Start of Main Content
Author(s)

Eran Hanany

Peter Klibanoff

Erez Marom

This paper develops algorithms for dynamically consistent updating of ambiguous beliefs in the maxmin expected utility model of decision making under ambiguity. Dynamic consistency is the requirement that ex-ante contingent choices are respected by updated preferences. Such updating, in this context, implies dependence on the feasible set of payoff vectors available in the problem and/or on an ex-ante optimal act for the problem. Despite this complication, the algorithms are formulated concisely and are easy to implement, thus making dynamically consistent updating operational in the presence of ambiguity.
Date Published: 2011
Citations: Hanany, Eran, Peter Klibanoff, Erez Marom. 2011. Dynamically Consistent Updating of Multiple Prior Beliefs: An Algorithmic Approach. International Journal of Approximate Reasoning. (8)1198-1214.