes against agents’ equilibrium incentive to distort
action choices of a single “marginal” recipient type, as in related models with
no market power. However with sufficiently few agents (strong market power),
a novel, second class of equilibria can arise where agents inefficiently distort
action choices for multiple recipient types. Computations show that such equi-
libria can even be welfare optimal. Our work demonstrates how sufficiently
strong market power can overturn qualitative insights obtained in standard,
competitive mechanism design settings.
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†Center for Economic Studies, El Colegio de México A.C., Picacho Ajusco 20, Mexico City, 14110,
eamunoz@colmex.mx.

‡Kellogg School of Management, Northwestern University, 2211 Campus Drive, Evanston, IL
60208, schummer@kellogg.northwestern.edu.

1

mailto:eamunoz@colmex.mx
mailto:schummer@kellogg.northwestern.edu


1 Introduction

By observing recipients’ actions beforehand, a planner may be able to allocate re-
sources more effectively. For example, transplant organs can be targeted toward the
most vulnerable patients by identifying those who obtain the most intensive medical
treatments. Poverty alleviation programs provide transfers to poor households based
on regular school attendance or medical checkups, while school choice priorities are
impacted by the choice of residential location.1 Promotions in the private sector and
the military can be affected by decisions to participate in costly projects or high-risk
missions.

From a mechanism design perspective, letting actions impact allocation decisions
creates a welfare tradeoff between improving allocation outcomes and distorting action
choices. These distortions lower welfare both by making actions choices less efficient
and by weakening the planner’s ability to infer who takes which actions. Recent
work on strategic classification (e.g., Braverman and Garg (2020), Perez-Richet and
Skreta (2022, 2023)) considers this tradeoff in settings where individual recipients
selfishly choose their own actions. However in some settings this tradeoff is further
complicated by the presence of market power : the actions of multiple recipients are
chosen by a single strategic agent who acts on their behalf. A prominent class of
such settings is transplant organ allocation, where transplant centers choose medical
treatments on behalf of their multiple patients, with each choice impacting allocation
rates for all patients.

Our objective is to examine the mechanism design interplay between this form
of market power and the welfare tradeoff described above. We ask not only to what
degree observed actions should impact the planner’s allocation decisions, but also how
this question is impacted by the degree of competition: the extent to which recipients’
action choices are centralized.

The simplest model that allows us to do this involves two types of recipients who
obtain Low or High value from an object and, respectively, obtain negative or positive
benefit from taking an observable “Treatment” action (e.g. intensive medical interven-
tion in the organ allocation example). A planner who allocates by fully prioritizing
recipients taking the Treatment action may distort the action choices of Low-type
recipients. A planner who ignores action choices altogether—eliminating priorities—

1See Martinelli and Parker (2003) and Park and Hahm (2023).
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removes these distortions but fails to utilize welfare-improving information. More
generally a planner can partially prioritize, by rationing a fraction of objects to re-
cipients taking the Treatment action, allocating the rest to those who do not. Our
questions above correspond to how the choice of this ration and the degree of market
power jointly affect equilibrium behavior and welfare.

A baseline “perfect competition” case of our model—where individual recipients
choose their own actions—is related to the strategic classification literature mentioned
above in which market power is set aside. In this baseline case (Section 3) equilibrium
welfare is maximized when the planner maximizes the ration of objects allocated to
Treatment recipients subject to a no-distortions constraint: Low type recipients must
not have the incentive to choose the Treatment action. Any higher ration induces
Low types to “game the system,” which can be shown to necessarily lower welfare.

To address the impact of market power, our general “imperfect competition” model
(Section 4) introduces n strategic agents who each choose actions on behalf of a subset
of recipients. These agents can represent, for example, transplant centers in the
organ allocation example above that choose medical treatments on behalf of multiple
patients.

The centralization of decision making evokes the following intuition in our set-
ting. First, each agent partially internalizes the congestion effect (crowding out High
types) from “wrongly” choosing the Treatment action for any of its Low type recipi-
ents. Since higher market power (lower n) increases this internalization, the planner
can further increase the ration of objects targeted toward recipients who take the
Treatment action while still avoiding any distorted action choices.2 Our results show
that this intuition is partially true in that, assuming it remains welfare-optimal to
eliminate distortions (as in the baseline perfect competition case), an increase in
market power improves both resource allocation and welfare (Proposition 3).

Surprisingly, however, there are cases where it may not be welfare-optimal to elimi-
nate distortions, overturning the qualitative result of the baseline case. To begin with,
the presence of market power can lead to a novel form of what we call “Inversion”
equilibria in which agents’ action choices are doubly distorted: each agent chooses the
Treatment action for some of its Low types and simultaneously fails to choose this

2Similarly, an increase in market power decreases the intensity of such distortions, holding the
ration fixed. Parker et al. (2018) provide empirical evidence of this type of effect in the context
of heart allocation: patient over-treatment is more prevalent in regions with more (competing)
transplant centers.
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action for some of its High types. Though convexities in the payoff functions com-
plicate the analysis of precisely when such equilibria arise, computations reveal that
they do when there is a low relative cost for Low types to take the Treatment action,
i.e. when it would be difficult for the planner to screen in the first place. In addition,
counterintuitively, such equilibria can be welfare-optimal among all equilibria.

For some intuition underlying these “Inversion” equilibria, fix a planner’s rationing
decision and imagine that agents anticipate a relatively low availability of objects
for recipients who take the Treatment action. This could lead the agents (i) to
increase some or all of their High type recipients’ object allocation rate by not choosing
Treatment for them, and (ii) to avoid further reducing those High types’ allocation
rate by choosing the Treatment action for some or all of its Low types. If this behavior
leads to a disproportionate overall fraction of recipients taking the Treatment action—
and thus a relatively low availability of objects for those recipients—then this is
plausible equilibrium behavior. This intuition is strongest when it is not too costly
for Low types to take the Treatment action; our computations reveal such equilibria
in precisely these cases.

Our results highlight three points relevant for the design of mechanisms that prior-
itize recipients on the basis of their action. First, in some cases, partial prioritization
via rationing allows the planner to finely adjust the tradeoff between improving alloca-
tion decisions and distorting action choices. Not surprisingly this includes situations
where market power is low, as in the strategic classification literature that assumes no
market power. Second, in these cases an increase in market power reduces distortions,
which alters the optimal mechanism in a way that further enhances welfare. Finally,
there are other cases where strong market power leads to unexpected equilibrium
behavior. Our contribution is not only to point out that market power can lead to
this new form of “Inversion” equilibrium in contrast to the baseline case, but that in
some cases such equilibria can even be welfare-optimal.

1.1 Related Literature

Though we consider a specific problem of object allocation via classification, our work
addresses the broader question of how market power impacts mechanism design. This
interplay is one that has not yet been widely considered in the literature, as pointed
out by Agarwal and Budish (2021). They also note the exception of the auction
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literature, which demonstrates how market power can hinder the designer’s objectives.
Notably we draw the opposite conclusion in our setting.3

The work closest to our specific setting is that on strategic classification (Hardt
et al., 2016). This literature focuses on the case where individual recipients strategi-
cally choose their own actions, analogous to our baseline “perfect competition” model
(Section 3) that ignores market power. We distinguish ourselves from this work by
allowing for “imperfect competition” (Section 4), centralizing multiple decisions un-
der one strategic agent.4 Our contribution is to show the extent to which results in
the baseline model extend to the general one and how this is impacted by the level
of competition.

Generally speaking, models in this literature have the following characteristics.
A planner wishes to correctly classify an agent’s type as being above or below some
threshold (high or low). All agents desire a high classification and can misrepresent
their privately known type at some cost. In a continuous-type version of our baseline
model (Section 3), Braverman and Garg (2020) maximize equilibrium classification
accuracy net of agents’ manipulation costs. Under some assumptions they show that
optimal classifiers (i) typically require randomization, and (ii) induce no manipu-
lation. Our setup necessarily induces randomness by the nature of our budgeted
rationing problem but its quantification is determined endogenously by equilibrium
behavior. Nevertheless, our Theorem 2 is analogous to their result.

Perez-Richet and Skreta (2022) allow the planner to commit to a probabilistic
testing function that maps (misrepresented) types into randomized signals. The
planner uses realized observations to make optimal classification decisions. Under
an increasing-returns assumption on misrepresentation costs, accuracy-maximizing
mechanisms “raise the bar” by offering the greatest chance of high classification only
to observed types above some artificially high threshold. The agents achieving this
threshold in equilibrium are precisely those whose true type is above the planner’s
desired threshold. Other types engage in no misrepresentation, being compensated
with enough probability of high classification to offset the benefit of doing so. Perez-
Richet and Skreta (2023) impose this no-misrepresentation condition as a constraint

3Competition can be shown to harm welfare in various settings outside of mechanism design,
such as multi-sided platforms (Tan and Zhou, 2021) and competitive search (Lester et al., 2019;
Mekonnen and Pakzad-Hurson, 2024).

4An additional difference is that we impose a “classification budget” representing a fixed supply
of resources to allocate.
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under which they find optimal allocation mechanisms.
In a machine learning context Hardt et al. (2016) provide efficient, near-optimal

algorithms for classification accuracy against strategic agents both when the classifi-
cation objective is known and when it first must be learned by the algorithm through
existing data. In a related model, Milli et al. (2019) analyze the tradeoff between
accuracy and the resulting manipulation costs imposed on “high type” agents.

Other work examines variations on mechanism-, scoring-, or ratings-design under
costly misrepresentation. Frankel and Kartik (2021) consider agents who vary both
in type as above and in misrepresentation costs. This dual heterogeneity leads the
planner to under-weight observed information to improve accuracy in equilibrium.
When types are multidimensional Ball (forthcoming) shows that the planner benefits
by under-weighting some dimensions and over-weighting others. Lee and Suen (2023)
consider allocating university seats based on exam scores obtained naturally (high
types) or through wasteful tutoring (low types), showing that increasing resources
(seats) can increase distortions (wasteful tutoring). Finally, Akbarpour et al. (2024)
provide a more distinct setting in which rationing is optimal even when the use of
transfers is available.

In a dynamic setting, Munoz-Rodriguez (2024) studies a model that is somewhat
like an overlapping generations version of our no-market-power model but where
action choices are costly for only one type. The optimal dynamic mechanism improves
outcomes by granting option value to low types who forgo early assignment.

While the imperfect competition aspect of our main model (Section 4) is novel from
the perspective of the above literature, it also leads to a generalization of congestion
games pioneered by Wardrop (1952). Increasing one’s allocation probability through
the “route” of misrepresentation necessarily decreases someone else’s. Fixing the
planner’s choice of ration in our baseline model of Section 3, equilibrium existence
for example would follow immediately from that literature (Konishi, 2004), though of
course we go beyond this by evaluating welfare as we vary the ration.

Allowing a finite set of agents each to control a mass of recipients, our general
model becomes a type of atomic congestion game (ACG) for any fixed choice of ration.
An existing literature derives existence and uniqueness results for such games as long
as they are sufficiently structured, e.g. if all traffic is of a single type and the network
is sufficient simple (Bhaskar et al., 2015; Harks and Timmermans, 2018). In our “two-
traffic-type” model, however, payoffs violate the typical concavity assumptions that
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lead to these kind of results; in fact they locally violate concavity everywhere. Despite
this technical challenge we provide an existence result under fairly weak additional
assumptions on our primitives (Theorem 4).

In a one-type model, Wan (2012) shows that in ACG’s with two nodes, total
equilibrium welfare increases when a fixed amount of traffic is split amongst fewer
atomic agents. Here there is no resource to be allocated; agents are merely trying
to minimize transportation costs on a fixed network. Nevertheless, our Proposition 3
draws an analogous conclusion in our two-type model, the difference being that our
planner adjusts the optimal rationing of resources with respect to the number of
agents. The intuition discussed earlier applies in both cases: with fewer agents, a
greater share of congestion costs are internalized by each agent.

2 Model

2.1 Primitives

There is a continuum of recipients having two possible types: a mass rℓ > 0 of low
type recipients and a mass rh > 0 of high type recipients. Each recipient takes one
of two actions, N (“Non-treatment”) or T (“Treatment”). A recipient’s action is
strategically chosen either by the recipient (in Section 3) or an (atomic) agent who
chooses actions for a subset of recipients (formalized in Section 4). A mass ϕ < rℓ +rh

of objects is assigned to recipients as described in Subsection 2.2.
A recipient’s welfare depends on their type, action, and whether they receive

an object. Any recipient receiving an object obtains welfare L∗, normalized to be
independent of type and action. Otherwise a recipient of type i ∈ {ℓ, h} who takes
action a ∈ {N, T} obtains welfare La

i . We assume

LN
h < LT

h < LT
ℓ < LN

ℓ < L∗ (1)

Thus high types obtain relatively greater benefit from an object and (in the absence
of distortions) would be the ones taking the “targeted” Treatment action T .5

An economy is summarized by primitives (rh, rℓ, ϕ, LN
h , LT

h , LT
ℓ , LN

ℓ , L∗). In Sec-
tion 4 we add the additional primitive n > 0, representing the number of agents

5In the context of organ allocation there is typically a desire to prioritize high-risk patients, who
are also the ones who benefit from intensive interim medical treatment.
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choosing actions on behalf of their respective recipients.

2.2 Rationing through Classification

The planner observes recipients’ actions but not their types. Therefore the planner is
restricted to assigning some fraction k of the objects to recipients who took action T

and assigning the remaining mass (1 − k)ϕ of objects to recipients whose action is
N . We define the process of Rationing through Classification as one where (i) the
planner publicly commits to a ration k ∈ [0, 1], (ii) each recipient takes an action N

or T (chosen individually in Section 3 or by their agent in Section 4), and (iii) kϕ

objects are (uniformly randomly) assigned to recipients taking action T , and the rest
assigned to those taking N . The ration k represents the degree to which the planner
uses classification information as a basis for allocation. Our main question is how the
choice of k impacts the structure of equilibria and equilibrium welfare.

Naively, a planner might expect to maximize utilitarian welfare by choosing k

maximally, thinking this would maximize the allocation rate to high types. Of course
this ignores the possibility that this induces low types also to take action T , achieving
neither a first-best assignment nor first-best action choices. At another extreme a
planner could attempt to induce efficient action choices by choosing a “proportional”
value of k. Namely, let

k̄ ≡ rh/(rℓ + rh)

denote the percentage of recipients who are of high type. Even when ration k̄ in-
duces efficient action choices,6 object assignment is far from optimal since objects are
assigned to all recipients with equal probability. Our work examines not only how
adjustments to k can fine-tune this trade-off, but whether fine-tuning occurs at all.7

Our restriction to RTC is technically a restriction on feasible mechanisms; e.g. the
planner could commit to choosing ration k ex post, as a function of all recipients’ re-
alized action choices. We consider this restriction insignificant for two reasons. First,
RTC is without loss of generality in our baseline “perfect competition” model because
infinitesimal agents are “price takers.”8 Second, any general mechanism that is not
RTC requires the planner to observe a profile of realized actions before making alloca-

6It may not; see Section 4.
7It need not; see Section 4.
8Any equilibrium under a general mechanism that results (ex post) in ration k is an equilibrium

under RTC when the planner (ex ante) commits to constant k.
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tion decisions. While this is feasible within our model (made static for tractability),
it is less practical in a dynamic setting.

3 Baseline Case: Perfect Competition

3.1 Equilibrium structure

Fixing a ration k, each recipient selfishly chooses action N or T . A strategy profile
p = (pℓ, ph) denotes the fractions of low- and high-type recipients that choose action T .
In the equilibrium analysis we can restrict attention to non-wasteful profiles, i.e. where
(1 − pℓ)rℓ + (1 − ph)rh ≥ (1 − k)ϕ and pℓrℓ + phrh ≥ kϕ. Such a profile induces the
following allocation probabilities for recipients who have chosen N or T :9

πN(p) = (1 − k)ϕ
(1 − pℓ)rℓ + (1 − ph)rh

πT (p) = kϕ

pℓrℓ + phrh

(2)

When a profile p is clear from the context we may simply write πN and πT .
A recipient’s payoff is their expected welfare using the values in (1). A profile p

is an equilibrium if it satisfies the following incentive compatibility conditions.

πNL∗ + (1 − πN)LN
ℓ < πT L∗ + (1 − πT )LT

ℓ =⇒ pℓ = 1

πNL∗ + (1 − πN)LN
ℓ > πT L∗ + (1 − πT )LT

ℓ =⇒ pℓ = 0

πNL∗ + (1 − πN)LN
h < πT L∗ + (1 − πT )LT

h =⇒ ph = 1

πNL∗ + (1 − πN)LN
h > πT L∗ + (1 − πT )LT

h =⇒ ph = 0

Observe that if some type has an incentive not to choose its “natural action” (N
for low types, T for high types), then it receives a strictly higher allocation probability
at its non-natural action. Since this cannot hold for both types simultaneously, we
have the following. (Formal proofs are in the appendix.)

Lemma 1. If (pℓ, ph) is an equilibrium then at least one type chooses its natural
action with certainty, i.e. pℓ = 0 or ph = 1 (or both).

Also intuitive is that an increase in k should induce more recipients to choose T ,
and that high type recipients are induced more easily than low types. (Interestingly

9Define πN (1, 1) = 0 = πT (0, 0); these particular values are not significant in the analysis.
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this intuition fails to hold in Section 4.) With Lemma 1 this leads to the following
description of equilibria.

Proposition 1 (Unique equilibrium). For any k ∈ [0, 1] there exists a unique equi-
librium p∗(k). Furthermore p∗() is weakly increasing in k and satisfies

k < k′ =⇒ p∗
ℓ(k) = 0, p∗

h(k) < 1 (biased toward N)

k′ ≤ k ≤ k∗ =⇒ p∗
ℓ(k) = 0, p∗

h(k) = 1 (separating)

k > k∗ =⇒ p∗
ℓ(k) > 0, p∗

h(k) = 1 (biased toward T)

where

k′ = max
{

0,
rh

ϕ

ϕ(L∗ − LN
h ) + rl(LN

h − LT
h )

rh(L∗ − LN
h ) + rl(L∗ − LT

h )

}
< k̄ ≡ rh

rℓ + rh

(3)

k∗ = min
{

1,
rh

ϕ

ϕ(L∗ − LN
l ) + rl(LN

l − LT
l )

rh(L∗ − LN
l ) + rl(L∗ − LT

l )

}
> k̄ ≡ rh

rℓ + rh

(4)

In fact p∗() is constant only on [k′, k∗]. For some primitives it is possible that
k′ = 0 or k∗ = 1. In particular the proof of Proposition 1 implies

k′ > 0 ⇔ LT
h − LN

h

L∗ − LN
h

<
ϕ

rl

(5)

k∗ < 1 ⇔ LN
l − LT

l

L∗ − LT
l

<
ϕ

rh

(6)

Intuition driving (6) is that low types are more easily induced to choose T (via an
increase in k) when (i) object supply is increased, (ii) there are less competing high
types, (iii) the cost of choosing T is decreased, or (iv) the benefit of receiving an
object conditional on choosing T is higher. Analogous intuition drives (5).

3.2 Equilibrium welfare

For any k ∈ [0, 1], denote the equilibrium fraction of objects allocated to high
types as

f(k) = (1 − k) (1 − p∗
h(k))rh

(1 − p∗
h(k))rh + (1 − p∗

ℓ(k))rℓ

+ k
p∗

h(k)rh

p∗
h(k)rh + p∗

ℓ(k)rℓ
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where p∗
ℓ(k), p∗

h(k) is the unique equilibrium for k. An increase in k affects welfare
both by increasing the fraction of objects allocated to recipients choosing T , and by
(weakly) increasing the percentage of recipients choosing T . While the total effect
can be positive or negative, an obvious case is when k ∈ [k′, k∗]. Since p∗() is constant
in this range, an increase in k simply increases f(), increasing total welfare.

For k ∈ [k∗, 1], it turns out that an increase in k disproportionately increases
the number of low types choosing T to the extent that f() decreases. Analogously,
for k ∈ [0, k′] a decrease in k disproportionately increases the number of high types
choosing N , increasing f().

Theorem 1. The equilibrium fraction f() of objects allocated to high types is
• decreasing in k for k ∈ [0, k′];
• increasing in k for k ∈ [k′, k∗];
• decreasing in k for k ∈ [k∗, 1].

Furthermore f() is maximized at k∗.

For an intuition, imagine primitives are such that when k = 1, (i) all recipients
choose T in equilibrium, but (ii) any low type recipient is indifferent between the
lottery they face—receiving an object (L∗) or or not (LT

ℓ )—and deviating to choose N

(a payoff of LN
ℓ ). Note that every recipient faces the same probability πT = ϕ/(rℓ+rh)

of receiving an object.
Next consider a small decrease in k and a “proportional” change in the strategy

profile such that (i) a mass ϵ of low type recipients instead choose N and (ii) a mass
πT ϵ of objects is rationed amongst those low type recipients choosing N . Note that
once again every recipient (at N or T ) has probability πT of receiving an object.
However this means that low types choosing T are strictly worse off than low types
choosing N (since their welfare is lower conditional on not receiving an object). In
order to restore equilibrium indifference, a greater than proportional number of low
types must choose N . In other words, p∗

ℓ(k) must be disproportionately sensitive to
changes in k ∈ [k∗, 1]. An analogous argument applies to p∗

h(k) for k ∈ [0, k′].
Theorem 1 has immediate welfare implications. For k ∈ [k′, k∗] welfare increases

in k since actions remain fixed while f() increases. For k ∈ [k∗, 1], an increase in k

reduces f() and increases p∗
ℓ(), necessarily decreasing welfare. Finally for k ∈ [0, k′],

an increase in k decreases f() but also improves welfare by reducing p∗
h(). Either

effect can dominate, breaking symmetry with the case k ∈ [k∗, 1]. Nevertheless, one
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can separately prove that equilibrium welfare at any k ∈ [0, k′] is inferior to that
obtained at k∗.

Theorem 2. Utilitarian welfare (total recipient equilibrium payoffs) is
• increasing in k for k ∈ [k′, k∗];
• decreasing in k for k ∈ [k∗, 1];
• maximized at k∗ among all k ∈ [0, 1].

We next incorporate market power into this environment by letting agents each
decide actions on behalf of their own share of recipients. Notably Lemma 1 does not
extend to that setting. Even when equilibria do resemble those of Proposition 1, the
arguments proving Theorem 2 also no longer apply (because f() loses a monotonicity
property). We instead extend Theorem 2 in the form of Theorem 5.

4 Imperfect Competition

4.1 Atomic agents

We capture the idea of market power by specifying a number n of atomic agents who
choose actions on behalf of their own recipients. Formally, there are n agents, each
choosing actions on behalf of a mass rℓ/n of low-type recipients and a mass rh/n of
high-types. A strategy for agent i is a pair pi = (piℓ, pih) ∈ [0, 1]2 specifying the
percentages of its low-type and high-type recipients taking action T . A strategy
profile is denoted p = (p1, p2, . . . , pn). We let p−i denote the list of strategies for all
agents other than i.

An agent’s payoff is the total expected welfare of its recipients as in (1). We
continue to interpret the parameters in (1) as individual recipient welfare, in which
case payoffs are that of a utilitarian agent that puts weight only on its own recipients.
However, since individual recipients play no strategic role in this section, one could
go well beyond a utilitarian interpretation. For example, the parameters in (1) could
represent the profit an agent receives based on its recipients’ types, actions, and
assignment outcome; or they could represent some combination of such profits and
welfare, or payoffs more generally as long as they are additive across recipients. Such
interpretations might lead to different planner objectives than those we consider here.
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Generalizing concepts from earlier, a profile p is non-wasteful (for k) when there
are no more objects than recipients at N or at T , i.e.

(1 −∑
piℓ/n) rℓ + (1 −∑

pih/n) rh ≥ (1 − k)ϕ and (∑ piℓ/n) rℓ + (∑ pih/n) rh ≥ kϕ

Analogous to (2), a non-wasteful profile p induces allocation probabilities

πN = (1 − k)ϕ
(1 −∑

piℓ/n) rℓ + (1 −∑
pih/n) rh

πT = kϕ

(∑ piℓ/n) rℓ + (∑ pih/n) rh

The payoff to agent i at profile p is

ui(p) = 1
n

[
(1 − piℓ)rℓ(πNL∗ + (1 − πN)LN

ℓ ) + (1 − pih)rh(πNL∗ + (1 − πN)LN
h )

+ piℓrℓ(πT L∗ + (1 − πT )LT
ℓ ) + pihrh(πT L∗ + (1 − πN)LT

h )
] (7)

In standard fashion, pi is a best response to p−i if pi ∈ arg max ui(·, p−i), and p

is a (pure Nash) equilibrium if, for each i, pi is a best response to p−i.

4.2 Equilibrium structure and intuition

The perfect competition setting yields intuitive equilibria: low types take action N

and high types take action T , with the possible exception that recipients of one
type instead take the opposite action. The imperfect competition setting admits the
possibility of equilibria with the “inverse” structure: agents assign low types to action
T and high types to action N , again with a possible exception for only one type.

Theorem 3. Fix k and suppose p is an equilibrium. There exists an equilibrium p∗

that is payoff-equivalent to p, is symmetric, and satisfies one of the following.
• (Non-inversion) For every agent i, p∗

iℓ = 0 or p∗
ih = 1.

• (Inversion) For every agent i, p∗
iℓ = 1 or p∗

ih = 0.

“Interior” equilibria are ruled out since, at any strategy profile, all agents face
the same linear incentive to “swap” the opposite actions of opposite-type recipients.
At any interior profile, all agents would prefer executing the same such swaps until
reaching the same kind of a corner solution (a Non-inversion or Inversion strategy).

For an intuition behind symmetry, note that the set of Non-inversion strategies
is a monotonic, one-dimensional set: a decision of how many recipients to send to
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Treatment, prioritizing high-type recipients over low types. If agent i sends fewer
recipients to Treatment than agent j, then i has a greater marginal incentive than j

to send additional recipients to Treatment since doing so crowds out fewer of i’s own
recipients. Since both agents should face the same marginal incentive in equilibrium,
they must choose symmetric Non-inversion strategies; the same argument applies to
Inversion.

Inversion equilibria exhibit a surprising “double distortion” in that each agent
simultaneously chooses T for at least some of its low type recipients and chooses N

for at least some of its high type recipients. For an intuition as to how such equilibria
arise, consider agent i’s best response when i’s competitors choose T for a “large”
percentage of their recipients. First, excess congestion at T could conceivably lead i

to choose N for (at least some of) its high types in order to give those (high marginal
value) recipients better odds of an object. Given this, it is conceivable that i prefers
to choose T for its low types (and remaining high types) to avoid congesting its high
types at N . This possibility is most conceivable when low types’ welfare is relatively
insensitive both to object assignment and to action choice. If i thus chooses T for a
“large” percentage of recipients, the profile may be an equilibrium.

Computational analysis demonstrates that one or both forms of equilibria might
exist (Subsection 4.3). One factor contributing to this—and complicating equilibrium
analysis in general—is that payoff functions (7) exhibit convexities10 contrasting typ-
ical assumptions made in the literature on atomic congestion games. While our
computational results suggest a general existence result, our analytical result below
specifically shows that Non-inversion equilibria exist under mild additional assump-
tions. The first is that any recipient’s benefit of receiving an object exceeds the
welfare difference between any two non-receiving recipients.

Assumption 1 (Objects are sufficiently valuable). L∗ − LN
ℓ > LN

ℓ − LN
h .

Under this assumption, and for “reasonable” rations k (i.e. no less than the pro-
portional value k̄ = rh/(rℓ +rh)), exactly one Non-inversion equilibrium exists as long
as, relative to object scarcity, high types benefit significantly from Treatment (8), and
Treatment makes high and low type recipients similar (9).11

Theorem 4. Fix n ≥ 3 and suppose that Assumption 1 holds. If k ≥ k̄ and
10In fact they locally violate concavity everywhere; see the online appendix.
11Even weaker assumptions are used in the proof, but require concepts from Subsection 4.4.
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LT
h − LN

h

LN
ℓ − LN

h

≥ ϕ

(rℓ + rh)n − ϕ(n − 1) (8)

and
LT

ℓ − LT
h

(LT
h − LN

h ) + (LN
ℓ − LT

ℓ ) < 1 − ϕ

(rℓ + rh)n−1
n

(9)

then there exists a unique Non-inversion equilibrium.

The proof cannot be applied to the full range of the model’s primitives, and
does not apply to Inversion equilibria due to complications arising from convexities
in payoff functions. We therefore turn to computational analysis to investigate the
prevalence of either type of equilibrium.

4.3 Computational analysis: equilibria and welfare

Across a wide range of economies and of rations (k) we search for all (approximate)
equilibria, classify each as Non-inverting or Inverting, and evaluate its welfare. We
find that Inversion equilibria can exist—even exclusively—arising when objects are
not too scarce and LT

ℓ − LT
h is relatively large. Not surprisingly these conditions

run counter to inequalities (8) and (9). Furthermore such equilibria can be welfare
optimal when LN

ℓ − LT
ℓ is small, which also counters (9).

We next describe the primitives we consider, providing technical details and ad-
ditional computations in the online appendix. Normalizing rℓ + rh ≡ 1, we consider
a full (discretized) range of values for 0 < ϕ < 1. Since our analytical results (The-
orem 3, Theorem 4) require n ≥ 3, we consider the case of maximal market power
by setting n = 3; larger n are considered in the online appendix (see Observation 5
below).

Normalizing recipient welfare values LN
h ≡ 0 and LN

ℓ ≡ 0.5, we set L∗ equal
to the lower bound given by Assumption 1, i.e. L∗ = 2LN

ℓ − LN
h ≡ 1. Larger L∗

are considered in the online appendix (see Observation 4 below). With these three
welfare values fixed, we consider the full (discretized) range of values for LT

h and LT
ℓ

satisfying Equation 1.
For all such instances we compute approximate equilibria, classifying each as an

Inversion or Non-inversion profile. We present these results using the following nota-
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Figure 1: Equilibrium structure when rℓ = 0.3, ϕ = 0.5. Black: unique Inversion equilib-
rium. Unshaded: unique Non-inversion equilibrium. Green: one of each equilibrium type.

tion.
∆h ≡ LT

h − LN
h ≥ 0 ∆T ≡ LT

ℓ − LT
h ≥ 0

∆ℓ ≡ LN
ℓ − LT

ℓ ≥ 0 ∆∗ ≡ L∗ − LN
ℓ ≥ 0

(10)

Our normalizations of LN
h , LN

ℓ , and L∗ imply ∆h + ∆T + ∆ℓ = 0.5 (and ∆∗ = 0.5).
Thus the set of feasible choices of LT

h and LT
ℓ can be visualized as a 2-dimensional

simplex representing feasible choices of the triplet (∆ℓ, ∆T , ∆h), as in Figure 1. The
vertical dimension of the prism represents the ration k ∈ [0, 1].

As one example of our computations, the prism in Figure 1 shows which (ap-
proximate) equilibrium types exist when rℓ = 0.3 and ϕ = 0.5. More generally
Figure 2 displays prisms for various rℓ and ϕ. Consistent with Theorem 4, a unique
Non-inversion equilibrium exists for sufficiently large k and sufficiently small ∆T .
However they exist beyond the set of primitives assumed in that theorem (but with
uniqueness implied by Proposition 2). Even when one does not exist, a unique In-
version equilibrium does; thus we find (approximate) equilibrium existence across the
full range of parameters despite the poorly behaved payoff functions that complicate
more general analytical results. We now summarize our computational findings.

Observations. For the parameters discussed above we find:
1. For each instance considered, there exists a unique Non-inversion equilibrium

or a unique Inversion equilibrium (or both).
2. Inversion equilibria are more prevalent as ∆T becomes large. Since a large ∆T

(∆ℓ, ∆h ≈ 0) implies a low cost to taking the “wrong” action for either type.
An agent may be induced to do so if this increases the rate at which its high
types receive objects. If in addition k = 0.5, a Non-inversion strategy profile is
almost payoff equivalent to its mirror (Inversion) profile obtained by reversing
all recipients’ actions; Figure 2 exhibits equilibrium multiplicity in these cases.

3. Inversion equilibria are more prevalent when objects are more plentiful. When ϕ
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is large, the intuition for Inversion equilibria (Subsection 4.2) becomes stronger.
4. Inversion equilibria are less prevalent as L∗ increases (see online appendix).

Intuitively, as the distinction between types and actions disappears we converge
to a one-type congestion model with known existence and uniqueness results.

5. Inversion equilibria are less prevalent as n increases (see online appendix), con-
sistent with their non-existence under Perfect Competition (Proposition 1).

Observations 3 and 4 suggest that Inversion equilibria arise in cases where the
planner’s allocation problem has lower stakes, i.e. objects are more plentiful or provide
lower value. In remaining cases (where ∆T is large) it makes little sense to Ration
through Classification in the first place, since action choices have little screening
power: N and T approximate cheap-talk messages.

The remaining question is on welfare: What ration k (and equilibrium form)
maximizes welfare? Though intuition suggests that welfare maximizing equilibria
should be Non-inverting, it is logically possible for Inversion equilibria to be optimal.
To see why, suppose ∆ℓ ≈ 0 (low types have a low cost for Treatment), and start
from some arbitrary Non-inversion profile at which the allocation probabilities satisfy
πN < πT . If agent i increases piℓ, its payoff changes primarily in two ways: (i) it gains
since its low-type recipients receive objects more frequently and (ii) it loses because
it crowds out its own high-type recipients, who receive objects less frequently. If we
had started from an Inversion profile where πN > πT , the same conclusion would
follow from a decrease in piℓ, but with effect (ii) becoming stronger. The asymmetry
in effect (ii) is because crowding out high types from receiving objects is more costly
when those high types are taking the “wrong” action, N . Interestingly, this introduces
the possibility for Inversion profiles to provide a stronger incentive for an agent not
to crowd out its own (and others’) high types from receiving objects, because doing
so is more costly than if actions were reversed.

Can this improvement in the high types’s share of objects outweigh the “wrong”
choices being made over actions under Inversion? Our computations (Figure 3) il-
lustrate that it can in some cases where ∆ℓ is small. However if objects are scarce
or if low types non-negligibly distinguish between actions N and T , Non-Inversion
equilibria are welfare-optimal; we consider them next.

18



Figure 3: Across all values of k, the welfare-maximizing equilibrium is an Inversion equi-
librium for economies in the blue regions.
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4.4 Non-inversion equilibrium

We next show how the ideas of Section 3 hold in the presence of market power
whenever Non-inversion equilibria prevail, the challenge being that such equilibria
may not exist (Figure 2) or may be suboptimal (Figure 3). To overcome this technical
issue, we first show general existence and uniqueness of “NI-candidates:” symmetric,
Non-inversion strategy profiles satisfying certain local IC constraints. Since any NI
equilibrium must be an NI-candidate, this proves at most one NI equilibrium can
exist (as in our computations). We then prove our main results: the conclusions of
Theorem 1 and Theorem 2 hold for any NI-candidate, and thus for any NI equilibrium.

Definition 1 (NI-candidate). Fixing k, a symmetric profile p∗ is an NI-candidate
for k when any one of the following holds.

• (1-NI) p∗
iℓ ≡ 0 and ∂ui

∂pih
(p∗) ≡ 0.

• (1-NI corner) p∗
iℓ ≡ 0, p∗

ihrh ≡ kϕ, and ∂ui

∂pih
(p∗) ≤ 0.

• (2-NI) p∗
iℓ ≡ 0, p∗

ih ≡ 1, ∂ui

∂pih
(p∗) ≥ 0, and ∂ui

∂piℓ
(p∗) ≤ 0.

• (3-NI) p∗
ih ≡ 1 and ∂ui

∂piℓ
(p∗) ≡ 0.

• (3-NI corner) p∗
ih ≡ 1, (1 − p∗

iℓ)rℓ ≡ (1 − k)ϕ, and ∂ui

∂piℓ
(p∗) ≥ 0.

The following result extends Proposition 1 to NI-candidates.

Proposition 2 (Unique NI-candidate). Fix n ≥ 3 and suppose Assumption 1 holds.
For any k ∈ [0, 1] there exists a unique NI-candidate p∗(k). Furthermore p∗() is weakly
increasing in k, and

k < k′
n =⇒ ∀i, p∗

iℓ(k) = 0 and p∗
ih(k) < 1 (Region NI-1)

k′
n ≤ k ≤ k∗

n =⇒ ∀i, p∗
iℓ(k) = 0 and p∗

ih(k) = 1 (Region NI-2)

k > k∗
n =⇒ ∀i, p∗

iℓ(k) > 0 and p∗
ih(k) = 1 (Region NI-3)

where

k′
n = max

0,
−(LT

h − LN
h ) + ϕ

rℓ

(
n−1

n
L∗ + 1

n
LN

ℓ − LN
h

)
ϕ
rℓ

(
n−1

n
L∗ + 1

n
LN

ℓ − LN
h

)
+ ϕ

rh

n−1
n

(L∗ − LT
h )

 (11)

k∗
n = min

1,
(LN

ℓ − LT
ℓ ) + ϕ

rℓ

n−1
n

(L∗ − LN
ℓ )

α

 > k′ (12)

α = ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
n − 1

n
L∗ + 1

n
LT

h − LT
ℓ

]
> 0
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It can be checked that k′
n and k∗

n converge to (3) and (4) as n → ∞. The
result is obtained by proving a limited form of concavity among Non-Inversion profiles
(Lemma 5). Notably, a version of that lemma cannot hold for Inversion profiles, so
we do not have corresponding results for such equilibria.

Extending the main conclusions of Theorem 1 and Theorem 2 to NI-candidates,
both the fraction of objects allocated to high types and utilitarian welfare are single-
peaked on k ∈ [k′

n, 1] and are maximized at k = k∗
n.12

Theorem 5. Fix n ≥ 3 and suppose that Assumption 1 holds. Among all NI-
candidates for k ∈ [0, 1], both the equilibrium fraction of objects allocated to high
types and agents’ equilibrium payoffs are

• increasing in k for k ∈ [k′
n, k∗

n],
• decreasing in k for k ∈ [k∗

n, 1], and
• maximized at k∗

n (defined in Equation 12).

While this result shows, for example, that an increase in k ∈ [k∗
n, 1] leads to a

disproportionate increase in low types to T , note that the intuition provided after
Theorem 1 does not apply here. Namely, as k ∈ [k∗

n, 1] increases, low types shift to T

at a slower rate since an agent internalizes the increasing congestion effect on its own
high types. Plausibly, an increase in k might then increase the equilibrium fraction
of objects allocated to high types. Nevertheless, Theorem 5 rules this out.13

Proposition 3 (Competition lowers welfare). The ration k∗
n is decreasing in n.

Therefore maximal welfare across all NI-candidates is decreasing in n.

The simple proof of this (which we omit) is apparent in the following comparison
between the perfect and imperfect competition scenarios. In the perfect competition
case we can rewrite k∗ as defined in (4) using the welfare differences defined in (10).

k∗ =
∆ℓ + ϕ

rℓ
∆∗

ϕ
rℓ

∆∗ + ϕ
rh

(∆∗ + ∆ℓ)
12One inconsequential contrast to Theorem 1 is a possible non-monotonicity on k ∈ [0, k′

n].
13The expressions in the proof are extensive but yield the following intuition. At an NI-candidate,

an agent considering whether to choose T for (infinitesimally) additional low types to T sees zero
marginal gain when summing the three payoff effects: (i) increased benefit for those low types, (ii)
increased congestion cost for its high types at T , and (iii) decreased congestion cost for its low
types remaining at N . If an increase in k leads agents to increase the mass of low types at T
less than proportionately at the new NI-candidate, benefits (i) and (iii) would be higher and cost
(ii) would be lower than before. This contradicts the new NI-candidate requirement to satisfy the
zero-marginal-gain condition.
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We also can rewrite k∗
n (see proof of Proposition 4).

k∗
n =

∆ℓ + ϕ
rℓ

n−1
n

∆∗
ϕ
rh

n−1
n

∆ℓ +
(

ϕ
rℓ

+ ϕ
rh

)
n−1

n
∆∗ − ϕ

rh

1
n
∆T

Thus imperfect competition shrinks the numerator of k∗ by less than a factor of
(1/n), and the denominator by more than that factor; hence k∗

n > k∗. However this
expression also highlights the role of ∆T : the agent internalizes the congestion its
low types impose on its own high types at Treatment via ∆T , the relative welfare
difference between the types.

4.5 All-or-nothing prioritization

Though fractional rationing (k < 1) is typically optimal, in practice this approach
may be infeasible for a variety of reasons (institutional or political constraints, com-
plexity, etc.). Regardless of the reason, we compare the following two extremes of our
approach more commonly seen in practice.

(FP) Full prioritization of one classification of recipients over the other.

(NP) No Prioritization of either classification over the other.

In our model FP corresponds to setting k = 1 (as long as ϕ ≤ rh). NP uniformly
rations objects across all recipients regardless of action, i.e. each recipient receives
an object with probability ϕ/(rℓ + rh). Under perfect competition, NP is the equi-
librium result of setting k = k̄ = rh/(rℓ + rh) (see Proposition 1). Under imperfect
competition, the same is typically true (e.g. when Equation 8 holds).

It follows intuitively (assuming Non-inversion equilibria) that FP achieves close to
the optimal level of welfare when k∗

n is larger (closer to 1) and NP is closer to optimal
when k∗

n is lower (closer to k̄). Therefore we reframe the comparison between FP and
NP as a question of whether k∗

n is large or small. The following comparative statics
use the welfare differences defined in (10).14

14An alternative approach is to directly compute welfare at (i) the NI-candidate profile when k = 1
and (ii) the separation profile (piℓ, pih) ≡ (0, 1) when k = k̄. It tediously involves two roots when
solving for piℓ in case (i), and offers little additional insight to Proposition 4.
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Proposition 4 (Conditions justifying FP over NP). Consider varying primitives
LN

h , LT
h , LT

ℓ , LN
ℓ , L∗ in a way that varies only one of the differences ∆ℓ, ∆T , ∆h, ∆∗,

defined in Equation 10, keeping the rest constant.
• k∗

n is increasing in ∆ℓ.
• k∗

n is increasing in ∆T .
• k∗

n is constant in ∆h.
• k∗

n is decreasing in ∆∗.
Furthermore k∗

n decreases in ϕ.

Natural intuition suggests why FP should be better than NP under these condi-
tions. Large ∆ℓ makes it costly for a low type receiving Treatment to fail to receive an
object. Large ∆T increases the value of objects to high types, increasing the agent’s
internalized cost or congesting them with low types. At k∗

n, an agent’s marginal
decision (at Non-inversion profiles) does not involve high types, so ∆h is irrelevant.
Increasing ∆∗ is analogous to reducing differences between types and actions; if the
agent’s objective becomes object-share maximization it is harder to maintain type
separation. Finally when ϕ decreases there is less to be gained by choosing Treat-
ment for low types.

5 Conclusion

When biasing resource allocation toward recipients who take a particular action, the
planner potentially improves the way resources are allocated but distorts decisions
whether to take that action. Intuitively, these distortions can be reversed by reducing
the ration of resources dedicated to recipients who take the action. This is indeed
the case in a perfectly competitive, “no market power” model where recipients decide
actions for themselves; by fine-tuning the ration, the planner can continuously fine-
tune this tradeoff and maximize equilibrium welfare (Theorem 2).

We show that the presence of market power—the centralization of action choices
among a few strategic agents—has multiple effects in this setting. An intuitive effect
is that such agents internalize the congestion effect one recipient imposes by crowding
out others who take the same action. It follows that, when equilibria have the same
structure as in the perfectly competitive model above, an increase in market power
leads to a new optimal ration that improves welfare (Proposition 3).
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A second, less intuitive effect is that sufficiently strong market power can lead to
a second form of (“Inversion”) equilibria, where each agent makes inefficient action
choices for multiple types of recipients in a way that disproportionately improves re-
source allocation rates for its high-value recipients. Even more surprising is that such
highly distorted equilibria can, in some cases, maximize equilibrium welfare. Taken
together, these results show that the presence of market power can have unanticipated
effects on equilibrium behavior and therefore on the design of mechanisms. A corol-
lary of this is that optimal mechanisms (and the behavior they induce) can vary across
different markets when those markets embody different competitive structures. De-
signing and then applying a single mechanism across such disparate markets can lead
to varying levels of inefficient behavior (e.g., Parker et al., 2018) and, consequently,
misallocation of resources.
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6 Proofs Appendix

6.1 Perfect Competition

Proof of Lemma 1. If pℓ > 0 then low types weakly prefer choosing Treatment:

πNL∗ + (1 − πN)LN
ℓ ≤ πT L∗ + (1 − πT )LT

ℓ

Since L∗ > LN
ℓ > LT

ℓ (and min{πN , πT } < 1) this would imply πN < πT . Similarly
ph < 1 would imply πN > πT . Hence pℓ = 0 or ph = 1.

Lemma 2. For any k there is a unique equilibrium pℓ(k), ph(k). Furthermore pℓ()
and ph() are weakly increasing in k.

Proof of Lemma 2. For any k, equilibrium existence follows from standard argu-
ments and is omitted. To prove uniqueness and monotonicity, fix k, k̃ with k ≤ k̃

and let (pℓ, ph) and (p̃ℓ, p̃h) be arbitrary equilibria for k and k̃ respectively, with al-
location probabilities πN , πT , π̃N , π̃T . We show monotonicity (pℓ, ph) ≦ (p̃ℓ, p̃h) which
also implies uniqueness (k = k̃).

Claim: either (pℓ, ph) ≦ (p̃ℓ, p̃h) or (pℓ, ph) ≧ (p̃ℓ, p̃h). If pℓ = p̃ℓ (or ph = p̃h) the
claim follows immediately. If pℓ < p̃ℓ then Lemma 1 implies p̃h = 1 ≥ ph. Similarly
pℓ > p̃ℓ implies ph = 1 ≥ p̃h, proving the claim.
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Claim: (pℓ, ph) ≦ (p̃ℓ, p̃h). First suppose instead that pℓ > p̃ℓ and hence ph ≥ p̃h.
Since k ≤ k̃ this implies πN > π̃N and πT < π̃T . Since p is an equilibrium for k, low
types weakly prefer Treatment in that equilibrium:

πT L∗ + (1 − πT )LT
ℓ ≥ πNL∗ + (1 − πN)LN

ℓ

This implies a strict such preference at p̃ under k̃:

π̃T L∗ + (1 − π̃T )LT
ℓ > π̃NL∗ + (1 − π̃N)LN

ℓ

This strict preference requires p̃ℓ = 1 in equilibrium, contradicting pℓ > p̃ℓ. Supposing
ph > p̃h leads to a similar contradiction.

Proof of Proposition 1. By Lemmas 1 and 2 there exist 0 ≤ k′ ≤ k∗ ≤ 1 that
define the three cases of Proposition 1. When k = k̄ = rh/(rℓ + rh), a separating
profile (pℓ = 0, ph = 1) yields πN = πT , so (pℓ = 0, ph = 1) is an equilibrium where
each agent has strict incentive to choose their natural action. By continuity this
would hold for small perturbations of k, thus k′ < k̄ < k∗.

Next, by continuity, k′ is the lowest value of k at which the separation profile
(pℓ = 0, ph = 1) induces a high type to choose T , i.e. at which

πT L∗ + (1 − πT )LT
h ≥ πNL∗ + (1 − πN)LN

h

Substituting πN = (1 − k)ϕ/rℓ and πT = kϕ/rh this becomes

k ≥
(LN

h − LT
h ) + ϕ

rℓ
ϕ(L∗ − LN

h )
ϕ
rh

(L∗ − LT
h ) + ϕ

rℓ
(L∗ − LN

h )

yielding k′ as in (3). This is positive whenever the numerator is, yielding (5).
Similarly, low types are induced to choose N at the separation profile when

πT L∗ + (1 − πT )LT
ℓ ≤ πNL∗ + (1 − πN)LN

ℓ

Analogous arguments lead to (4) and (6).

Proof of Theorem 1. The result is obvious in the range k ∈ [k′, k∗] where pl(k) ≡ 0,
ph(k) ≡ 1, and hence f(k) ≡ k.
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For any k ∈ (k∗, 1), Proposition 1 implies pℓ(k) > 0 and ph(k) = 1; furthermore
pℓ(k) < 1 (otherwise a low type guarantees an object deviating to N). This implies
an equilibrium indifference condition for low types. Writing equilibrium allocation
probabilities πN , πT as functions of k, it is

πT (k)L∗ + (1 − πT (k))LT
ℓ = πN(k)L∗ + (1 − πN(k))LN

ℓ , or
1 − πN(k)
1 − πT (k) = L∗ − LT

ℓ

L∗ − LN
ℓ

> 1

where LT
ℓ < LN

ℓ implies the inequality. Therefore πN(k) < πT (k), and πN(k), πT (k)
vary in the same direction with a change in k ∈ (k∗, 1). We show πT (k) (hence f) is
decreasing on this range.

Fix k∗ < k < k + ϵ < 1 and let δ = pℓ(k + ϵ) − pℓ(k) ≥ 0. If instead we have
kϕ+ϵϕ

pℓ(k)rℓ+δrℓ+rh
= πT (k + ϵ) ≥ πT (k) = kϕ

pℓ(k)rℓ+rh
then (ϵϕ)/(δrℓ) ≥ πT (k) > πN(k).

This also means (1−k)ϕ
(1−pℓ(k))rℓ

= πN(k) > πN(k + ϵ) = (1−k)ϕ−ϵϕ
(1−pℓ(k))rℓ−δrℓ

. (In words, if an
increase in k moves “disproportionately” few low types to T to increase πT , this must
decrease πN < πT .) This contradicts the fact that πN , πT covary; the indifference
condition cannot hold at k + ϵ. Therefore (with continuity arguments) πT decreases
in k ∈ [k∗, 1].

A symmetric argument applies to k ∈ [0, k′] (where πN > πT ). An increase in
k disproportionately increases ph, increasing πN , the rate at which low types receive
objects, hence decreasing f().

Proof of Theorem 2. On k ∈ [k′, 1] welfare is clearly single-peaked (with peak at
k∗) following arguments made in the text. The rest of this proof covers k ∈ [0, k′].

At k = 0 we know that (i) all objects go to the agents choosing N, (ii) all low
types choose N (pℓ = 0), and (iii) at most all high types choose N (ph ≤ 1). Thus the
fraction of objects going to high types at k = 0 is

f(0) = (1 − ph(0))rh

(1 − ph(0))rh + rℓ

≤ rh

rh + rℓ

≡ k̄

i.e. high types receive less than their “proportional share” k̄.
At k = k∗, agents use a separating profile and thus f(k∗) = k∗ > k̄ (where the

inequality holds from Proposition 1). Thus when comparing k∗ to k = 0, (i) high
types receive more objects and (ii) treatment decisions are more efficient. Welfare is
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thus higher at k∗.
Finally the same conclusion can be drawn for any k ∈ (0, k′]: By Theorem 1 high

types receive even fewer objects at such k than at k = 0, and thus fewer than at k∗.
Furthermore treatment decisions remain less efficient than at k∗. Therefore welfare
is higher at k∗ than at any k ∈ [0, k′].

6.2 Imperfect Competition

It is immediate that any equilibrium profile must be non-wasteful, so we restrict
attention to non-wasteful profiles henceforth.

6.2.1 Equilibrium structure: Non-inversion/Inversion

We first observe that an agent i’s best response must be either a Non-inversion or
Inversion strategy: a point on the boundary of [0, 1]2. Fix a profile p with interior pi ∈
(0, 1)2, resulting in allocation probabilities πN , πT . Consider deviation p′

i obtained
from pi by “swapping” ϵ > 0 mass of low types at T to N with ϵ mass of high types
at N to T , i.e.

(p′
iℓ, p′

ih) = (piℓ − ϵn/rℓ, p′
ih + ϵn/rh)

Since this deviation does not change the total masses of recipients at N and T it
does not change πN and πT . Therefore this deviation affects neither the other agents’
payoffs nor i’s total consumption of objects. The deviation changes i’s payoff only in
that, among i’s recipients who fail to receive an object, some who were assigned to
N transform from high types into low types and some who were assigned to T turn
from low types into high types. The magnitude of this change in payoff is

ϵ[(1 − πN)(LN
ℓ − LN

h ) + (1 − πT )(LT
h − LT

ℓ )] (13)

While (13) can have any sign, its linearity in ϵ means that payoff functions are ruled
surfaces, so a best response is a corner solution (or payoff-equivalent to one).

Lemma 3 (No double-mixing). Fix k, an agent i, and a profile p at which pi is a
best response to p−i. There exists p′

i ∈ [0, 1]2 \ (0, 1)2 such that

(i) p′
i also is a best response to p−i, and

(ii) for any agent j and any p′
−i, uj(pi, p′

−i) = uj(p′
i, p′

−i).
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piℓ

pih

1

1

0

Figure 4: Changing agent i’s strategy along a dashed line (northwestly) changes i’s payoff
according to (13); arrows represent a payoff increase. Best responses lie within the thick
blue line. Depending on parameters, there may exist (shaded) regions of wasteful strategies.

Proof of Lemma 3. Fix i and p as in the Lemma. If (13) is positive, i would have
the incentive to swap equal masses of low types at T with high types at N if feasible.
Since pi is a best response this must be infeasible: either piℓ = 0 or pih = 1. Similarly
if (13) is negative then piℓ = 1 or pih = 0. In either case the result follows immediately
by letting p′

i = pi.
Suppose (13) equals zero. If pi ̸∈ (0, 1)2, setting p′

i = pi proves the result. Other-
wise let (p′

iℓ, p′
ih) = (piℓ − ϵn/rℓ, p′

ih + ϵn/rh) where, choosing ϵ maximally, p′
i ̸∈ (0, 1)2.

Since (13) is zero p′
i is also a best response to p−i, proving (i). Furthermore this

deviation preserves i’s total masses of recipients assigned N and T , implying (ii).

Fact 1. The following facts about (13) are used below.

(i) Since |(LT
h − LT

ℓ )| < (LN
ℓ − LN

h ), πN = πT implies that (13) is positive.

(ii) πN = 1 (πT = 1) implies that (13) is negative (positive).

(iii) When a change in strategy profile increases the total mass of recipients at T ,
πN increases, πT decreases, and thus (13) decreases.

By Lemma 3, a best response is either Non-inverting or Inverting, or it can be
replaced with a payoff equivalent such strategy without affecting other agents’ payoffs.
Figure 4 illustrates these best responses, though we henceforth ignore interior ones.
In addition we can prove the following.

Lemma 4. Fix k. If profile p is an equilibrium, there exists a payoff-equivalent
equilibrium p∗ where either
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• (Non-inversion) for every agent i, p∗
iℓ = 0 or p∗

ih = 1; or
• (Inversion) for every agent i, p∗

iℓ = 1 or p∗
ih = 0.

Proof. Fixing such p, if (13) is positive (or negative) all agents are using Non-
inversion (or Inversion) strategies (Figure 4). If (13) is zero we can construct a
payoff equivalent, Non-inverting profile p′ (as in the proof of Lemma 3) at which each
individual agent sends the same mass of recipients to T at both profiles. Therefore
for all i, all best responses to p−i remain best responses to p′

−i, and thus p′ also is an
equilibrium.

6.2.2 Equilibrium structure: symmetry

To make the rest of our proofs more concise, we express strategies and the planner’s
rationing decision in terms of masses rather than percentages. To represent a planner’s
choice of k we denote the masses of objects rationed to N and T as

ϕN = (1 − k)ϕ ϕT = kϕ

Similarly for a given strategy profile p and agent i we write

Ai = (1 − piℓ)rℓ/n Di = piℓrℓ/n

Bi = (1 − pih)rh/n Ei = pihrh/n

Ci =
∑
j ̸=i

[(1 − pjℓ)rℓ/n + (1 − pjh)rh/n] Fi =
∑
j ̸=i

[pjℓrℓ/n + pjhrh/n]

Here Ai, Bi, and Ci are i’s low types, high types, and competitors that take action
N ; Di, Ei, and Fi correspond to T . We can write (7) (i’s payoff ui) as

AiL
N
ℓ + Ai

Ai + Bi + Ci

ϕN(L∗ − LN
ℓ ) + BiL

N
h + Bi

Ai + Bi + Ci

ϕN(L∗ − LN
h )

+ DiL
T
ℓ + Di

Di + Ei + Fi

ϕT (L∗ − LT
ℓ ) + EiL

T
h + Ei

Di + Ei + Fi

ϕT (L∗ − LT
h )

(14)

keeping in mind that Ai = rℓ/n − Di and Bi = rh/n − Ei.
While an agent’s payoff is not generally concave in pi, it is concave with respect

to pih and, in some special cases, with respect to piℓ. The proof of the lemma also
contains partial derivatives of payoffs utilized in later proofs.

Lemma 5 (Limited concavity.). Fix k, a non-wasteful profile p, and an agent i.
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(i) ui(p) is concave in pih.

(ii) If pih = 1 then ui(p) is either decreasing or concave in (non-wasteful) piℓ ∈ [0, 1].

(iii) If Assumption 1 holds, n ≥ 2, and pjh = pkh for all j, k,15 then ui(p) is concave
in piℓ.

Proof. To prove (i) we show (14) is concave in Ei. Omitting subscript i, its derivative
with respect to E (noting B = rh/n − E) is

∂ui

∂E
= A

(A + B + C)2 ϕN(L∗ − LN
ℓ ) − LN

h − A + C

(A + B + C)2 ϕN(L∗ − LN
h )

− D

(D + E + F )2 ϕT (L∗ − LT
ℓ ) + LT

h + D + F

(D + E + F )2 ϕT (L∗ − LT
h )

= (LT
h − LN

h ) + ϕN

A + B + C

(
A

A + B + C
(LN

h − LN
ℓ ) − C

A + B + C
(L∗ − LN

h )
)

+ ϕT

D + E + F

(
D

D + E + F
(LT

ℓ − LT
h ) + F

D + E + F
(L∗ − LT

h )
)

= (LT
h − LN

h ) − ϕN
A(LN

ℓ − LN
h ) + C(L∗ − LN

h )
(A + rh/n − E + C)2 + ϕT

D(LT
ℓ − LT

h ) + F (L∗ − LT
h )

(D + E + F )2

(15)

Since all bracketed terms are positive, (15) is decreasing in E. Therefore ui is concave
in E (i.e. in pih).

To show (ii) and (iii), the derivative of (14) with respect to D is

∂ui

∂D
= (LT

ℓ − LN
ℓ ) + ϕN

A + B + C

(
B

A + B + C
(LN

ℓ − LN
h ) − C

A + B + C
(L∗ − LN

ℓ )
)

+ ϕT

D + E + F

(
E

D + E + F
(LT

h − LT
ℓ ) + F

D + E + F
(L∗ − LT

ℓ )
)

= (LT
ℓ − LN

ℓ )︸ ︷︷ ︸
treatment effect

+ ϕN
B(LN

ℓ − LN
h ) − C(L∗ − LN

ℓ )
(rℓ/n − D + B + C)2︸ ︷︷ ︸

N -reallocation effect

+ ϕT
−E(LT

ℓ − LT
h ) + F (L∗ − LT

ℓ )
(D + E + F )2︸ ︷︷ ︸

T -reallocation effect

(16)

While the treatment effect is negative, the overall sign of (16) depends on the
signs of two “reallocation effects.” Denote

X = B(LN
ℓ − LN

h ) − C(L∗ − LN
ℓ ) X ′ = −E(LT

ℓ − LT
h ) + F (L∗ − LT

ℓ )
15The assumption that both Ci ≥ rh/n and pih = 0 also is sufficient.
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When X > 0 (X < 0) the “N -reallocation effect” is convex and increasing in D

(concave, decreasing in D); when X ′ > 0 (X ′ < 0) the “T -reallocation effect” is
convex and decreasing in D (concave, increasing in D).

Assumption 1 implies X < X ′ (see online appendix); thus there are three cases.
• X < X ′ ≤ 0: it is immediate that (16) is negative, so ui is decreasing in D (i.e.

in piℓ).
• X ≤ 0 < X ′: both reallocation effects are decreasing in D so (16) is decreasing

in D; hence ui is concave in D (in piℓ).
• 0 < X < X ′: both treatment effects are positive and convex in D, but change

in opposite directions with respect to D. Therefore (16)’s sign and its direction
of change w.r.t. D are indeterminate.

To prove statement (ii) of the lemma observe that if pih = 1 (i.e. B = 0) then
X < 0 yielding the first and second cases above.

To prove (iii) observe that if pih = pjh for all j then B ≤ (n−1)C and E ≤ (n−1)F .
If n ≥ 2 then Assumption 1 implies X < 0 < X ′ yielding the second case above.

The next lemma implies the intuitive idea that an agent who is sending more
recipients to Treatment than another derives lower marginal benefit from sending
additional recipients to Treatment due to crowding out more of its own recipients.

Lemma 6. For any k, any agents i and j, and any non-wasteful profile p,

∂ui

∂Di

− ∂uj

∂Dj

= ∂ui

∂Ei

− ∂uj

∂Ej

= (Dj − Di)
[

ϕN(L∗ − LN
ℓ )

[rℓ + rh − (Di + Ei + Fi)]2
+ ϕT (L∗ − LT

ℓ )
(Di + Ei + Fi)2

]

+ (Ej − Ei)
[

ϕN(L∗ − LN
h )

[rℓ + rh − (Di + Ei + Fi)]2
+ ϕT (L∗ − LT

h )
(Di + Ei + Fi)2

]
(17)

Proof. Rewriting (15) with Ai = rℓ/n − Di and Ci = (n − 1)(rℓ/n + rh/n) − Fi,

∂ui

∂Ei

= (LT
h −LN

h )−ϕN
(rℓ/n − Di)(LN

ℓ − LN
h ) + ((n − 1)(rℓ/n + rh/n) − Fi)(L∗ − LN

h )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
Di(LT

ℓ − LT
h ) + Fi(L∗ − LT

h )
(Di + Ei + Fi)2 (18)

An analogous expression holds for j. Since Di + Ei + Fi = Dj + Ej + Fj (the total
mass of recipients receiving Treatment is fixed), the two denominators in (18) are the
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same as those in the analogous expression for j. Hence

∂ui

∂Ei

− ∂uj

∂Ej

= ϕN
(Di − Dj)(LN

ℓ − LN
h ) + (Fi − Fj)(L∗ − LN

h )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Di − Dj)(LT

ℓ − LT
h ) + (Fi − Fj)(L∗ − LT

h )
(Di + Ei + Fi)2

Since Fi − Fj = −(Di − Dj) + (Ej − Ei),

∂ui

∂Ei

− ∂uj

∂Ej

= ϕN
(Di − Dj)(LN

ℓ − LN
h − L∗ + LN

h ) + (Ej − Ei)(L∗ − LN
h )

(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Di − Dj)(LT

ℓ − LT
h − L∗ + LT

h ) + (Ej − Ei)(L∗ − LT
h )

(Di + Ei + Fi)2

which equals (17). The same argument (in the online appendix) yields the same
expression for ∂ui/∂Di − ∂uj/∂Dj.

Proof of Theorem 3. By Lemma 4 it is without loss to restrict attention to Invert-
ing and Non-inverting equilibria. Consider any Non-inverting equilibrium profile p.
Observe that for any i, j, either (piℓ, pih) ≥ (pjℓ, pjh) or (piℓ, pih) ≤ (pjℓ, pjh).

Suppose (piℓ, pih) ⪇ (pjℓ, pjh), i.e. using the above notation suppose Dj ≥ Di and
Ej ≥ Ei with at least one inequality being strict. By (17) i has a greater marginal
incentive to send recipients (of either type) to T than j does. This implies either that
i has the strict incentive to (feasibly) increase pi or that j has the strict incentive to
(feasibly) strictly decrease pj, contradicting the equilibrium assumption. A parallel
argument applies to Inversion equilibria.

6.2.3 NI-candidate existence and uniqueness

To prove Proposition 2 we write the partial derivatives of payoffs ui also as a function
of k. For any (symmetric, non-wasteful) non-inversion strategy profile and k, define
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δW and δN by evaluating (15) and (16) at such profiles.

δW (E, k) ≡ ∂u

∂Ei

∣∣∣∣∣
∀j Dj=0, Ej=E

(19)

= (LT
h − LN

h ) − ϕN
rℓ(LN

ℓ − LN
h )

n(rℓ + rh − nE)2 − ϕN
(n − 1)(L∗ − LN

h )
n(rℓ + rh − nE) + ϕT

(n − 1)(L∗ − LT
h )

n2E

δN(D, k) ≡ ∂u

∂Di

∣∣∣∣∣
∀j Dj=D, Ej= rh

n

(20)

= (LT
ℓ − LN

ℓ ) − ϕN
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD) − ϕT

rh(LT
ℓ − LT

h )
n(nD + rh)2 + ϕT

(n − 1)(L∗ − LT
ℓ )

n(nD + rh)

With this notation we rewrite Definition 1 as follows.

Definition (NI-candidate). A symmetric profile p∗ (inducing strategies Di = p∗
iℓrℓ/n,

Ei = p∗
ihrh/n) is an NI-candidate if

• (1-NI) p∗
iℓ ≡ 0 and δW (E, k) = 0; or

• (1-NI corner solution) p∗
iℓ ≡ 0, nEi = kϕ, and δW (E, k) ≤ 0; or

• (3-NI) p∗
ih ≡ 1 and δN(D, k) = 0; or

• (3-NI corner solution) p∗
ih ≡ 1, rℓ − nDi = (1 − k)ϕ, and δN(D, k) ≥ 0; or

• (2-NI) p∗
iℓ ≡ 0, p∗

ih ≡ 1, δW (E, k) ≥ 0, and δN(D, k) ≤ 0.

The following lemma conveys the intuition that the benefit of assigning more
recipients to T increases in k and decreases in the total mass of recipients assigned to
T . This intuition is always true for high type-recipients but requires mild assumptions
for low-type recipients since they congest their agent’s high-type recipients.

Lemma 7 (Properties of δN , δW ).

(i) δW (E, k) is linearly increasing in k ∈ [0, 1] and decreasing in E ∈ [0, rh/n].

(ii) If Assumption 1 holds, n ≥ 2 implies δN(D, k) is linearly increasing in k ∈ [0, 1],
and n ≥ 3 implies δN(D, k) is decreasing in D ∈ [0, rℓ/n].

Proof. To prove the first claim, note that δW is continuous and differentiable. Dif-
ferentiating δW (E, k) with respect to k yields

∂δW

∂k
= ϕ

rℓ(LN
ℓ − LN

h )
n(rℓ + rh − nE)2 + ϕ

(n − 1)(L∗ − LN
h )

n(rℓ + rh − nE) + ϕ
(n − 1)(L∗ − LT

h )
n2E

> 0 (21)
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which is a sum of positive terms independent of k; so δW is linearly increasing in k.
Likewise,

∂δW

∂E
= −ϕN

2rℓ(LN
ℓ − LN

h )
(rℓ + rh − nE)3 − ϕN

(n − 1)(L∗ − LN
h )

(rℓ + rh − nE)2 − ϕT
(n − 1)(L∗ − LT

h )
(nE)2

which for any E ∈ (0, rh/n] is a sum of three strictly negative terms; so δW is de-
creasing in E.

Analogously for the second claim,

∂δN

∂k
= ϕ

(n − 1)(L∗ − LN
ℓ )

n(rℓ − nD) + ϕ
−rh(LT

ℓ − LT
h ) + (n − 1)(rh + nD)(L∗ − LT

ℓ )
n(rh + nD)2 (22)

If n ≥ 2 and Assumption 1 holds, then the second term is strictly positive. Since the
first term is positive, δN is linearly increasing in k. Likewise

∂δN

∂D
= ϕN

−(n − 1)(L∗ − LN
ℓ )

(rℓ − nD)2 + ϕT
2rh(LT

ℓ − LT
h )

(nD + rh)3 − ϕT
(n − 1)(L∗ − LT

ℓ )
(nD + rh)2

Since rh/(nD + rh) < 1,

∂δN

∂D
< ϕN

−(n − 1)(L∗ − LN
ℓ )

(rℓ − nD)2 + ϕT
2(LT

ℓ − LT
h )

(nD + rh)2 − ϕT
(n − 1)(L∗ − LT

ℓ )
(nD + rh)2

If n ≥ 3 and Assumption 1 holds, then the magnitude of the third term exceeds that
of the second term; so δN is decreasing in D.

Lemma 8 (Region 2-NI). Fix k and let ps denote the “NI-separating” profile, ps
iℓ ≡ 0

and ps
ih ≡ 1. Then ps is an NI-candidate for k if and only if k′

n ≤ k ≤ k∗
n, where

k′
n < k∗

n are defined by (11) and (12).

Proof. Fixing k, ps is an NI-candidate if and only if an agent has no incentive to
decrease E from its value rh/n and has no incentive to increase D above 0.

The former requirement is δW (rh/n, k) ≥ 0 which, by Equation 19, is

(LT
h − LN

h ) − ϕN

rℓ

1
n

(LN
ℓ − nLN

h + (n − 1)L∗) + ϕT

rh

n − 1
n

(L∗ − LT
h ) ≥ 0
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Substituting for ϕN = (1 − k)ϕ and ϕT = kϕ this inequality holds when

k ≥
−(LT

h − LN
h ) + ϕ

rℓ

1
n

(
(n − 1)L∗ + LN

ℓ − nLN
h

)
ϕ
rℓ

1
n

((n − 1)L∗ + LN
ℓ − nLN

h ) + ϕ
rh

n−1
n

(L∗ − LT
h )

≡ k′
n

establishing (11).
The latter requirement is δN(0, k) ≤ 0 which, by Equation 20, is

(LT
ℓ − LN

ℓ ) − ϕN

n−1
n

(L∗ − LN
ℓ )

rℓ

+ ϕT

− 1
n
(LT

ℓ − LT
h ) + n−1

n
(L∗ − LT

ℓ )
rh

≤ 0

which holds when

kα ≤ (LN
ℓ − LT

ℓ ) + ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ )

where α =
[

ϕ

rℓ

n − 1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
− 1

n
(LT

ℓ − LT
h ) + n − 1

n
(L∗ − LT

ℓ )
]]

Assumption 1 and the assumption that n ≥ 3 imply α > 0. Dividing both sides of
the inequality by α yields k ≤ k∗

n as defined in (12).

The following implies that separation (2-NI) occurs for non-degenerate values of k.

Lemma 9. For k′
n, k∗

n defined in (11)–(12), k′
n < k∗

n and rh

rℓ+rh
≡ k̄ < k∗

n.

Proof. It is clear from (11) and (12) that k′
n < 1 and k∗

n > 0. Hence if k′
n = 0 or

k∗
n = 1 the conclusion is immediate.

Suppose k′
n > 0 and k∗

n < 1, hence δW (rh/n, k′
n) = 0 and δN(0, k∗

n) = 0. Since δW

is increasing in k, we prove the result by showing δW (rh/n, k∗
n) > 0 = δN(0, k∗

n). We do
this by showing that (i) δW (rh/n, k) − δN(0, k) increases in k, and (ii) δW (rh/n, k̄) >

δN(0, k̄) at the “proportional” value k̄ ≡ rh

rℓ+rh
< k∗

n.
To show (i) we evaluate (21)–(22) at (rh/n, k) and (0, k) (reordering the first two

terms of the first expression).

∂δW

∂k
(rh/n, k) = ϕ

(n − 1)(L∗ − LN
h )

nrℓ

+ ϕ
(LN

ℓ − LN
h )

nrℓ

+ ϕ
(n − 1)(L∗ − LT

h )
nrh

∂δN

∂k
(0, k) = ϕ

(n − 1)(L∗ − LN
ℓ )

nrℓ

+ ϕ
−(LT

ℓ − LT
h )

nrh

+ ϕ
(n − 1)(L∗ − LT

ℓ )
nrh
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It is easy to see that the three terms in the first expression are greater than the
respective terms in the second expression, proving (i).

To prove (ii), evaluate the two derivatives at k̄.

δN(0, k̄) = (LT
ℓ − LN

ℓ ) − ϕ
rℓ

rh + rℓ

(n − 1)(L∗ − LN
ℓ )

nrℓ

+ ϕ
rh

rh + rℓ

−(LT
ℓ − LT

h ) + (n − 1)(L∗ − LT
ℓ )

nrh

= (LT
ℓ − LN

ℓ ) − ϕ
(n − 1)(L∗ − LN

ℓ )
n(rh + rℓ)

+ ϕ
−(LT

ℓ − LT
h ) + (n − 1)(L∗ − LT

ℓ )
n(rh + rℓ)

= (LT
ℓ − LN

ℓ ) − ϕ
(LT

ℓ − LT
h )

n(rh + rℓ)
+ ϕ

(n − 1)(LN
ℓ − LT

ℓ )
n(rh + rℓ)

< 0

which is negative since the magnitude of the first (negative) term exceeds that of the
third (positive) term. Additionally, since δN(0, k∗

n) = 0 and is increasing in k this
implies k̄ < k∗

n.
Secondly,

δW (rh/n, k̄) = (LT
h − LN

h ) − ϕ
rℓ

rh + rℓ

(LN
ℓ − LN

h )
nrℓ

− ϕ
rℓ

rh + rℓ

(n − 1)(L∗ − LN
h )

nrℓ

+ ϕ
rh

rh + rℓ

(n − 1)(L∗ − LT
h )

nrh

= (LT
h − LN

h ) − ϕ
(LN

ℓ − LN
h )

n(rh + rℓ)
− ϕ

(n − 1)(L∗ − LN
h )

n(rh + rℓ)
+ ϕ

(n − 1)(L∗ − LT
h )

n(rh + rℓ)

= (LT
h − LN

h ) − ϕ
(LN

ℓ − LN
h )

n(rh + rℓ)
− ϕ

(n − 1)(LT
h − LN

h )
n(rh + rℓ)

Note that

δW (rh/n, k̄) − δN(0, k̄) = (LT
h − LN

h ) − (LT
ℓ − LN

ℓ ) − ϕ
(LN

ℓ − LN
h ) − (LT

ℓ − LT
h )

n(rh + rℓ)

− ϕ(n − 1)LT
h − LN

h + LN
ℓ − LT

ℓ

n(rh + rℓ)

=
[
LT

h − LN
h − LT

ℓ + LN
ℓ

] [
1 − ϕ

rh + rℓ

]
> 0

since LT
h > LN

h , LN
ℓ > LT

ℓ , and ϕ < rh + rℓ. Therefore at k∗
n > k̄, (i) implies

δW (rh/n, k∗
n) > δN(0, k∗

n) = 0 = δW (rh/n, k′
n)

implying k∗
n > k′

n.
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Lemma 10 (Region 3-NI). If k > k∗
n then there exists a unique NI-candidate. It

satisfies pih ≡ 1.

Proof. Let ps be defined as in Lemma 8 and (with a slight abuse of notation) recall
δN(ps, k∗

n) = 0 by definition of k∗
n. By Lemma 8, k > k∗

n > k′
n implies δW (ps, k) > 0.

The lemma furthermore implies δW (p, k) > 0 for any symmetric profile satisfying
piℓ ≡ 0, i.e. there can be no NI-candidate in region 1-NI.

Lemma 8 similarly implies δN(ps, k) > 0. By Lemma 7, δN(·, k) continuously
decreases as we increase D (piℓ) from zero. Either δN(D, k) = 0 at some unique D or
we have (corner solution) δN(rℓ/n, k) > 0. In the latter case we clearly have a unique
NI-candidate. In the former (interior) case, recall by Lemma 5 (statement (ii)) that
at such a profile, an agent’s payoffs are either decreasing or concave in piℓ. Since
δN(D, k) = 0 we must have concavity with respect to piℓ, hence this point uniquely
satisfies the local first- and second-order conditions.

Lemma 11 (Region 1-NI). If k < k′
n then there exists a unique NI-candidate. It

satisfies piℓ ≡ 0.

The omitted proof mirrors that of Lemma 10 with the simplification that, in
reference to Lemma 5, payoffs are always concave in pih.

Proof of Proposition 2. NI-candidate existence, uniqueness, and their description
follow from the above lemmas. Monotonicity of p∗() follows from Lemma 7.

6.2.4 Optimal NI-candidate

The proof of Theorem 5 relies on the following lemma, stating that in region 3-NI we
have πT > πN .

Lemma 12 (πT > πN in Region NI-3). Fix k, and suppose p∗ is a NI-3 equilibrium:
for all i, p∗

iℓ = p∗
ℓ > 0 (and hence p∗

ih = 1). Then k > (p∗
ℓrℓ + rh)/(rℓ + rh), that is,

the equilibrium allocation probability is higher in T than in N: πT > πN .

Proof. By Lemma 5, p∗
ih = 1 implies ui(p∗) is either decreasing or concave in piℓ.

Since p∗
ℓ > 0 it must be concave. Therefore either the partial derivative (20) is zero,

or the equilibrium is at a corner (where the N-nonwastefulness constraint binds and
πN = 1). However Fact 1(ii) rules out the latter, hence (20) is zero.
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Recall for NI-3 equilibria that A = rℓ/n − D, B = 0, C = (n − 1)A, E = rh/n,
F = (n − 1)(D + E). So πN = ϕN/(A + B + C) = ϕN/(rℓ − nD) and πT =
ϕT /(D + E + F ) = ϕT /(rh + nD). Let λ = rh/(rh + nD). Since Equation 20 is zero
we have

(LN
ℓ − LT

ℓ ) + ϕN
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD)

= ϕT
−rh(LT

ℓ − LT
h ) + (n − 1)(nD + rh)(L∗ − LT

ℓ )
n(nD + rh)2

LN
ℓ + πN (n − 1)

n
(L∗ − LN

ℓ )

= LT
ℓ + πT −rh(LT

ℓ − LT
h ) + (n − 1)(nD + rh)(L∗ − LT

ℓ )
n(nD + rh)

Thus

(1 − πN)LN
ℓ + πN

(
(n − 1)

n
L∗ + 1

n
LN

ℓ

)

= LT
ℓ + πT

(
(n − 1)(L∗ − LT

ℓ )
n

+ −rh(LT
ℓ − LT

h )
n(nD + rh)

)

= LT
ℓ + πT

(
n − 1

n
(L∗ − LT

ℓ ) + −λ(LT
ℓ − LT

h )
n

)

= (1 − πT )LT
ℓ + πT

(
n − 1

n
L∗ + (1 − λ)LT

ℓ + λLT
h

n

)

< (1 − πT )LN
ℓ + πT

(
n − 1

n
L∗ + 1

n
LN

ℓ

)

Since L∗ > LN
ℓ we have πT > πN ; equivalently k > (p∗

ℓrℓ + rh)/(rℓ + rh).

Proof of Theorem 5. For any k let f(k) and πT (k) respectively denote the fraction
of objects allocated to high types and the probability that a recipient assigned to T

receives an object, under k’s NI-candidate. We prove the results regarding f . The
results regarding agents’ total payoffs follow directly using the same arguments made
in Subsection 3.2 under Perfect Competition.

It is immediate that f() is increasing on [k′
n, k∗

n] since the strategy profile is the
same for all NI-candidates on this range. The remainder of the proof consists of
showing (i) f is decreasing on [k∗

n, 1], and (ii) f(k) < f(k∗
n) for k ∈ [0, k′

n].
Step (i). For any k ∈ (k∗

n, 1], there is at most one symmetric profile (namely
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the NI-candidate p(k)) satisfying δN(D, k) = 0 by Lemma 10. Whenever such p(k)
exists (i.e. the NI-candidate is not a corner solution), let D(k) = p(k)rℓ/n denote the
corresponding mass of low types each agent sends to T.

By Lemma 7 D(k) is increasing in k; hence the values of k > k∗
n for which such

δN(D(k), k) = 0 exist are an interval (of the form (k∗
n, x] by continuity). We show that

πT (k) is decreasing in k on this interval. Since pih(k) ≡ 1 on this range, a decrease
in πT () necessarily decreases f(), proving (i).

We implicitly differentiate δN(D(k), k) = 0 (Equation 20) w.r.t. k after substitut-
ing ϕN = (1 − k)ϕ and ϕT = kϕ. (Write D = D(k) and D′ = ∂D(k)/∂k, and ignore
the corner case piℓ ≡ 1, where nD = rℓ.) This yields

ϕ
(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD) − ϕ(1 − k)(n − 1)(L∗ − LN

ℓ )
n(rℓ − nD)2 nD′ − ϕ

rh(LT
ℓ − LT

h )
n(nD + rh)2

+ 2ϕk
rh(LT

ℓ − LT
h )

n(nD + rh)3 nD′ + ϕ
(n − 1)(L∗ − LT

ℓ )
n(nD + rh) − ϕk

(n − 1)(L∗ − LT
ℓ )

n(nD + rh)2 nD′ = 0

Denoting r = rℓ + rh and S = nD + rh < r, we obtain

D′ =
(n−1)(L∗−LN

ℓ )
n(r−S) + (n−1)(L∗−LT

ℓ )
nS − rh(LT

ℓ −LT
h )

nS2

(1 − k) (n−1)(L∗−LN
ℓ

)
(r−S)2 + k

(n−1)(L∗−LT
ℓ

)
S2 − 2k

rh(LT
ℓ

−LT
h

)
S3

= (n − 1)(L∗ − LN
ℓ )S2 + (n − 1)(L∗ − LT

ℓ )(r − S)S − rh(LT
ℓ − LT

h )(r − S)
(1 − k)(n − 1)(L∗ − LN

ℓ )S3 + k(n − 1)(L∗ − LT
ℓ )S(r − S)2 − 2krh(LT

ℓ − LT
h )(r − S)2

(r − S)S
n

To show that the derivative of πT (k) ≡ kϕ
nD+rh

is negative, i.e. that

ϕ

nD + rh

− nkϕ

(nD + rh)2 D′ = ϕ

S
− nkϕ

S2 D′ < 0

we need to show D′ > S/(nk). Using the derivation of D′ above, this inequality
becomes

(L∗ − LN
ℓ )S2(n − 1)(kr − S) > −krh(LT

ℓ − LT
h )(r − S)2

Since r > S this is true whenever k ≥ S/r, i.e. whenever πT (k) ≥ πN(k), which is
true by Lemma 12. Hence πT () and f() are decreasing on [k∗

n, 1].
Step (ii): consider the case k ∈ [0, k′

n].16 By previous arguments, NI-candidate
16This case is mostly symmetric to the previous one, except that the possibility that k̄ < k′

n

necessitates additional arguments.
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profiles vary continuously in k; therefore f() is continuous. Hence we can choose

k̃ = arg max
[0,k′

n]
f(k)

We show f(k̃) < f(k∗
n) ≡ k∗

n.
Case 1: πN(k̃) ≥ πT (k̃). A low type receives an object with probability πN(k̃),

whereas a high type receives an object with a weakly lower probability of

(1 − pih)πN(k̃) + pihπT (k̃)

where (0, pih) is the NI-candidate for k̃. Since high types receive objects with lower
probability than low types, they collectively receive no more than the (unconditional)
object allocation rate: f(k̃) ≤ rh

rℓ+rh
< k∗

n, where the second inequality follows from
Lemma 9 (k̄ < k∗

n).
Case 2: πN(k̃) < πT (k̃). We show that f is increasing at k̃. This means k̃ = k′

n,
implying the desired conclusion.

Since the mass of objects allocated to low types is πN(k̃)rℓ, f(k̃) = 1 − πN

ϕ
rℓ. To

show f is increasing we show πN() is decreasing at k̃.
To show the derivative of πN(k) ≡ (1−k)ϕ

rℓ+rh−nE
is negative at k̃, i.e. that

−ϕ

rℓ + rh − nE
+ (1 − k̃)ϕnE ′

(rℓ + rh − nE)2 =
(

−ϕ

rℓ + rh − nE

)(
1 − (1 − k̃)nE ′

rℓ + rh − nE

)
≤ 0

we need to show
E ′(k̃) ≤ rℓ + rh − nE(k̃)

(1 − k̃)n
(23)

We implicitly differentiate δW (E(k), k) = 0 (Equation 19) w.r.t. k and evaluate
at k̃. Writing E = E(k) and E ′ = E ′(k) we obtain

ϕ
(n − 1)(L∗ − LT

h )
nE

− ϕ(1 − k̃)(n − 1)(L∗ − LN
h )

(rℓ + rh − nE)2 nE ′ + ϕ
rℓ(LN

ℓ − LN
h )

(rℓ + rh − nE)2

− 2ϕ(1 − k̃) rℓ(LN
ℓ − LN

h )
(rℓ + rh − nE)3 nE ′ + ϕ

(n − 1)(L∗ − LN
h )

(rℓ + rh − nE) − ϕk̃
(n − 1)(L∗ − LT

h )
(nE)2 E ′n = 0
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Denoting S = rℓ + rh − nE(k̃) and r = rh + rℓ this yields

E′(k̃) = rℓ(LN
ℓ − LN

h )S−2 + (n − 1)(L∗ − LN
h )S−1 + (n − 1)(L∗ − LT

h )(r − S)−1

2(1 − k̃)rℓ(LN
ℓ − LN

h )S−3n + (1 − k̃)(n − 1)(L∗ − LN
h )S−2n + k̃(n − 1)(L∗ − LT

h )(r − S)−2n

Therefore one can show that (23) is equivalent to

(n − 1)(L∗ − LT
h )[(1 − k̃)(r − S) − k̃S] ≤ rℓ(LN

ℓ − LN
h )(1 − k̃)

(
r − S

S

)2

Note that ϕ(1−k̃)
S

= πN(k̃) < πT (k̃) = ϕk̃
r−S

implies that the LHS is non-positive. Since
the RHS is non-negative (23) holds.

Proof of Proposition 4. When k∗
n < 1 and ϕ ≤ rh, Equation 12 takes the form

k∗
n =

(LN
ℓ − LT

ℓ ) + ϕ
rℓ

n−1
n

(L∗ − LN
ℓ )

ϕ
rℓ

n−1
n

(L∗ − LN
ℓ ) + ϕ

rh

[
n−1

n
L∗ + 1

n
LT

h − LT
ℓ

]
=

∆ℓ + ϕ
rℓ

n−1
n

∆∗
ϕ
rℓ

n−1
n

∆∗ + ϕ
rh

[
n−1

n
(∆∗ + ∆ℓ) − 1

n
∆T

]
=

∆ℓ + ϕ
rℓ

n−1
n

∆∗
ϕ
rh

n−1
n

∆ℓ +
(

ϕ
rℓ

+ ϕ
rh

)
n−1

n
∆∗ − ϕ

rh

1
n
∆T

= a∆ℓ + b∆∗

a′∆ℓ + b′∆∗ + c∆T

where a > a′, b < b′, and c < 0. It is clearly decreasing in ϕ and increasing in ∆T .
Differentiating the last expression yields the remaining results since k∗

n < 1.

6.2.5 Non-inversion equilibrium existence

The proof of Theorem 4 is presented last as it makes use of Proposition 2. We prove a
(technically) stronger result since (8) implies k̄ ≥ k′ (proven in the Online Appendix).

Theorem. Suppose n ≥ 3 and that Assumption 1 holds. If k ≥ max{k′
n, k̄} and (9)

holds then there exists a unique Non-inversion equilibrium.

Proof. Make the assumptions of the theorem and let p∗ be the unique NI-candidate
for k. We first show that agent i’s best response to p∗

−i must be a Non-inversion
strategy, then show p∗

i is optimal among all such strategies.

Claim 1: any best response to p∗
−i satisfies piℓ = 0 or pih = 1.
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To prove Claim 1 it is sufficient to show that (13) is positive for any profile (pi, p∗
−i).

Since p∗
−i is fixed throughout let πN(pi) and πT (pi) denote the allocation probabilities

when i uses strategy pi. We want to show that for any pi,

(1 − πN(pi))(∆h + ∆T + ∆ℓ) − (1 − πT (pi))∆T > 0

If πN(pi) ≤ πT (pi) the inequality is immediate; if πN(pi) > πT (pi) we must show

∆T

∆h + ∆ℓ

<
1 − πN(pi)

πN(pi) − πT (pi)
(24)

Since k ≥ k′
n implies p∗

jh = 1 for all j ̸= i, for all pi we have

πN(pi) = (1 − k)ϕ
n−1

n
(1 − p∗

jℓ)rℓ + (1 − piℓ) rℓ

n
+ (1 − pih) rh

n

≤ (1 − k)ϕ
n−1

n
(1 − p∗

jℓ)rℓ

(25)

Separately, k ≥ max{k′
n, k̄} implies

ϕ(1 − k)
(1 − p∗

iℓ)rℓ

= πN(p∗
i ) < πT (p∗

i ) = ϕk

rh + p∗
iℓrℓ

since either k ≥ k∗
n (in which case Lemma 12 applies) or k ∈ [k′

n, k∗
n] (in which case

p∗
iℓ(k) = 0, p∗

ih(k) = 1, and k ≥ k̄ imply the inequality). The inequality can be
rewritten as

p∗
iℓ <

krℓ − (1 − k)rh

rℓ

With (25) this means that for any pi,

πN(pi) ≤ (1 − k)ϕ
n−1

n
(1 − p∗

iℓ)rℓ

<
(1 − k)ϕ

n−1
n

(
1 − krℓ−(1−k)rh

rℓ

)
rℓ

= ϕ
n−1

n
(rℓ + rh)

Hence (9) implies 1 − πN(pi) > ∆T /(∆H + ∆ℓ), implying (24) and the claim.

Claim 2: p∗
i is a best response to p∗

−i.
By Claim 1 it suffices to compare p∗

i only to other Non-inversion strategies. We
show that ui(·, p∗

−i) is concave across the entire range of such (non-wasteful) strategies,
proving the result (since p∗

i is a local maximizer).
Lemma 5(i) implies ui(pi, p∗

−i) is concave over the range where piℓ = 0 and pih ∈
[0, 1]. Lemma 5(iii) implies ui(pi, p∗

−i) is concave over the range where piℓ ∈ [0, 1] and

44



pih = 1. Consider their intersection, p′
i = (0, 1). At profile (p′

i, p∗
−i),

∂ui

∂Ei

− ∂ui

∂Di

= (LN
ℓ − LN

h )
(

1 − ϕN
rℓ

n
+ Ci

)
− (LT

ℓ − LT
h )
(

1 − ϕT
rh

n
+ Fi

)
= (LN

ℓ − LN
h )(1 − πN(p′

i)) − (LT
ℓ − LT

h )(1 − πT (p′
i)) (26)

Note also that

πT (p′
i) = ϕT

rh + n−1
n

p∗
jℓrℓ

>
ϕT

rh + p∗
jℓrℓ

= πT (p∗
i )

πN(p′
i) = ϕN

1
n
rℓ + n−1

n
(1 − p∗

jℓ)rℓ

<
ϕN

(1 − p∗
jℓ)rℓ

= πN(p∗
i )

Lemma 12 implies πT (p∗
i ) > πN(p∗

i ), πT (p′
i) > πN(p′

i). Combining with (26) we have
∂ui

∂E
> ∂ui

∂D
, i.e. ui(·, p∗

−i) is concave at p′
i.
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A Online Appendix

A.1 Payoffs are nowhere-concave
A necessary condition for (weak) concavity of Ui is for the determinant of the Hessian
matrix to be negative. Firstly, one can confirm that

∂2Ui

∂D∂E
= ϕN

−(rℓ + rh − D − E − F )(LN
ℓ − LN

h ) + 2[(rh/n − E)(LN
ℓ − LN

h ) − ((n − 1)(rℓ/n + rh/n) − F )(L∗ − LN
ℓ )]

(rℓ + rh − D − E − F )3

− ϕT

(D + E + F )(LT
ℓ − LT

h ) + 2(−E(LT
ℓ − LT

h ) + F (L∗ − LT
ℓ ))

(D + E + F )3

∂2Ui

∂E2 = −2ϕN

(rℓ/n − D)(LN
ℓ − LN

h ) + [(n − 1)(rℓ/n + rh/n) − F ](L∗ − LN
h )

(rℓ + rh − D − E − F )3 − 2ϕT

D(LT
ℓ − LT

h ) + F (L∗ − LT
h )

(D + E + F )3

∂2Ui

∂D2 = 2ϕN

(rh/n − E)(LN
ℓ − LN

h ) − [(n − 1)(rℓ/n + rh/n) − F ](L∗ − LN
ℓ )

(rℓ + rh − D − E − F )3 − 2ϕT

−E(LT
ℓ − LT

h ) + F (L∗ − LT
ℓ )

(D + E + F )3

The determinant is ∂2Ui

∂E2 · ∂2Ui

∂D2 −
(

∂2Ui

∂D∂E

)2
. Substituting with the above expressions

and rearranging terms, the determinant can be written as

−S2

(D + E + F )4(rh + rℓ − (D + E + F ))4

where (letting r = rℓ + rh)

S = −ϕT (LT
ℓ − LT

h ) (r − (D + E + F ))2 − ϕN(LN
ℓ − LN

h )(D + E + F )2

which is always negative. Therefore the determinant is negative for any parameter
values (setting aside the two degenerate combinations where D + E + F = 0 = k and
where (D + E + F )/r = 1 = k), so Ui is not concave (nor convex) at any point.

A.2 Omitted argument in proof of Lemma 6

The claim is made that “a parallel argument shows that ∂ui/∂Di − ∂uj/∂Dj equals”
the expression given in the proof. To formalize this argument here, recall Ai =
rℓ/n − Di, Bi = rh/n − Ei, and Ci = (n − 1)(rℓ/n + rh/n) − Fi. The derivative of
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(14) with respect to Di is

(LT
ℓ − LN

ℓ ) + ϕN

A + B + C

(
B

A + B + C
(LN

ℓ − LN
h ) − C

A + B + C
(L∗ − LN

ℓ )
)

+ ϕT

D + E + F

(
E

D + E + F
(LT

h − LT
ℓ ) + F

D + E + F
(L∗ − LT

ℓ )
)

= (LT
ℓ − LN

ℓ ) + ϕN
(rh/n − Ei)(LN

ℓ − LN
h ) − ((n − 1)(rℓ/n + rh/n) − Fi)(L∗ − LN

ℓ )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
−Ei(LT

ℓ − LT
h ) + Fi(L∗ − LT

ℓ )
(Di + Ei + Fi)2 (27)

An analogous expression holds for j,

∂uj

∂Dj

= (LT
ℓ −LN

ℓ )+ϕN
(rh/n − Ej)(LN

ℓ − LN
h ) − ((n − 1)(rℓ/n + rh/n) − Fj)(L∗ − LN

ℓ )
(rℓ + rh − Dj − Ej − Fj)2

+ ϕT
−Ej(LT

ℓ − LT
h ) + Fj(L∗ − LT

ℓ )
(Dj + Ej + Fj)2

Again since Di + Ei + Fi = Dj + Ej + Fj this yields

∂ui

∂Di

− ∂uj

∂Dj

= ϕN
(Ej − Ei)(LN

ℓ − LN
h ) + (Fi − Fj)(L∗ − LN

ℓ )
(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Ej − Ei)(LT

ℓ − LT
h ) + (Fi − Fj)(L∗ − LT

ℓ )
(Di + Ei + Fi)2

= ϕN
(Ej − Ei)(L∗ − LN

h ) + (Dj − Di)(L∗ − LN
ℓ )

(rℓ + rh − Di − Ei − Fi)2

+ ϕT
(Ej − Ei)(L∗ − LT

h ) + (Dj − Di)(L∗ − LT
ℓ )

(Di + Ei + Fi)2

= (Ej − Ei)
[

ϕN(L∗ − LN
h )

(rℓ + rh − Di − Ei − Fi)2 + ϕT (L∗ − LT
h )

(Di + Ei + Fi)2

]

+ (Dj − Di)
[

ϕN(L∗ − LN
ℓ )

(rℓ + rh − Di − Ei − Fi)2 + ϕT (L∗ − LT
ℓ )

(Di + Ei + Fi)2

]

as desired.
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A.3 Assumption 1 implies X < X ′ in proof of Lemma 5.

X − X ′ = B(LN
ℓ − LN

h ) − C(L∗ − LN
ℓ ) + E(LT

ℓ − LT
h ) − F (L∗ − LT

ℓ )

=
(rh

n
− E

)
(LN

ℓ − LN
h ) −

(
n − 1

n
(rℓ + rh) − F

)
(L∗ − LN

ℓ ) + E(LT
ℓ − LT

h ) − F (L∗ − LT
ℓ )

= rh

n
(LN

ℓ − LN
h ) − n − 1

n
(rℓ + rh)(L∗ − LN

ℓ ) + F (L∗ − LN
ℓ − L∗ + LT

ℓ ) − E(LN
ℓ − LN

h − LT
ℓ + LT

h )

<

[
rh

n
(LN

ℓ − LN
h ) − n − 1

n
(rℓ + rh)(LN

ℓ − LN
h )
]

+ F (LT
ℓ − LN

ℓ ) + E((LT
ℓ − LT

h ) − (LN
ℓ − LN

h ))

The inequality follows Assumption 1, and the final expression is the sum of three
negative terms.

A.4 Inequality k̄ ≥ k′
n

Rewriting the expression for k′
n (Equation 11) using the definitions in Equation 10,

the inequality k̄ > k′
n becomes

rh

rℓ + rh

≥
−∆h + ϕ

rℓ

(
∆ − 1

n
∆∗
)

ϕ
rℓ

(
∆ − 1

n
∆∗
)

+ ϕ
rh

n−1
n

(∆ − ∆h)

which is equivalent to

ϕ
n − 1

n
∆ − ϕ

(
∆ − 1

n
∆∗

)
≥ ϕ

n − 1
n

∆h − ∆h(rℓ + rh)

Simplifying and rearranging this expression leads to Equation 8.

A.5 Computational analysis: details

Here we summarize methodology and details of the computational analysis described
in Subsection 4.3. The code is available at http://www.kellogg.northwestern.
edu/faculty/schummer/ftp/research/RTC/RTC-code.zip.

The computations were performed on a workstation equipped with dual Intel
Xeon Gold 5220R processors, each operating at 2.20 GHz, 256 GB of RAM, and two
NVIDIA GV100 GPUs, each with 32 GB memory.

Fixing primitives that satisfy our assumptions, the goal of the computational ex-
ercises is to identify the equilibria that exist for various values of k, identify their
structure, and compare welfare among all of them. The primitives are the recipi-
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ent masses (normalized to rℓ + rh = 1), object mass ϕ < 1, recipient welfare levels
L∗ > LN

ℓ > LT
ℓ > LT

h > LN
h , and number of agents n. First, to find equilibria for a

given k we find (approximate) best response functions in a discretized strategy space
and their (approximate) fixed points, leveraging some analytical results to simplify
the search. Second, to find the planner’s optimal ration k, we compare welfare un-
der any Inversion equilibrium found in the previous step to welfare obtained at the
Non-inversion equilibrium obtained when k = k∗

n, ignoring all other NI equilibria by
Theorem 5.

The following summary of details gives an overview of the code structure and
additional technical details including how primitives and k are discretized. The result
is one of the “prisms” found in Figure 2.

Step 1: Compute agent i’s best responses (Python/Jax)
• Configure GPUs; Set precision to float64.
• Initialize set of economies.

– Fix n, rℓ, rh = 1 − rℓ, ϕ < 1.
– Normalize LN

h = 0, LN
ℓ = 0.5, L∗ ≥ 1 (Assumption 1).

– Consider values 0 < LT
h < LT

ℓ < 0.5 in increments of 0.02.
– Consider values 0 ≤ k ≤ 1 in increments of 0.01.

• Create grids for best response calculation.
– Determine ‘admissible’ range of profiles p−i (specifically, Fi in the notation

of the paper’s appendix) that gives i a non-empty set of non-wasteful
strategies.

– Discretize domain of Fi (brmesh=100).
• [Parallelized] For each p−i (Fi) and each of the four edges of [0, 1]2 (Lemma 3)

determine an edge-constrained best response. For each edge:
– Find feasibility (non-wastefulness) constraints.
– Find edge-constrained best responses (if edge is feasible).

∗ Optimization method: jaxopt.LBFGSB
∗ Tolerance: 10−10; Max Iterations: 1000

• Choose edge-constrained best response(s) yielding the largest payoff.
Step 2: Construct a best response function (Mathematica)
• Round numerically indistinguishable zeros and ones using a tolerance of Machine

epsilon (≈ 2.22e−16). Filter out repeated edge-constrained best responses.
• For a relatively small number of instances with multiple best response edges:
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Figure 5: The figure depicts all the possible types of violations of probability constraints
allowed by the optimization algorithm. Obviously, since we find one optimum per edge, at
most one violation per edge is possible.

Fi

n−1

D∗
i (Fi) + E∗

i (Fi)

z1
z2

z3

z4
z5

z6

w

y

Figure 6: Masses

– Check for violations of probability constraints (expected in numerical opti-
mization) and correct using analytical properties of the problem. Violation
types are depicted in Figure 5.

∗ Green violations can be removed by limited concavity (Lemma 5).
∗ Red violations: if origin belongs to best responses, ignore the violation

and delete it.
– For all the remaining non-singletons, both best responses in the (pℓ,i, ph,i)

space yield the same mass D + E, so preserve both.
Step 3: Find and classify equilibria (Mathematica)
• To find BR fixed points, find all critical pairs: pairs of consecutive points which

are at opposite sides of the 45◦ line. For example, pairs (z1, z2), (z3, z4), (z5, z6)
in Figure 6) which illustrates i’s best response to the per-capita mass of recipi-
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ents i’s opponents send to T (Fi/(n − 1)).
• If both members of a critical pair yield the same (Inversion/Non-inversion) type

of BR, interpolate a fixed point. E.g. if i’s best response is Non-inverting at
both z1, z2, label w as a fixed point, and hence a Non-inversion equilibrium.
Otherwise classify as a jump discard the pair (e.g. (z3, z4)).

• If no equilibrium is found, refine the best response within the critical pair found.
Step 4: Welfare comparisons (Mathematica)
• Compute welfare for all Inversion equilibria under all considered values of k.
• Explicitly calculate k∗

n (Equation 12) and compute welfare under corresponding
Non-inversion equilibrium.

• Find the welfare-optimal choice of k (and equilibrium) among these candidates
(Theorem 5).
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A.6 Additional computational results

As L∗ increases (fixing other parameters as in the main text), Inversion equilibria are
replaced by Non-inversion equilibria.

Figure 7: L∗ = 1.0

Figure 8: L∗ = 2.0
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Figure 9: L∗ = 1.0

Figure 10: L∗ = 2.0
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As n increases (fixing other parameters as in the main text), Inversion equilibria
are replaced by Non-inversion equilibria.

Figure 11: n = 3

Figure 12: n = 4
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Figure 13: n = 6

Figure 14: n = 10
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