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Abstract

This paper explores whether and to what extent ambiguous communication can be ben-

eficial to the sender in a persuasion problem, when the receiver (and possibly the sender) is

ambiguity averse. We provide a concavification-like characterization of the sender’s optimal

ambiguous communication. The characterization highlights the necessity of using a collection

of experiments that form a splitting of an obedient experiment, that is, whose recommendations

are incentive compatible for the receiver. At least some of the experiments in the collection

must be Pareto-ranked in the sense that both the sender and receiver agree on their payoff

ranking. The existence of a binary such Pareto-ranked splitting is necessary for ambiguous

communication to benefit the sender, and, if an optimal Bayesian persuasion experiment can

be split in this way, this is sufficient for an ambiguity-neutral sender as well as the receiver to

benefit. We show such gains are impossible when the receiver has only two actions available.

Such gains persist even when the sender is ambiguity averse, as long as not too much more so

than the receiver and not infinitely averse.
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1 Introduction

“If I seem unduly clear to you, you must have misunderstood what I said.”

Alan Greenspan, Speaking to a Senate Committee in 1987, as quoted in the Guardian
Weekly, November 4, 2005.

This paper considers the problem of a sender who wishes to favorably influence, through strate-
gic communication of information, the action taken by a receiver. As in the large literature on
Bayesian persuasion following Kamenica and Gentzkow (2011) (see also Rayo and Segal (2010)
and surveys by Bergemann and Morris (2019) and Kamenica (2019)), we model the sender as
committing to a communication strategy and the receiver as best responding to that strategy. A
communication strategy for the sender is usually described as a statistical experiment, a function
mapping from payoff-relevant states to probability distributions over messages (or signals). The
key departures from most of the literature and the focus of our analysis are that we enlarge the set
of the sender’s communication strategies to include ambiguous strategies – strategies for which,
from the perspective of both players, the probability that a given statistical experiment will be
used to generate the signal is subjectively uncertain, and the receiver (and possibly the sender) is
assumed to be ambiguity averse (i.e., averse to this subjective uncertainty about these probabili-
ties). In such an environment, would the sender ever benefit from intentionally using an ambiguous
communication strategy? If so, we would like to understand when and why this might occur.

What might it mean in a real-world context for the sender to choose an ambiguous communi-
cation strategy? Consider, for example, a pharmaceutical company communicating with a health
authority that is responsible for deciding on the approval of a drug. This communication often takes
the form of results from clinical trials, and these trials are frequently outsourced to sub-contractors.
From the perspectives of both the company and the health authority, this sub-contracting may be
viewed as introducing additional uncertainty. In particular, the instructions to the sub-contractors
involving what experiments to carry out can be (and in practice are) made contingent to a greater or
lesser extent on the knowledge/experience/discretion of the sub-contractors and their specialized
expertise. This contingent nature of the instructions to the sub-contractors, though known to all
parties, implies that there will be some ambiguity, on the part of both the company and the health
authorities, about exactly how to interpret the clinical trial results, driven by the underlying ambi-
guity that the company and health authority have about the exact knowledge/experience/discretion
of the sub-contractors. Abstracting from standard cost/efficiency motivations for sub-contracting,
our theory suggests that there may be purely strategic reasons for the pharmaceutical company to
use contingent sub-contracting to inject such ambiguity. Another context in which choice to com-
municate ambiguously arises is banking regulators’ stress testing of financial institutions. In this
setting, ambiguity can and often is introduced into communication by banking regulators choosing
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to use as input to the stress tests “bottom-up” tests conducted by the banks themselves based on
their own private in-house models and data.

Like sub-contracting to third parties, the choice to use a particular AI algorithm to generate
recommendations or diagnoses can be viewed as a communication strategy that is seen as more or
less ambiguous by both players (in addition to possibly varying in overall accuracy). Such algo-
rithms are known to differ in their degrees of interpretability or transparency. These dimensions
are acknowledged as relevant in choosing an algorithm.1 One aspect of interpretability relates to
mapping from instances to accuracy properties. For example, a linear regression model is un-
ambiguous in this respect because it is clear how changes in the input characteristics affect the
accuracy of the prediction. In contrast, the accuracy of an individual prediction from a deep neural
network is more ambiguous in that it is more difficult to determine whether any given instance is
one for which the algorithm is likely to predict more or less accurately. This is so even though the
neural network may be more accurate on average across inputs than linear regression.

Even though it is often possible to eliminate some or all of the ambiguity if one wishes to,
one might benefit from deliberately introducing or maintaining some ambiguity. The examples
above suggest sub-contracting to third-parties or delegation to an algorithm as some practical ways
to do so, but our analysis and model are agnostic about how such ambiguity might be commit-
ted to – we assume an ability to commit to communication strategies, including ambiguous ones,
and study when choosing ambiguous strategies is beneficial and why. Some intuition for how it
might be beneficial is as follows. When confronted with a host of possible interpretations of the
same evidence, ambiguity aversion motivates the receiver to value hedging against variation in
expected payoffs across these interpretations. This leads them to best respond as if, compared
to an ambiguity-neutral receiver, they overweight the interpretations that give them less favorable
expected payoffs. The resulting change in best response may potentially benefit the sender. The
more ambiguity averse the receiver is, the more they effectively overweight the less favorable in-
terpretations, and the more scope there is for the sender to potentially benefit. While correct, this
intuition is quite incomplete – it gives no sense of when this ability to induce different best re-
sponses can benefit the sender, nor of the characteristics of the induced ambiguity that will deliver
such benefits. Our analysis provides a concavification-like characterization of both the sender’s
optimal strategy and when the sender may benefit from the ability to communicate ambiguously.
We highlight the necessity of generating ambiguity using a collection of statistical experiments that
form a splitting of an experiment whose messages are incentive-compatible action recommenda-
tions for the receiver. At least some of the experiments in this collection must be Pareto-ranked in
the sense that both the sender and receiver agree on their payoff ranking if their recommendations
are followed. The existence of a two-experiment collection forming such a Pareto-ranked split-

1See, for example, Linardatos et al. (2021), Schmitt (2024), and Telus International Website (2021).
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ting is necessary for ambiguous communication to benefit the sender, and, if an optimal Bayesian
persuasion experiment can be split in this way, this is sufficient for an ambiguity-neutral sender as
well as the receiver to benefit. Surprisingly to us, we prove that this necessary condition is never

met in problems with binary actions, encompassing many examples in the literature.
The rest of the paper is organized as follows. The next section illustrates the main intuition and

some of our results with the help of a simple example and offers a brief discussion of the related
literature. (Section 8.2 contains a more extensive discussion.) Section 3 presents the model. Our
results are in Sections 4 through 7. Proofs are contained in the Appendix.

2 An Introductory Example

We illustrate our main results with the help of a simple example. There is a sender and a receiver,
three actions a1, a2 and a3, and two payoff-relevant states ω1 and ω2, with equal prior probabilities
p = (1/2, 1/2).2 The sender influences the action the receiver takes with the release of information.
The payoffs are:

(us, ur) a1 a2 a3
ω1 1, 1 −1,−1 −4, 2
ω2 0, 0 2, 2 −4,−4

Table 1: Payoff table (first coordinate is the sender’s payoff)

Notice that the receiver prefers a3 in state ω1, while the sender prefers a1 in that state. This
is the conflict of interest in this example. The receiver prefers a1 when their beliefs about ω2 are
intermediate (i.e., in [1/5, 1/2]), a2 when their beliefs are higher than 1/2, and a3 when they are
lower than 1/5. Throughout the rest of the example, we omit the state when speaking about beliefs
– all beliefs are about ω2. An interpretation of this example in the context of stress testing and
banking regulation is offered in Appendix B.

We first apply the seminal work of Kamenica and Gentzkow (2011) on Bayesian persuasion
to this example. Kamenica and Gentzkow (2011) study a dynamic game between a sender and a
receiver, where the sender first designs a statistical experiment σ : {ω1, ω2} → ∆(S), the receiver
observes the chosen experiment σ and the outcome s, and then chooses an action. In our lan-
guage, the information design is unambiguous, that is, upon observing a signal, the receiver knows
the experiment that generated the signal and, therefore, knows how to interpret it. Kamenica and

2The reason that the example needs at least three actions is, as mentioned in the previous section, our result ruling
out any benefit from ambiguous experiments when the receiver has only two actions (Corollary 3).
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Gentzkow (2011) show that the highest payoff the sender can achieve is the value of the concav-
ification of their indirect utility at the prior p. In our example, the best the sender can do is to
induce the beliefs 1/5 and 1, resulting in a payoff of 5/4 – see Figure 1 for a graphical illustration.
In Figure 1, we plot the receiver’s expected payoff associated with each of the three actions as
dotted lines – each line is labelled with its action. We plot the sender’s indirect utility, i.e., the
utility the sender obtains when the receiver chooses an optimal action, as a thick solid curve, and
its concavification as a thick dashed curve.
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a32
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σBP (a1|ω1) = 1,

σBP (a1|ω2) = 1/4, σBP (a2|ω2) = 3/4.

Figure 1: Sender’s indirect utility (thick curve) and its concavification (thick dashed curve)

It is immediate to verify that the experiment σBP implements the splitting of the prior into
the beliefs 1/5 and 1. The signal “a2” reveals that the state is ω2, while the signal “a1” leaves
some uncertainty. Intuitively, since the preferences are perfectly aligned when the state is ω2, the
sender wants the receiver to learn it. At the same time, the sender does not want the receiver to
be too pessimistic about ω2 – the receiver chooses a3 at all beliefs less than 1/5. The optimal
experiment σBP balances these two forces. We note that the experiment σBP is canonical, that
is, it recommends actions and the receiver finds it optimal to obey the recommendations. This is
without loss of generality, and we prove (Proposition 1) that this continues to be without loss in
our generalization. We therefore restrict attention to canonical experiments in what follows.

Now, suppose that the sender can design ambiguous experiments. An experiment is ambiguous
when the receiver is unsure how to interpret signals. In other words, the receiver is uncertain
about the true signal-generating process, analogously to a statistician uncertain about the true data-
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generating process.
We model ambiguous experiments as (finitely supported) distributions over experiments, that

is, an ambiguous experiment is a tuple (µθ, σθ)θ, with µθ the probability of experiment σθ. Upon
observing a signal from an ambiguous experiment, the receiver does not know which experiment
σθ generated it and, therefore, is uncertain how to interpret it. We interpret θ as a realization of
some ambiguity the sender and receiver perceive in their environment. For example, as discussed
in the introduction, outsourcing clinical trials to third parties creates ambiguity for both the health
authorities and pharmaceutical companies.

An ambiguity-neutral receiver treats the ambiguous experiment (µθ, σθ)θ as equivalent to the
unambiguous experiment

∑
θ µθσθ. In this case, the problem is identical to Bayesian persuasion,

and the sender cannot benefit from ambiguity. We assume instead that the receiver is ambiguity
averse and represent their preference with the smooth ambiguity model of Klibanoff, Marinacci
and Mukerji (2005). Specifically, let ur(σθ, τ

∗) be the receiver’s payoff when the (canonical)
experiment is σθ and the receiver is obedient.3 The receiver values the ambiguous experiment
as ϕ−1

r (
∑

θ µθϕr(ur(σθ, τ
∗))), where ϕr is some strictly increasing, concave and differentiable

function. The concavity of ϕr captures ambiguity aversion. Greater concavity corresponds to more
ambiguity aversion. At one extreme, when the receiver is infinitely ambiguity averse, we have
an instance of the maxmin expected utility (MEU) model (Gilboa and Schmeidler, 1989). At the
other, when ϕr is affine, we have the expected utility model (implying ambiguity neutrality).

As a preliminary result, we show (Lemma 1) that the receiver’s behavior is equivalent to that
of an ambiguity-neutral receiver, but one who uses probabilities (νθ)θ – which we call the effective
measure – that generally differ from (µθ)θ. This result implies that the ambiguity-averse receiver
is obedient if, and only if, the ambiguity-neutral receiver is obedient when facing the unambiguous
experiment

∑
θ νθσθ. We use this result throughout the analysis. At least as importantly, Lemma

1 describes how ambiguity aversion imposes structure on νθ and that νθ is a function of the entire
profile (µθ, ur(σθ, τ

∗))θ as well as the receiver’s ambiguity aversion. Thus, the νθ are endogenous.
Even local changes in the ambiguous experiment, say only changing σθ to σ′

θ, impact all νθ. Fur-
thermore, if ur(σθ, τ

∗) < ur(σθ′ , τ
∗), then νθ/νθ′ > µθ/µθ′ , that is, the effective measure assigns a

higher (relative) probability than (µθ)θ to lower payoffs. The more ambiguity averse the receiver,
the higher is the (relative) effective probability on the lower payoff. These properties distinguish
our model from a model with exogenously fixed heterogeneous priors, e.g., Alonso and Câmara
(2016), Laclau and Renou (2017) and Galperti (2019).

We now illustrate how ambiguous experiments can benefit the sender in the example. Consider
an ambiguous experiment such that only two experiments σθ and σθ get positive µ-weight. The
experiment σθ is uninformative and defined by σθ(a1|ω1) = σθ(a1|ω2) = 1, while the experiment

3Obedient in the sense of following the action recommendations. We denote the obedient strategy by τ∗.
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σθ is fully informative and defined by σθ(a1|ω1) = σθ(a2|ω2) = 1. Observe that the interpretation
of the signal/recommendation a2 is unambiguous: the receiver learns that the state is ω2. The
interpretation of the signal/recommendation a1 is, however, ambiguous: either it means that the
state is ω1 (when σθ generated the signal) or it means nothing (when σθ generated the signal). The
associated payoff profiles are (us(σθ, τ

∗), ur(σθ, τ
∗)) = (1/2, 1/2) and (us(σθ, τ

∗), ur(σθ, τ
∗)) =

(3/2, 3/2). Thus, if µθ > 3/4, an ambiguity-neutral sender’s expected payoff is strictly higher
than the Bayesian persuasion payoff of 5/4.4 We now argue that we can simultaneously choose
µθ > 3/4 and guarantee obedience. First, observe that (1/4)σθ + (3/4)σθ = σBP – we call such
a configuration a splitting of σBP . Since the receiver is obedient when facing σBP , the receiver is
obedient when the effective weight νθ equals 3/4. In fact, the receiver continues to be obedient
for any effective weight weakly below 3/4. Second, since 1/2 = ur(σθ, τ

∗) < ur(σθ, τ
∗) = 3/2,

νθ is strictly lower than µθ (unless the receiver is ambiguity neutral) – as mentioned above, this
is a consequence of ambiguity aversion. Therefore, since νθ < 3/4 when µθ = 3/4, there is
room to increase µθ above 3/4 and maintain obedience until the point where νθ equals 3/4.5 This
construction is illustrated in Figure 2, where the thick arrow moving along the sender’s indirect
utility curve indicates the movement of νθ towards 3/4 from below as µθ increases above 3/4

(along the thick arrow next to µθ). Thus, the ambiguous communication strategy allows the sender
to place more weight on the experiment σθ while maintaining obedience, than would be possible
with unambiguous communication. This is how ambiguous communication provides benefits.

An important observation is that the experiments σθ and σθ are Pareto-ranked. If they were not,
then ambiguity aversion would push the receiver’s effective measure in a direction that would hurt

rather than help the sender. In fact, we prove that the existence of a two-experiment Pareto-ranked
splitting of some (unambiguous) obedient experiment is necessary for ambiguous experiments to
benefit the sender over Bayesian persuasion (Theorem 4). Moreover, any ambiguous experiment
delivering such benefit must assign positive µθ-weight to some pair of experiments that are Pareto-
ranked and are such that the better of the two improves on Bayesian persuasion for the sender,
assuming its recommendations were to be followed (Theorem 3). In addition, if, as in this example,
σBP can be split in this way, this is sufficient for an ambiguity-neutral sender (and the receiver too!)
to benefit (Theorem 5 and Corollary 5).

We close this section with a brief discussion of a few closely related papers. A more extensive
discussion can be found in Section 8.2. Beauchêne, Li and Li (2019) (BLL henceforth) were first
to study strategic use of ambiguous communication in persuasion (see also Cheng (2022)). The
key difference in assumptions between BLL and our paper is how the receiver best responds given

4The same arguments remain valid as long as the sender is not too ambiguity averse. In particular, the sender
continues to benefit even if they are as ambiguity averse as the receiver (and even a bit more so) as long as the sender
is not infinitely ambiguity averse.

5The effective weight νθ is 3/4 when µθ =
3ϕ′

r(1/2)
3ϕ′

r(1/2)+ϕ′
r(3/2)

, with ϕ′
r the derivative of ϕr.
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Figure 2: Construction of the ambiguous experiment

the sender’s ambiguous experiment. We assume the receiver chooses an ex-ante optimal signal-
contingent strategy. BLL assume the receiver chooses, for each signal, actions maximizing interim
preferences formed using a belief updating rule that leads to dynamic inconsistency with their
ex-ante preference. Thus, one contribution of our paper is establishing and analyzing benefits of
ambiguous persuasion that do not stem from receiver’s behavior that is suboptimal with respect to
their given ex-ante preferences (see our further discussion in Section 8.2, including the approach
to consistency of Pahlke (2023)). The bulk of BLL’s analysis imposes the infinitely ambiguity-
averse extreme for both the sender and receiver – a polar case of our model, though they show
that their approach extends more broadly. Cheng (2023) shows that all benefits from ambiguous
communication identified by BLL in the case of such a sender disappear if the receiver is assumed,
as in our paper, to maximize their given ex-ante preference. In light of Cheng (2023)’s result, it
is essential that we allow at least the sender to be less than infinitely ambiguity averse for benefits
from ambiguous communications to possibly exist. Our analysis will allow for varying degrees of
ambiguity aversion for both the sender and the receiver.

3 The Persuasion Problem with Ambiguous Communication

We consider a persuasion game between a sender and a receiver, where the sender can choose
ambiguous experiments if they wish.

8



3.1 The Model

There is a finite set Ω of payoff-relevant states ω, with common prior probability distribution
p ∈ ∆(Ω). There is a finite set A of actions the receiver can choose from. If the receiver chooses
a ∈ A, the payoff to the sender (resp., receiver) is us(a, ω) ∈ R (resp., ur(a, ω) ∈ R), when the
state is ω. A statistical experiment is a finite set of messages M and a map σ from Ω to ∆(M),
and we write σ(m|ω) for the probability of m given ω.

We assume that the sender can condition their statistical experiment on the realization of a
source of ambiguity, which we define as a finite set Θ of payoff-irrelevant ambiguous events to-
gether with a probability distribution µ ∈ ∆(Θ). The sender thus chooses a source of ambiguity
µ and a collection, σ := (σθ)θ∈Θ, specifying a statistical experiment for each event θ ∈ Θ.6,7 We
stress that the set of payoff-irrelevant ambiguous events Θ is not fixed – the sender chooses it. For
example, Θ might be a chosen partition of the continuum of values for a parameter about which
there is ambiguity. We call a pair (σ, µ) an ambiguous experiment. Henceforth, whenever we use
the term “experiment” without a modifier, it refers to a standard, unambiguous statistical experi-
ment. Notice that ambiguous experiments are a generalization of experiments in the sense that any
experiment can be viewed as an ambiguous experiment with a collection σ that does not vary with
θ, i.e., σθ = σ for all θ ∈ supp(µ).8 Of special interest in some of our later constructions are binary

ambiguous experiments, those in which σ is a binary collection – collections of experiments such
that | ∪θ∈Θ {σθ}| = 2 (i.e., collections such that exactly two distinct experiments appear in σ).

We analyze the receiver’s behavior from the perspective of their ex-ante preferences, that is,
we assume that the receiver observes the sender’s choice of (σ, µ) and commits to a strategy
τ : M → ∆(A).9 In other words, we impose dynamic consistency.10 The main motivation is that
we want to study whether the sender benefits from ambiguous communication even if the channel
of dynamic inconsistency — the channel at work in nearly all previous literature on mechanism or
information design with ambiguity — is shut down. We refer the interested reader to Section 8.2
for more discussion.

We write ui(σ, τ) for the expected payoff of player i ∈ {s, r} when the realized experiment is

6It is without loss to assume that all statistical experiments in the collection share the same message space.
7The sender chooses and commits to µ and σ before θ and ω are realized. Thus, just as in standard Bayesian

persuasion where the sender chooses and commits to σ before ω is realized, the sender’s choice of a communication
strategy is influenced by their beliefs about how uncertainty may unfold. Since Θ is viewed as ambiguous, any
ambiguity aversion on the part of the sender may influence their choice. See Section 8.1 for a discussion of how things
would change under the alternative assumption that it is common knowledge that the sender privately learns θ before
committing to a strategy.

8The notation supp(µ) means the support of µ.
9For compactness, this notation suppresses the allowed dependence of τ on (σ, µ).

10In Remark 1 in Section 3.2.2, we point out a simple receiver’s updating rule that guarantees dynamic consistency.
Assuming such updating is an equivalent approach to modeling the receiver.
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σ and the receiver’s strategy is τ , that is,

ui(σ, τ) =
∑
ω,m,a

p(ω)σ(m|ω)τ(a|m)ui(a, ω).

To isolate the role of intentional ambiguous communication, we work in a stylized environment
where ambiguity is not payoff-relevant unless it becomes so by strategic choice of the sender to
condition their communication on the realization of ambiguous events. Thus, while the payoff-
irrelevant events θ ∈ Θ are viewed as ambiguous, the payoff-relevant events ω ∈ Ω and any
randomization over messages induced by a statistical experiment are viewed as unambiguous. It
follows that a message m is viewed as ambiguous by the sender and receiver only if the experi-
ments the sender chooses to associate with distinct possible θ’s generate m with different positive
likelihoods. These different likelihoods may lead the expected payoff ui(σθ, τ) to vary with θ and
thus itself be viewed as ambiguous.

How does such ambiguity enter the sender’s and receiver’s preferences? As in the smooth
ambiguity model (Klibanoff, Marinacci and Mukerji (2005)), player i evaluates the strategy profile
((σ, µ), τ) as

Ui(σ, µ, τ) = ϕ−1
i

(∑
θ

µθϕi(ui(σθ, τ))

)
,

where ϕi : R → R is a weakly concave and strictly increasing and differentiable function. An
affine ϕi(·) corresponds to ambiguity neutrality, in which case the preferences reduce to subjective
expected utility. Greater concavity of ϕi(·) corresponds to greater ambiguity aversion. We do
not consider ambiguity loving behavior, as this would build-in a direct, preference benefit from
ambiguous communication, while with ambiguity aversion, ambiguous communication can only
be valuable if it has a strategic benefit.

Observe that the only uncertainty treated as ambiguity is that over Θ and this ambiguity mat-
ters only to the extent that the expected payoff ui(σθ, τ) varies with θ. Recall that σθ is the θ-th
coordinate of the vector σ. Note that we assume that the sender and the receiver share the same µ.
We interpret µ as the “best guess” an ambiguity neutral individual would feel comfortable using
to evaluate the likelihood of events θ ∈ Θ. An ambiguity averse individual, however, values ro-
bustness with respect to the uncertainty of this best guess. As we shall see, this translates into the
distortion of µ into an effective measure – the “as-if” measure the individual uses to make robust
decisions. We will also show (Proposition 3) that any benefits from ambiguous communication are
robust to the receiver somewhat misperceiving (σ, µ).

The following maxmin expected utility (henceforth, MEU) objective can be viewed as an ap-
propriate limit as ambiguity aversion tends to infinity (Klibanoff, Marinacci and Mukerji, 2005,
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Proposition 3):
UMEU
i (σ, µ, τ) = min

θ∈supp(µ)
ui(σθ, τ).

This MEU case is considered in Section 7 of the paper.
Writing BR(σ, µ) for the set of best replies of the receiver (i.e., the maximizers of Ur(σ, µ, τ)

with respect to τ ), the sender’s problem is:

(P) =

{
max(σ,µ,τ) Us(σ, µ, τ),

subject to τ ∈ BR(σ, µ).

Observe that the sender’s Bayesian persuasion problem (Kamenica and Gentzkow, 2011) corre-
sponds to the special case of our model where the sender is restricted to choosing an experiment:11

(PBP ) =

{
max(σ,τ) us(σ, τ),

subject to τ ∈ br(σ),

where br(σ) denotes the set of best replies to σ, i.e., the maximizers of ur(σ, τ) with respect to τ .
Let uBP

s denote the value of (PBP ), i.e., the sender’s payoff at a solution to (PBP ).
Our analysis will focus on optimal persuasion with ambiguous communication (the solution

to (P)) and its properties, as well as when and how ambiguous communication may benefit the
sender in persuasion compared to the standard, unambiguous case of Bayesian persuasion.

Definition 1. Ambiguous communication benefits the sender if the value of (P) is strictly higher

than uBP
s .

We next present two preliminary results – a revelation principle and a characterization of in-
centive compatibility for ambiguous experiments – that play a central role in our analysis.

3.2 A Revelation Principle and Incentive Compatibility

3.2.1 A Revelation Principle

Definition 2. An ambiguous experiment (σ, µ) is canonical if M = A.

We write τ ∗ : A → ∆(A) for the receiver’s obedient strategy, that is, τ ∗(a|a) = 1 for all a. We
will refer to any canonical ambiguous experiment that induces such obedience as itself obedient.

Definition 3. A canonical ambiguous experiment (σ, µ) is obedient if τ ∗ ∈ BR(σ, µ).

We start with a preliminary observation: a revelation principle holds – for payoff purposes, it
is without loss of generality to restrict attention to canonical and obedient ambiguous experiments.

11Formally, a collection σ that does not vary with θ, i.e., σθ = σ for all θ.
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Proposition 1. For any ((σ, µ), τ) such that τ ∈ BR(σ, µ), there exists a canonical and obedient

ambiguous experiment (σ∗, µ) such that ui(σθ, τ) = ui(σ
∗
θ , τ

∗) for all i ∈ {s, r} and θ.

It is well-known that such a revelation principle holds in the persuasion game setting without
ambiguity. However, one might have thought of at least two reasons why the same might not be
true in our environment. First, an ambiguity averse receiver might strictly prefer a mixed strategy
to any pure strategy for hedging reasons in the face of ambiguity. How can the receiver’s desire to
mix be reconciled with the revelation principle, which states that it is without loss of generality to
have the receiver play the pure strategy τ ∗? The answer is that any mixing the receiver might desire
to do can always be emulated through the use of experiments that mix over action recommenda-
tions. It is the standard Bayesian persuasion assumption of sender’s commitment that guarantees
that this emulation is always possible. Second, dynamic inconsistency, generated by ambiguity
aversion together with assumptions on updating, is the main channel leading to the failure of such
a revelation principle in existing literature. As previously mentioned, we shut down this channel
by modeling the receiver as choosing a strategy τ to maximize Ur(σ, µ, τ), their ex-ante payoff
from ((σ, µ), τ), which imposes dynamic consistency on the receiver.

This revelation principle result is extremely useful in facilitating our analysis in the remainder
of the paper. From here on, we restrict attention to canonical experiments, and represent incentive
compatibility via obedience. Given the prominent role obedient experiments play, understanding
when obedience holds is important. We next present a characterization of such incentive compati-
bility for ambiguous experiments.

3.2.2 Incentive Compatibility and Effective Measure

We present a central result linking the obedience of an ambiguous experiment to the obedience of
an unambiguous experiment that is derived from the ambiguous experiment. We repeatedly use
this result throughout the paper. To state the result, we need the following definition:

Definition 4. Given an ambiguous experiment (σ, µ), the receiver’s effective measure em(σ,µ) ∈
∆(Θ) is given by:

em
(σ,µ)
θ :=

µθϕ
′
r(ur(σθ, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
, for all θ ∈ Θ. (1)

The effective measure em(σ,µ) is a probability measure with the same support as µ. It is equal
to µ when the receiver is ambiguity neutral (i.e., ϕr is affine), and is more pessimistic than µ for
an ambiguity averse receiver (i.e., ϕr concave). Pessimism here means shifting weight toward θ

yielding lower expected receiver’s payoffs, i.e., if ur(σθ, τ
∗) < ur(σθ′ , τ

∗), then em
(σ,µ)
θ /em

(σ,µ)
θ′ >

µθ/µθ′ . Notice also that the effective measure of a given θ depends on the specification of the
ambiguous experiment for all θ ∈ supp(µ).
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The next result states that τ ∗ is the receiver’s best response to the ambiguous experiment (σ, µ)
if, and only if, it is a best response to the experiment, σ∗, defined below as the convex combination
of the experiments in the collection σ with weights given by the receiver’s effective measure.

Lemma 1. The ambiguous experiment (σ, µ) is obedient if, and only if, the (unambiguous) exper-

iment σ∗ is obedient, where

σ∗ =
∑
θ

em
(σ,µ)
θ σθ.

Lemma 1 follows from the first-order conditions of the receiver’s maximization problem maxτ Ur(σ, µ, τ),
evaluated at τ ∗. Some intuition is that obedience will differ from the best response to the ex-
periment

∑
θ µθσθ in that it will be better hedged against uncertainty about the weights on the

experiments. In our introductory example, for instance,

2 = ur(σ, br(µσ + (1− µ)σ)) > ur(σ, τ
∗) = 3/2

> ur(σ, τ
∗) = 1/2

> ur(σ, br(µσ + (1− µ)σ)) = −1,

showing that the obedience strategy τ ∗ is hedged against the uncertainty about the weight µ more
than the strategy br(µσ + (1− µ)σ). Thus the relative pessimism of the effective measure reflects
the fact that an ambiguity averse receiver values such hedging.

Lemma 1 gives rise to the following interpretation of the receiver’s effective measure: It is an
“ambiguity-neutral measure supporting obedience” in the sense that if the receiver were ambiguity
neutral, the ambiguous experiment (σ, em(σ,µ)) would be obedient.

Remark 1. These properties of the effective measure also give rise to an updating implementa-
tion of the receiver’s ex-ante optimality – a receiver who updates their effective measure using
Bayes’ rule after observing a message and adopts this update as their effective posterior will be
dynamically consistent.

Finally, for later reference, observe that, fixing σ, we can invert (1) to express µ as a function
of the effective measure it generates:

µθ =
em

(σ,µ)
θ /ϕ

′
r(ur(σθ, τ

∗))∑
θ̃ em

(σ,µ)

θ̃
/ϕ′

r(ur(σθ̃, τ
∗))

. (2)

4 Optimal Persuasion with Ambiguous Communication

In this section, we present a concavification-like characterization of optimal persuasion with am-
biguous communication and then use it to derive necessary conditions for optimality. We stress that
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the concavification-like characterization is not immediate from the one of Kamenica and Gentzkow
(2011). A key complication is the non-separability across recommendations in determining obe-
dience (coming from the appearance of the ur(σθ, τ

∗) terms in the effective measure formula (1)),
which is a consequence of ambiguity aversion.

4.1 A Concavification-like Characterization

We need to introduce some additional notation. Let Σ denote the set of all experiments and Σ∗ ⊆ Σ

the set of obedient experiments (i.e., Σ∗ := {σ ∈ Σ : τ ∗ ∈ br(σ)}). Notice that both Σ and Σ∗ are
non-empty convex sets and can be embedded into an |Ω| × (|A| − 1)-dimensional Euclidean space
since an experiment specifies, for each state ω ∈ Ω, a probability distribution over actions in A.

For each scalar u ∈ R, define the function Φu : Σ → R by

Φu(σ) :=
ϕs(us(σ, τ

∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

,

and consider the following maximization problem:

(Φ∗(u)) :=

 max
(λθ,σθ)θ∈Θ

∑
θ∈Θ λθΦu(σθ),

subject to:
∑

θ∈Θ λθσθ ∈ Σ∗,
∑

θ∈Θ λθ = 1, λθ ≥ 0, σθ ∈ Σ,∀θ ∈ Θ.

Theorem 1 states that the value of the optimal ambiguous persuasion program (P) is the unique
utility level u such that the value of the program (Φ∗(u)) is equal to zero. An optimal ambiguous
persuasion strategy can be directly constructed from a solution to (Φ∗(u)), and there always exists
such an optimal strategy that makes use of no more than |Ω| × (|A| − 1) + 1 experiments.

Theorem 1. The value of (P) is u if, and only if, the value of (Φ∗(u)) is 0. Moreover, there exists

a solution (σ∗, µ∗) to (P) such that |supp (µ∗)| ≤ |Ω| × (|A| − 1) + 1.

To understand the relationship between the programs (P) and (Φ∗(u)), we first note that the
definition of Us, the fact that ϕ−1

s is strictly increasing, and the characterization of obedience in
Lemma 1, implies that the value of (P) is u if, and only if, the value of the program

(P̂) =

 max
(µθ,σθ)θ∈Θ

∑
θ∈Θ µθϕs(us(σθ, τ

∗)),

subject to:
∑

θ∈Θ em
(σ,µ)
θ σθ ∈ Σ∗, σθ ∈ Σ, ∀θ ∈ Θ,

is ϕs(u). Next, we can do a change of variables to maximize over the choice of effective measures
and experiments. Formally, if we write λθ for em(σ,µ)

θ , we can use (2) to substitute for µθ in terms
of λθ to yield:
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(P̂) =

 max
(λθ,σθ)θ∈Θ

(∑
θ̃∈Θ

λθ̃

ϕ′
r(ur(σθ̃,τ

∗))

)−1∑
θ∈Θ

λθ

ϕ′
r(ur(σθ,τ∗))

ϕs(us(σθ, τ
∗)),

subject to:
∑

θ∈Θ λθσθ ∈ Σ∗,
∑

θ λθ = 1, λθ ≥ 0, σθ ∈ Σ,∀θ ∈ Θ.

Finally, observe that the normalization factor
(∑

θ̃∈Θ
λθ̃

ϕ′
r(ur(σθ̃,τ

∗))

)−1

makes the objective func-
tion highly non-linear in the maximizers (λθ, σθ)θ∈Θ. This is the motivation for subtracting off
ϕs(u). Indeed, if the value of (P̂) is ϕs(u), then

∑
θ∈Θ

λθ
ϕs(us(σθ, τ

∗))− ϕs(u)

ϕ′
r(ur(σθ̃, τ

∗))
= 0.

Conversely, if the value of (Φ∗(u)) is zero, then the value of (P̂) is ϕs(u). In effect, this reformu-
lation discards the messy (but strictly positive) normalization term without changing the solution.

We can go further. An object appearing in (Φ∗(u)) that proves useful throughout the paper is a
splitting of an experiment into a convex combination of experiments. The constraint

∑
θ∈Θ λθσθ ∈

Σ∗ makes clear that any solution is a splitting of an obedient experiment, where the (λθ)θ∈Θ are
the splitting weights. Importantly, (Φ∗(u)) is linear in these splitting weights.

An implication of this linearity and Theorem 1 is to provide a concavification-like character-
ization (Aumann and Maschler, 1966, 1995) of the value of optimal persuasion with ambiguous
communication. Notice that concavification can be used to compute the value of program (Φ∗(u)):
For each u ∈ R, the program (Φ∗(u)) maximizes over convex combinations of points on the graph
of Φu, exactly the type of program that concavification characterizes. Specifically, for each u ∈ R,
let cavΦu : Σ → R denote the concavification of Φu, that is,

cavΦu(σ) =

 max
(λθ,σθ)θ∈Θ

∑
θ∈Θ λθΦu(σθ),

subject to:
∑

θ∈Θ λθσθ = σ,
∑

θ λθ = 1, λθ ≥ 0, σθ ∈ Σ,∀θ ∈ Θ,

and the maximum over σ ∈ Σ∗ of cavΦu(σ) is the value of (Φ∗(u)). Observe that any such
maximum is achieved by a splitting of some obedient experiment, with the splitting weights
given by the effective measure. The following immediate corollary of Theorem 1 thus provides a
concavification-like characterization of the value of (P).

Corollary 1. The value of (P) is u if, and only if, maxσ∈Σ∗ cavΦu(σ) = 0.

Algorithmically, we can start with u0 = uBP
s , the payoff the sender obtains at a solution

to (PBP ), which is a lower bound on what the sender can achieve with ambiguous communi-
cation. If maxσ∈Σ∗ cavΦu0(σ) = 0, then we are done – the sender’s best payoff is uBP

s . If
maxσ∈Σ∗ cavΦu0(σ) > 0, we can increase u0 to u1 = maxa,ω us(a, ω) and check again. If
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the solution is zero, we are done. If it is strictly negative, we can then consider the mid-point
u2 = (1/2)u0 + (1/2)u1. If maxσ∈Σ∗ cavΦu2(σ) > 0 (resp., < 0), we can then consider the
midpoint u3 = (1/2)u2 + (1/2)u1 (resp., u3 = (1/2)u0 + (1/2)u2) and repeat the maximization
problem, and so on.

We now relate this concavification-like result with the concavification characterization of
Bayesian persuasion in Kamenica and Gentzkow (2011) and its extension to allow for exoge-
nously heterogeneous priors in Alonso and Câmara (2016). Both of these characterizations are
formulated in terms of splittings of priors, rather than, as in our characterization, splittings on the
higher-dimensional space of experiments. Suppose we try to write a program in which the sender
maximizes with respect to splittings of the prior. Consider the simplest case of an ambiguity
neutral sender, i.e., ϕs linear. Any ambiguous experiment (µθ, σθ)θ∈Θ induces a distribution over
the receiver’s effective posteriors, that is, the posteriors that the “effective” experiment

∑
θ λθσθ

induces, where λθ = em
(σ,µ)
θ , the effective measure. Thus, the splitting the “effective” experi-

ment
∑

θ λθσθ induces may differ from the splitting the experiment
∑

θ µθσθ induces. The latter
is the one the ambiguity neutral sender uses to evaluate their payoff. To be amenable to a con-
cavification approach on this space, the sender’s objective function would therefore need to be,
as in Alonso and Câmara (2016), an increasing transformation of a function that is linear in the
distribution over the receiver’s effective posteriors. However, since the relationship between the
em

(σ,µ)
θ and (µθ, σθ)θ∈Θ is highly non-linear, the desired linearity is impossible. Economically,

this non-linearity has its source in the fact that ambiguity aversion causes the effective measure
to be proportional to the product (and thus, essentially, the covariance) of the ambiguity neutral
probability µθ and the marginal utility ϕ′

r(ur(σθ, τ
∗)) and the latter is non-separable across action

recommendations. This explains how the non-separability across action recommendations in de-
termining obedience is what prevents adopting the strategies of Kamenica and Gentzkow (2011)
and Alonso and Câmara (2016) to establish our characterization.

4.2 Properties of Optimal Persuasion with Ambiguous Communication

We next use our characterization to derive properties of optimal persuasion. Two experiments
are Pareto-ranked if the sender and receiver agree on their strict ranking under the assumption
of obedience. As we shall see, Pareto-ranking and splittings into Pareto-ranked experiments play
a key role in optimal persuasion and, more generally, in the sender benefiting from ambiguous
communication – the latter will be focus of the next section.

Definition 5. Two experiments σ and σ are weakly Pareto-ranked if either the two inequalities

us(σ, τ
∗) ≥ us(σ, τ

∗) and ur(σ, τ
∗) ≥ ur(σ, τ

∗), (3)
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hold or both reversed inequalities hold. They are Pareto-ranked if the same holds true with strict

inequalities.

A Pareto-ranked splitting of the experiment σ is a triple (σ, σ, λ) such that (i) λσ+(1−λ)σ =

σ, (ii) λ ∈ (0, 1), and (iii) (3) holds with strict inequalities, i.e., σ and σ are Pareto-ranked.

Our next result shows that these concepts are useful in indicating whether an ambiguous ex-
periment (σ, µ) can be improved (for the sender) by removing or adding some splittings. Part
(i) identifies instances where the sender uses too much ambiguity (i.e., splitting in an ineffective
manner that should be removed), while parts (ii) and (iii) identify instances in which the sender
fails to use some additional and beneficial ambiguity in the form of further Pareto-ranked splitting.
Part (i) of the result says that if two experiments in the support of µ bracket the sender’s payoff
from the ambiguous experiment, the sender can strictly improve whenever they are not weakly
Pareto-ranked. The proof shows improvement can be achieved by merging the two experiments.
Parts (ii) and (iii) give conditions under which the introduction of additional ambiguity through
further Pareto-ranked splittings that bracket the sender’s payoff from the ambiguous experiment
help the sender. When such Pareto-ranked splittings exist, these conditions are always satisfied for
an ambiguity-neutral sender.

Theorem 2. Assume that ϕr is strictly concave.12 Let (σ, µ) be an obedient ambiguous experiment

and Us(σ, µ, τ
∗) the corresponding sender’s payoff. If either

(i) for some θ, θ′ ∈ supp(µ) such that us(σθ, τ
∗) ≥ Us(σ, µ, τ

∗) ≥ us(σθ′ , τ
∗), σθ and σθ′ are

not weakly Pareto-ranked,

or,

(ii) for some θ ∈ supp(µ), there exists a Pareto-ranked splitting of σθ, (σ, σ, λ), such that

us(σ, τ
∗) ≥ us(σθ, τ

∗) > Us(σ, µ, τ
∗) ≥ us(σ, τ

∗), and

ϕ′
s(us(σ, τ

∗))

ϕ′
s(us(σ, τ ∗))

>
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σθ, τ ∗))

, (M+)

or

(iii) for some θ ∈ supp(µ), there exists a Pareto-ranked splitting of σθ, (σ, σ, λ), such that

us(σ, τ
∗) ≥ Us(σ, µ, τ

∗) ≥ us(σθ, τ
∗) ≥ us(σ, τ

∗), and

ϕ′
s(us(σ, τ

∗))

ϕ′
s(us(σ, τ ∗))

>
ϕ′
r(ur(σθ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

, (M−)

12As the proof in Appendix A.4 makes clear, the only role of this assumption is to simplify the statement of the
theorem. Without it, one needs to add conditions checking if ϕ′

r(ur(σθ, τ
∗)) ̸= ϕ′

r(ur(σθ′ , τ∗)) to each part of the
theorem.
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then there exists an obedient ambiguous experiment (σ̂, µ̂) that is strictly better than (σ, µ) for the

sender.

Theorem 2 describes properties that indicate when an ambiguous experiment (σ, µ) is not
exploiting ambiguous communication optimally. To gain intuition for part (i), first observe that if
such σθ and σθ′ are not weakly Pareto-ranked, then the receiver must get a strictly higher expected
payoff from σθ′ than from σθ, while the reverse is true for the sender. Ambiguity aversion then
implies that the receiver’s effective measure places more weight on σθ relative to σθ′ than the
ambiguity neutral weights do, i.e., λθ/λθ′ > µθ/µθ′ . If σθ and σθ′ are the only two experiments
in the support of µ, the sender can merge them into the (unambiguous) experiment λθσθ + λθ′σθ′ .
By construction, the receiver would continue to be obedient, and the sender would strictly benefit
from this merging – a profitable deviation. When σθ and σθ′ are not the only two experiments in the
support of µ, however, this is not the complete story as this merging may also impact the weighting
of the merged experiment relative to the other experiments. Part of the additional insight of the
proof is that when us(σθ, τ

∗) ≥ Us(σ, µ, τ
∗) ≥ us(σθ′ , τ

∗) holds, this impact is not unfavorable to
the sender.

The intuition for part (ii) is similar. Suppose the sender constructs σ̂ from σ by adding ambi-
guity, replacing σθ with σ and σ and choosing µ̂ such that the total weight on σ and σ is µθ, i.e.,
µ̂σ + µ̂σ = µθ. (All other weights remain the same.) If σθ is the only experiment in the support of
µ, choosing

µ̂σ =
λϕ′

r(ur(σ, τ
∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))

guarantees that the effective measure places weight λ on σ and, therefore, that the receiver remains
obedient (since (σ, σ, λ) is a Pareto-ranked splitting of σθ). Since µ̂σ > λ, an ambiguity neutral
sender would strictly benefit from adding ambiguity. Note that if the sender is ambiguity neutral,
the condition (M+) is automatically satisfied, since the left-hand side is one, while the right-hand
side is strictly less than one (because the experiments are Pareto-ranked). However, if the sender
is ambiguity averse, introducing some additional ambiguity comes at a cost. The condition (M+)
guarantees that that the gain outweighs the cost. Lastly, if there is more than one experiment in the
support of µ, a similar argument continues to work. Since part (iii) is the mirror image of part (ii),
the same intuition applies to it, with (M−) playing the role of (M+).

In Theorem 2, the conditions refer to pairs of experiments for which the sender’s payoffs
bracket Us(σ, µ, τ

∗). Intuition for why similar conclusions may not apply when the pairs in-
volved in the Pareto-ranking or the Pareto-ranked splitting lie on the same side of Us(σ, µ, τ

∗) is
related to how the receiver’s ambiguity aversion, as reflected in properties of ϕr, connects µ with
the effective measure em(σ,µ) via (1). In particular, when there are more than two experiments
in σ, splitting or merging experiments on the same side of Us(σ, µ, τ

∗) may shift their combined
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weights in the effective measure relative to the other experiments in a manner unfavorable to the
sender. In Appendix A.4, we show that concavity (resp. convexity) of 1/ϕ′

r is sufficient to extend
the conclusions to pairs of experiments on a particular side of Us(σ, µ, τ

∗), and assuming linearity
of 1/ϕ′

r leads to the following simpler necessary conditions for optimal persuasion:

Proposition 2. Suppose (σ, µ) is a solution to (P), and

ϕr(x) = c ln(ax+ b) + d (4)

for some a, b, c, d ∈ R where a, c > 0 and ax+b > 0 for all x ∈ [mina,ω ur(a, ω),maxa,ω ur(a, ω)].

Then, all experiments are weakly Pareto-ranked, that is, for all θ, θ′ ∈ supp(µ), σθ and σθ′ are

weakly Pareto-ranked.

If, in addition, the sender is ambiguity neutral, no Pareto-ranked splitting of σθ exists for any

θ ∈ supp(µ).

Note that (4) may be interpreted as constant relative ambiguity aversion (see Klibanoff et al.
(2005)). The result that all experiments used must be weakly Pareto-ranked is reminiscent of a key
Pareto-ranking result (Rayo and Segal, 2010, p. 959, Lemma 2) in an entirely different persuasion
setting (one in which ambiguity plays no role). Mathematically, the common source of both results
is the maximization of the product of an increasing function of the sender’s expected payoff and
an increasing function of the receiver’s expected payoff. Indeed, under (4), 1/ϕ′

r is linear and the
objective function Φu in our characterizations has the product form

Φu(σ) = (a/c)× ur(σ, τ
∗)× (ϕs(us(σ, τ

∗))− ϕs(u)) .

In Rayo and Segal (2010), their sender receives profit only when the receiver “accepts” (i.e., takes
the higher of two actions) and this occurs with probability equal to the conditional expected gross
payoff (normalized to [0,1]) of the receiver when accepting. Thus their sender maximizes an
expected payoff that is, signal-by-signal, equal to the product of their conditional expected profit
and the receiver’s conditional expected gross payoff. As far as we know, there is no obvious
analogue in the setting of Rayo and Segal (2010) of our problem with general concave ϕr and the
corresponding partial Pareto-ranking result in Part (i) of our Theorem 2.

We now solve our introductory example for a ϕr satisfying (4):

Example 1 (Introductory Example Continued). Suppose ϕr(x) = ln(x+ 5) and ϕs(x) = x. Then

a sender’s optimal persuasion strategy is the ((σ, σ), µ) described in Figure 2 with µσ = 39/50.

The payoffs from this optimal persuasion are as follows:

Us((σ, σ), µ, τ
∗) = 39/50× 3/2 + 11/50× 1/2 = 1.28,
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Ur((σ, σ), µ, τ
∗) = e(39/50 ln(13/2)+11/50 ln(11/2)) − 5 ≈ 1.265.

Thus both the sender and receiver do better than the payoff of 5/4 they would each obtain under

Bayesian persuasion.

So far, the analysis was devoted to the characterization of optimal communication strategies
when ambiguous experiments are allowed. However, it does not directly tell us whether the sender
would benefit from introducing ambiguity into their communication. We now turn to this issue,
which we view as a primary focus of the paper.

5 When Does Ambiguous Communication Benefit The Sender?

5.1 A Concavification Characterization

A characterization of when ambiguous communication benefits the sender can be derived from our
characterization of optimal persuasion (Theorem 1 and Corollary 1). More specifically, Lemma
A.3.2 in the proof of Theorem 1 shows that ambiguous communication gives the sender a strictly
higher payoff than u if, and only if, the value of the program (Φ∗(u)) is strictly positive. By letting
u = uBP

s , we obtain the following.

Corollary 2. Ambiguous communication benefits the sender if, and only if, the value of (Φ∗(uBP
s ))

is strictly positive, or, equivalently, maxσ∈Σ∗ cavΦuBP
s

(σ) > 0.

We next derive some necessary conditions for the sender to benefit from ambiguous communi-
cation that emphasize the role of Pareto-ranked experiments.

5.2 Necessary Conditions for Ambiguity to Benefit The Sender

We show that Pareto-ranked experiments continue to be key in determining whether ambiguous
communication is better for the sender than unambiguous communication. The following theorem
shows having Pareto-ranked experiments in the collection (in particular, better and worse ones
having sender’s expected payoffs bracketing uBP

s ) is necessary for an ambiguous experiment to
benefit the sender.

Theorem 3. If an obedient ambiguous experiment (σ, µ) benefits the sender, then there exist θ, θ′ ∈
supp(µ) such that σθ and σθ′ are Pareto-ranked, with us(σθ, τ

∗) > uBP
s ≥ us(σθ′ , τ

∗).

Comparing with part (i) of Theorem 2, we see that while optimal persuasion requires weak

Pareto-ranking of experiments that bracket the sender’s payoff from that ambiguous experiment,
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Theorem 3 says that any improvement over Bayesian persuasion requires some Pareto-ranked ex-
periments (and thus strictly ranked) bracketing uBP

s for the sender.
We next present two equivalent sets of necessary conditions for ambiguity to benefit the sender,

and show that these conditions imply that ambiguous communication can never benefit the sender
when the receiver has only two available actions – a common assumption in many examples and
applications in the literature. Whereas Theorem 3 described a necessary property of any sender’s
strategy that improves on Bayesian persuasion, these next conditions relate the possibility of am-
biguity benefiting the sender in a given persuasion game to the existence of Pareto-ranked experi-
ments with certain properties.

Theorem 4. Ambiguous communication benefits the sender only if ϕr is not affine, and

(a) there exists a Pareto-ranked splitting, (σ, σ, λ), of an obedient experiment σ̂ such that us(σ, τ
∗) >

uBP
s ; or, equivalently,

(b) there exist Pareto-ranked experiments, σ and σ∗ such that: (i) suppσ(·|ω) = suppσ∗(·|ω) for

all ω, (ii) us(σ, τ
∗) > uBP

s , and (iii) τ ∗ ∈ br(σ∗) \ br(σ).

Example 2 (Introductory Example Continued). Recall that for the collection σ = (σ, σ) con-

structed in Figure 2 of the introductory example, (σ, σ, 3
4
) is a Pareto-ranked splitting of σBP .

Thus, for this example, the conditions in part (a) of the theorem are satisfied for σ̂ = σBP .

Remark 2 (Construction of Pareto-ranked experiments in (b)). The argument that the conditions
in part (b) of the theorem are necessary is constructive, and the effective measure plays a key role.
Suppose that there exists a solution (σ∗, µ∗) to the sender’s program (P) that benefits the sender.
Construct σ and σ∗ in (b) by letting σ =

∑
θ µ

∗
θσ

∗
θ and σ∗ =

∑
θ em

(σ∗,µ∗)
θ σ∗

θ .

Remark 3 (Not necessary for a Pareto-ranked splitting of σBP to exist). The reader might wonder
if a stronger version of necessary condition (a) that requires the Pareto-ranked splitting to be of
σBP is also necessary. This is false. There are examples in which the sender benefits from ambigu-
ous communication even though no Pareto-ranked splitting of σBP exists (as is true, for instance,
whenever all σBP are efficient). In such cases, it is splittings of some other obedient experiment
that generate the gains over Bayesian persuasion for the sender.

The conditions in Theorem 4 are deceptively powerful: From these conditions alone, strict
benefit from ambiguity can be ruled out for a simple yet important class of problems – those in
which the receiver has a binary action space.

Corollary 3. If the receiver has only two actions, the sender cannot benefit from ambiguous com-

munication.
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The intuition is as follows. From Theorem 4, we have that part of a necessary condition for am-
biguity helping the sender is the existence of an experiment σ that strictly improves the receiver’s
expected payoff compared to some other experiment σ∗, with the added property that obedience
of σ is not optimal, i.e., τ ∗ /∈ br(σ). Intuitively, such an improvement is possible only when σ is
more informative for the receiver and the benefit of this extra information outweighs the cost of not
best responding. When there are only two actions, taking advantage of extra information requires
best responding. To see this, note that not best responding implies either taking the same action
always (and thus ignoring any information) or always doing the opposite of what is optimal for the
receiver (which hurts more when there is more information). In contrast, when there are three or
more actions, it becomes possible to have some beneficial responsiveness to information without
going all the way to best responding. As we saw in the introductory example, this indeed can leave
scope for possible improvements.

5.3 Robust Benefits

So far, we have assumed that if the sender designs the ambiguous experiment (σ, µ), the receiver
perceives it correctly. More realistically, the receiver might have a somewhat different perception
of the experiment than the one the sender intends to convey. After all, conveying the exact speci-
fications of an experiment is a complex task, let alone of an ambiguous one. Yet, we show that if
the sender benefits from ambiguous communication, they continue to benefit even if the receiver
somewhat misperceives the intended experiment.

Proposition 3. Suppose ambiguous communication benefits the sender and that the set of obe-

dient experiments has a non-empty interior. Then, there exists a non-empty open set of obedient

ambiguous experiments that benefit the sender.

A sketch of the argument is that the sender benefits from ambiguous communication if, and
only if, Φ∗(uBP

s ) > 0, and the problem is sufficiently continuous to guarantee the existence of an
open set of obedient ambiguous experiments that benefit the sender. In fact, this continues to be
true even under small perturbations of ϕr, so that the existence of benefits does not rest on exact
knowledge of the receiver’s ϕr.

Corollary 4. Suppose ambiguous communication benefits the sender and that the set of obedient

experiments has a non-empty interior. Then, there exists an ambiguous experiment that benefits

the sender, and that continues to do so under small perturbations of ϕr.
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6 Benefits from Binary Ambiguous Communication

This section restricts attention to binary ambiguous experiments. This restriction is not without loss
of generality because there are examples in which the sender benefitting from ambiguous commu-
nication requires ambiguous experiments with σ containing more than two distinct experiments
(see Proposition C.1 in Appendix C). Nonetheless, this restriction allows us to derive sufficient
conditions for the sender to benefit from ambiguous communication and how these conditions
vary with the extent of the sender’s and/or receiver’s ambiguity aversion. It also allows us to see
that binary ambiguous communication may also improve the receiver’s payoff.

If a binary ambiguous experiment benefits the sender compared to Bayesian persuasion, it
follows from Theorem 3 that the experiments must be Pareto-ranked. We therefore focus on Pareto-
ranked binary ambiguous experiments in what follows.

The next theorem, Theorem 5, provides necessary and sufficient conditions for a binary am-
biguous experiment based on a Pareto-ranked splitting of any obedient experiment σ∗ to (a) strictly
improve the receiver’s payoff compared to σ∗, and (b) strictly improve the sender’s payoff com-
pared to σ∗. We later apply the theorem to the case in which us(σ

∗, τ ∗) = uBP
s , thereby obtaining

sufficient conditions for the sender to benefit from ambiguous communication (see Corollary 5).
Proposition 4 provides conditions on the primitives sufficient for existence of a Pareto-ranked split-
ting of a given experiment.

The theorem uses the following notion of probability premium.

Definition 6. Given ϕ, u, and experiments σ and σ such that u(σ, τ ∗) > u(σ, τ ∗), the ((σ, σ), λ)-
probability premium required to compensate for replacing the unambiguous experiment σ∗ :=

λσ + (1− λ)σ by the ambiguous experiment ((σ, σ), λ), assuming obedience, is:

ρϕ,u((σ, σ), λ) :=
ϕ(u(σ∗, τ ∗))− λϕ(u(σ, τ ∗))− (1− λ)ϕ(u(σ, τ ∗))

ϕ(u(σ, τ ∗))− ϕ(u(σ, τ ∗))
.

The probability premium ρϕ,u((σ, σ), λ) is exactly the ϕ-payoff difference between σ∗ and
the ambiguous experiment ((σ, σ), λ), normalized to lie in [0, 1]. This premium is non-negative
under ambiguity aversion, and is zero under ambiguity neutrality. Similar notions of probability
premium in the context of risk go back to at least Pratt (1964) (see Eeckhoudt and Laeven (2015)
for a graphical representation of Pratt’s concept).

Thus, if we let
µσ = λ+ ρϕ,u((σ, σ), λ) ∈ [0, 1],

be the probability of σ, then

U((σ, σ), µ, τ ∗) = ϕ−1
(
(λ+ ρϕ,u((σ, σ), λ))ϕ(u(σ, τ ∗)) + (1− λ− ρϕ,u((σ, σ), λ)ϕ(u(σ, τ ∗))

)
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= ϕ−1
(
ϕ(u(σ∗, τ ∗))

)
= u(σ∗, τ ∗),

meaning that the premium ρϕ,u((σ, σ), λ) is exactly the increase in µσ above λ needed to make the
player indifferent between the ambiguous experiment ((σ, σ), µ) and σ∗. Thus, assuming obedi-
ence, this probability premium is the smallest increase in the µ-probability of the higher payoff
experiment required to compensate for exposure to the ambiguous experiment:

Lemma 2. Let σ and σ be experiments such that ui(σ, τ
∗) > ui(σ, τ

∗). For all µσ, λ ∈ [0, 1],

Ui((σ, σ), µ, τ
∗) > ui(λσ+(1−λ)σ, τ ∗) if, and only if, player i’s ((σ, σ), λ)-probability premium

is strictly less than µσ − λ.

As a consequence, we have the following result:

Theorem 5. Let σ∗ be an obedient experiment. Suppose that (σ, σ, λ) is a Pareto-ranked splitting

of σ∗ satisfying us(σ, τ
∗) > us(σ, τ

∗). The binary ambiguous experiment (σ, µ), with σ = (σ, σ)

and

µσ =
λϕ′

r(ur(σ, τ
∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))
, (5)

satisfies the following properties:

(i) (σ, µ) is obedient,

(ii) Ur(σ, µ, τ
∗) > ur(σ

∗, τ ∗) if, and only if, µσ > λ,

(iii) Us(σ, µ, τ
∗) > us(σ

∗, τ ∗) if, and only if, the sender’s ((σ, σ), λ)-probability premium is

strictly less than µσ − λ.

Furthermore, the sender’s ((σ, σ), λ)-probability premium is increasing in the sender’s ambiguity

aversion, and µσ is increasing in the receiver’s ambiguity aversion.

That a µ satisfying (5) ensures that the obedience of σ∗ extends to the binary ambiguous exper-
iment (σ, µ) as in (i) is a straightforward consequence of Lemma 1. The necessary and sufficient
conditions in (ii) for the receiver to be better off when the sender communicates ambiguously using
(σ, µ) rather than unambiguously using σ∗ require some elaboration. First, the condition µσ > λ

is equivalent to ϕ′
r(ur(σ, τ

∗)) > ϕ′
r(ur(σ, τ

∗)), i.e., the receiver is, within this range of payoffs,
not everywhere ambiguity neutral. In particular, this condition is always satisfied if ϕr is strictly
concave. Second, the condition µσ > λ can be shown to be equivalent to the receiver’s ((σ, σ), λ)-
probability premium being strictly less than µσ − λ, which, by Lemma 2, characterizes when the
receiver is better off under (σ, µ) than under σ∗. The necessary and sufficient conditions in (iii) for
(σ, µ) to be better for the sender than σ∗ follow directly from Lemma 2. For an ambiguity neutral
sender, the probability premium is zero, and thus the condition in (iii) reduces to µσ > λ, as in (ii).
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Thus, for an ambiguity neutral sender facing a strictly ambiguity averse receiver, the ambiguity
introduced in (σ, µ) improves on σ∗ for both sender and receiver.

The source of the economic gain from ambiguous communication, for both the sender and the
receiver, is the greater use, as measured by µσ−λ, of the Pareto-better experiment σ. This gain has
to be netted-off against the probability premium, which encapsulates the cost due to the player’s
own ambiguity aversion of the exposure to ambiguity from the binary ambiguous experiment.
The fact that µσ is constructed to respect obedience taking into account the receiver’s ambiguity
aversion but not the sender’s, is what explains why the condition for this net gain to be positive can
be simplified for the receiver, but not the sender.

The comparative static statement about µσ in the final section of the theorem, when combined
with (ii) and (iii), shows that the payoff difference between the ambiguous experiment (σ, µ) and
the unambiguous σ∗ satisfies single-crossing with respect to the receiver’s ambiguity aversion for
both the sender and receiver. Similarly, the comparative static in the sender’s probability premium,
together with (iii), shows that the negative of this payoff difference for the sender satisfies single-
crossing with respect to the sender’s ambiguity aversion.

Starting from any given obedient experiment, Theorem 5 provides necessary and sufficient
conditions for binary ambiguous communication to strictly improve the sender’s payoff, and thus
sufficient conditions for some ambiguous communication to do so. Thus, if we apply Theorem 5 to
the case where σ∗ is an optimal Bayesian persuasion, we obtain sufficient conditions for ambiguity
to benefit the sender. We state this formally in the following corollary of Theorem 5:

Corollary 5. Let σBP be an obedient experiment such that us(σ
BP , τ ∗) = uBP

s . If there exists a

Pareto-ranked splitting of σBP , (σ, σ, λ), for which ρϕs,us((σ, σ), λ) < µσ − λ, with µσ given by

equation (5), then ambiguous communication benefits the sender.

Therefore, whenever a Pareto-ranked splitting of a σBP exists, an ambiguity neutral sender benefits
from ambiguous communication as long as the receiver is not completely ambiguity neutral over
the payoff range of the splitting.13

Theorem 5 and Corollary 5 require the existence of a Pareto-ranked splitting. This existence is
not guaranteed. For instance, if the obedient experiment σ∗ induces an efficient payoff profile, no
Pareto-ranked splitting of it exists. The next result provides sufficient conditions on the primitives
for the existence of a Pareto-ranked splitting of σ∗.

Proposition 4. Given any experiment σ∗, fix, for each ω ∈ Ω, aω ∈ supp(σ∗(·|ω)) and consider

13Recall from Remark 3 that the existence of a Pareto-ranked splitting of σBP is not a necessary condition for the
sender to benefit.
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the following set of vectors,{[
p(ω)(us(a, ω)− us(aω, ω))

p(ω)(ur(a, ω)− ur(aω, ω))

]
: a ∈ supp(σ∗(·|ω)), ω ∈ Ω

}
. (6)

If this set spans R2, then there exists a Pareto-ranked splitting of σ∗.

Remark 4 (Relation with efficiency of σ∗). The spanning condition in Proposition 4 is stronger
than the statement that σ∗, assuming obedience, is not efficient. The reason for this is that existence
of a Pareto-ranked splitting needs not only a more efficient experiment, but one that for all ω ∈ Ω,
never generates an action recommendation that could not have come from σ∗ in that ω. Arieli et al.
(2024) argue that Bayesian persuasion solutions are typically inefficient14 and provide a necessary
condition for their efficiency. This condition,

∑
ω∈Ω | supp(σ∗(·|ω))| ≤ |Ω| + 1, is necessarily

violated when the spanning condition holds. Observe that whenever σ∗ randomizes in at least two
states in the support of p, the spanning condition holds for a generic specification of the payoffs,
ui(a, ω).

Remark 5 (Non-necessity). That the spanning condition is not necessary for the existence of a
Pareto-ranked splitting can be seen from our introductory example. For σ∗ = σBP , the exam-
ple does not satisfy the spanning condition but there are, as depicted in Figure 2, Pareto-ranked
splittings of σBP .

While the optimal persuasion does depend on ϕr and ϕs, i.e., the ambiguity attitudes, we next
show that the possibility of strict improvement for the sender from using binary ambiguous exper-
iments is robust in several respects. First, the same ambiguous experiment remains beneficial to
any less ambiguity averse sender. Second, it is robust to the sender underestimating the extent of
ambiguity aversion of the receiver. In other words, if an improvement is possible when facing a
given receiver, it is also possible when facing a more ambiguity-averse receiver. While we show
that the same collection σ can be used to generate the improvement for all more ambiguity-averse
receivers, in general, the µ guaranteeing improvement may need to change. Part (iii) of the result
shows that adding the requirement that τ ∗ ∈ br(σ) (i.e., σ is obedient) allows a stronger robust-
ness: the same µ that generates an improvement for the sender when facing a receiver with ϕr also
generates an improvement when facing any more ambiguity averse receiver (more concave ϕr).

Theorem 6. Suppose there exists a binary collection σ = (σ, σ) and a non-degenerate µ such that

(σ, µ) is obedient and benefits the sender (compared to σBP ). Then:

(i) (σ, µ) also benefits all weakly less ambiguity averse senders, and
14Though Ichihashi (2019) proves that a Bayesian persuasion solution is always efficient when the receiver has only

two actions.
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(ii) for any weakly more ambiguity averse receiver, there exists some µ̃ such that (σ, µ̃) benefits

all weakly less ambiguity averse senders, and

(iii) if τ ∗ ∈ br(σ), then µ̃ in (ii) can be set equal to µ.

7 A Polar Case: Maxmin Receiver and Ambiguity Neutral Sender

This section analyzes the case of an ambiguity-neutral sender and an infinitely ambiguity averse
receiver, represented by the maxmin preferences UMEU

r . As the comparative statics statements
in Theorem 5 suggest, this is the most favorable case for the sender to benefit from ambiguous
communication. In fact, as we shall see, the sender can extract nearly all the surplus.

More precisely, we show that in this case (a) binary ambiguous experiments are sufficient to
exhaust all gains from persuasion, and (b) the sender can attain a payoff arbitrarily close to their
best feasible payoff subject to the receiver getting at least the payoff they would obtain if no
information were disclosed. A conclusion we draw is that assuming an infinitely ambiguity averse
receiver is very powerful and, in our view, unrealistically so, further motivating the analysis in the
rest of the paper which allows for more moderate levels of aversion.

Before turning to the analysis, we remark that the opposite cases, of either an infinitely am-
biguity averse sender with payoffs UMEU

s or an ambiguity neutral receiver, preclude any benefit
from ambiguous persuasion. The latter case follows from Theorem 4, while Cheng (2023) shows
that in the former case the sender never benefits from ambiguous communication.

The following lemma relates obedience for an ambiguous experiment to obedience for an ex-
periment. It is thus the analogue of Lemma 1 for a receiver with preferences UMEU

r :

Lemma 3. (σ, µ) is obedient if, and only if, the experiment σ∗ is obedient, where

σ∗ :=

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθσθ

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθ

.

Observe that when the argmin in Lemma 3 is a singleton, σ∗ equals the receiver’s payoff-minimizing
experiment from σ. More generally, it is a convex combination of the possibly multiple minimiz-
ing experiments in σ with relative weights inherited from µ. Thus the analogue of the effective
measure here may have a smaller support than µ (something that never happens for a smooth am-
biguity receiver). Lemma 3 says that only those payoff-minimizing experiments affect obedience
of (σ, µ). Thus, the sender is free to include in σ and arbitrarily weight any other experiments as
long as they don’t disrupt the receiver’s minimum.
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Since the receiver can always ignore any recommendations made, they can guarantee them-
selves the payoff

u∗
r := max

a∈A

∑
ω

p(ω)ur(a, ω),

which is the payoff they would obtain if no information were disclosed. The consequence of the
great flexibility available to the sender given Lemma 3 is the next theorem, which states that the
sender’s optimal payoff approaches their highest feasible payoff subject to the receiver getting at
least u∗

r . The corresponding communication strategy uses a binary ambiguous experiment with
the µ-weight on the better experiment approaching 1, and the worse experiment an obedient one
holding the receiver to u∗

r .

Theorem 7. Suppose there exists σ̂ such that ur(σ̂, τ
∗) > u∗

r . The value of the following program

is the supremum of the payoff that an ambiguity neutral sender can obtain when the receiver has

maxmin preferences UMEU
r :

max
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) ≥ u∗

r.

There is a sense in which Theorem 7 could be argued to overstate what the sender can achieve.
For MEU, the “effective” experiment σ∗ could have a smaller support than (σ, µ). Lemma 3
treats action recommendations that could occur under (σ, µ) but not under σ∗ as zero probability
events. However, observing such action recommendations would reveal to the receiver that θ /∈
argminθ∈supp(µ) ur(σθ, τ

∗). In this case, the receiver may no longer be indifferent between obeying
or not. Therefore, Theorem 7 could be seen as forcing the receiver to be obedient in such situations.

This issue can be addressed by strengthening obedience to further require that σ∗ always has the
same support as (σ, µ) (which was always true for smooth ambiguity receivers). This strengthening
does not substantially change the conclusions of Theorem 7, as it only replaces the program in
Theorem 7 by

sup
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) > u∗

r and supp(σ) ⊆ A0,

where A0 is the set of all actions which can be best responses for the receiver to some probability
distribution over the states in the support of the prior p. The corresponding communication strate-
gies would be binary with µ-weight on the better one approaching 1 as before, but with the worse
experiment now adjusted to have full support on A0 by mixing it with an arbitrarily small amount
of an obedient experiment with full support on A0 that yields the receiver more than u∗

r (such an
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experiment can be shown to exist under the assumption of Theorem 7). Such a mixture is itself
obedient since obedience is preserved under convex combinations. This guarantees that σ∗ here
has the same support as (σ, µ). Since the mixing weight is arbitrarily small, the receiver’s payoff
can be driven as close to u∗

r as desired.

8 Further Discussion

8.1 What if the Sender Learns θ in Advance?

We have assumed that the sender commits to an ambiguous experiment not knowing which θ ob-
tains. Consider the alternative assumption that the sender privately observes θ before committing
to a communication strategy (and this is common knowledge). As in cheap-talk games, this would
imply that the sender must be indifferent between all experiments σθ in any equilibrium of this
modified game.15 It follows that the unambiguous experiment

∑
θ em

(σ,µ)
θ σθ would also give the

same payoff to the sender. (Since the sender commits to experiments, we can still restrict atten-
tion to obedient canonical experiments.) This alternative assumption thus implies that the sender
cannot benefit from ambiguous communication. If the sender wants to benefit from ambiguous
communication, they must commit to not learn θ prior to committing to an experiment. Delegation
to third-parties might be one way to achieve this in practice.

8.2 Related Literature

In addition to the papers cited in the introduction, some of which we discuss further below, the
following are also at the intersection of Bayesian persuasion and ambiguity. Kosterina (2022)
studies Bayesian persuasion when an MEU sender is ambiguous about the receiver’s prior, while
in Dworczak and Pavan (2022) an MEU sender (who also has a preference for selecting among
MEU-optimal strategies those that perform best under a baseline conjecture) is ambiguous about
the exogenous information a receiver might learn.16 Nikzad (2021) studies Bayesian persuasion
when the receiver is MEU and has ambiguity about the prior over states. Hedlund, Kauffeldt and
Lammert (2020) studies Bayesian persuasion in problems with two states of the world and two
actions, when the receiver has α-MEU preferences (Ghirardato, Maccheroni and Marinacci, 2004)
and considers an interval of priors and the sender has state-independent preferences over the action
taken by the agent and is ambiguity neutral (expected utility). In all four of these papers, the sender
is limited to standard, unambiguous experiments, and thus any ambiguity is exogenous. This stands

15More precisely, this must be true for all experiments σθ for θ ∈ supp(µ).
16Dworczak and Pavan (2022)’s model is not restricted to single-receiver persuasion settings.
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in contrast to the endogeneity of ambiguity in our setting, where it becomes payoff-relevant only
through the intentional communication choices of the sender.

Kellner and Le Quement (2018) study cheap talk communication assuming that the receiver
has MEU preferences and the sender can choose to communicate ambiguously. The key difference
between cheap talk and persuasion is the sender’s inability to commit to a communication strategy.
Their receiver uses the same dynamically inconsistent update rule as in BLL. They find that both
sender and receiver may benefit from the sender choosing to communicate ambiguously. Kellner
and Le Quement (2017) studies cheap talk communication with purely exogenous ambiguity.

Papers studying mechanism design with ambiguity include Bose and Renou (2014), Wolitzky
(2016), Di Tillio, Kos and Messner (2017), Guo (2019) and Tang and Zhang (2021), among oth-
ers. All but Wolitzky (2016) consider ambiguity that arises intentionally through design of the
mechanism. Dütting et al. (2024) allow a principal to offer ambiguous contracts to an MEU agent
and show how the principal may benefit and that optimal contracts have a simple form. All gains
from ambiguous contracting disappear in their model if the agent can hedge against ambiguity by
randomizing.

We conclude by returning to the discussion of BLL begun in the introduction. Broadly speak-
ing, the gains we identify work through key properties, such as Pareto-ranking of (at least some)
of the experiments in the collection σ chosen by the sender. Such properties contrast sharply with
the “synonym” constructions emphasized in BLL that lead to collections in which each experi-
ment yields the same expected payoff to the sender. BLL and our approach also lead to different
outcomes. For example, our Corollary 3 shows that ambiguous communication never benefits the
sender when the receiver has only two actions. In contrast, BLL find gains from ambiguous com-
munication in such cases, including their main example. Conversely, there are examples in which
there is no benefit for the sender according to BLL’s approach (even when extended to include
sender preferences less extremely ambiguity averse than UMEU

s ), in which the sender benefits
from ambiguous communication in our approach.

As previously mentioned, the benefits from ambiguous communication in BLL involve in an
essential way the receiver behaving suboptimally with respect to their ex-ante preferences as spec-
ified by BLL. Pahlke (2023) uses constructions based on rectangularity (Epstein and Schneider,
2003) to construct alternative ex-ante MEU preferences (different from BLL and from UMEU

r ) that
are consistent with the receiver’s interim behavior in BLL. When there are gains in BLL from
ambiguous communication, some of the measures appearing in Pahkle’s construction must reflect
correlation between Ω and which experiment from the ambiguous collection generates the mes-
sages. This is the manifestation of the dynamic inconsistency in BLL within the dynamically
consistent reformulation of Pahlke (2023).17

17For discussion and approaches to dynamic consistency issues in decision-making under ambiguity more broadly
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A Proofs

A.1 Proof of Proposition 1

Proof of Proposition 1. Fix an ambiguous experiment (σ, µ) and τ ∈ BR(σ, µ). Construct a
canonical ambiguous experiment (σ∗, µ) as follows: For each θ, define

σ∗
θ(a|ω) =

∑
m

τ(a|m)σθ(m|ω), for all (a, ω),

and let σ∗ = (σ∗
θ)θ. We have that, for i ∈ {s, r}.

ui(σθ, τ) =
∑
ω,m,a

p(ω)σθ(m|ω)τ(a|m)ui(a, ω)

=
∑
ω,a

p(ω)ui(a, ω)
∑
m

τ(a|m)σθ(m|ω)

= ui(σ
∗
θ , τ

∗).

Therefore, for i ∈ {s, r},
Ui(σ

∗, µ, τ ∗) = Ui(σ, µ, τ).

Next, we show τ ∗ ∈ BR(σ∗, µ) so that (σ∗, µ) is obedient. Towards a contradiction, suppose
there exists δ : A → ∆(A) such that

Ur(σ
∗, µ, τ ∗) < Ur(σ

∗, µ, δ).

Then, the strategy τ ′ : M → ∆(A), defined by τ ′(a|m) =
∑

a′ δ(a|a′)τ(a′|m) for all (a,m), gives

ur(σθ, τ
′) =

∑
ω,m,a

p(ω)σθ(m|ω)τ ′(a|m)ur(a, ω)

=
∑
ω,a

p(ω)ur(a, ω)
∑
a′

δ(a|a′)
∑
m

τ(a′|m)σθ(m|ω)

=
∑
ω,a

p(ω)ur(a, ω)
∑
a′

δ(a|a′)σ∗
θ(a

′|ω)

=
∑
ω,a′,a

p(ω)σ∗
θ(a

′|ω)δ(a|a′)ur(a, ω)
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= ur(σ
∗
θ , δ),

for all θ. Thus,

Ur(σ, µ, τ
′) = Ur(σ

∗, µ, δ) > Ur(σ
∗, µ, τ ∗) = Ur(σ, µ, τ),

contradicting τ ∈ BR(σ, µ).

A.2 Proof of Lemma 1

Proof of Lemma 1. IF. Let (σ, µ) be an ambiguous experiment. We argue that if τ ∗ ∈ br(σ∗),
where σ∗ =

∑
θ em

(σ,µ)
θ σθ, then τ ∗ ∈ BR(σ, µ).

Since τ ∗ ∈ br(σ∗), we have∑
ω

p(ω)σ∗(a|ω)ur(a, ω) ≥
∑
ω

p(ω)σ∗(a|ω)ur(b, ω),∀b, a ∈ A. (A.2.1)

for all b, a ∈ A.
We now argue that this implies that τ ∗ ∈ BR(σ, µ). Note that for any strategy τ , there exists

δ ∈ R|A|×|A| such that τ = τ ∗ + δ, which satisfies the following properties: For all a ∈ A and all
b ̸= a,

δ(b|a) ≥ 0, δ(a|a) ≤ 0, and
∑
ã∈A

δ(ã|a) = 0. (A.2.2)

The concavity of ϕr implies that ϕr(Ur(σ, µ, τ)) is concave in τ . Hence, for all δ,

ϕr(Ur(σ, µ, τ
∗ + δ)) ≤ ϕr(Ur(σ, µ, τ

∗)) +
∑
b,a∈A

∂ϕr(Ur(σ, µ, τ))

∂τ(b|a)

∣∣∣∣
τ=τ∗

δ(b|a).

Then, a sufficient condition for τ ∗ to be a solution to the receiver’s program is that for all δ satis-
fying (A.2.2),

ϕr(Ur(σ, µ, τ
∗)) +

∑
b,a∈A

∂ϕr(Ur(σ, µ, τ))

∂τ(b|a)

∣∣∣∣
τ=τ∗

δ(b|a) ≤ ϕr(Ur(σ, µ, τ
∗)),

or equivalently, ∑
b,a∈A

∂ϕr(Ur(σ, µ, τ))

∂τ(b|a)

∣∣∣∣
τ=τ∗

δ(b|a) ≤ 0. (A.2.3)

35



To show (A.2.3) holds, note that:

∂ϕr(Ur(σ, µ, τ))

∂τ(b|a)

∣∣∣∣
τ=τ∗

=
∑
θ̃

µθ̃ϕ
′

r(ur(σθ̃, τ
∗))
∑
ω

p(ω)σ∗(a|ω)ur(b, ω).

Then by (A.2.2), −δ(a|a) =
∑
b̸=a

δ(b|a), and we have:

∑
b,a∈A

∂ϕr(Ur(σ,µ,τ))
∂τ(b|a)

∣∣∣
τ=τ∗

δ(b|a)∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
=
∑
b,a∈A

∑
ω

p(ω)σ∗(a|ω)ur(b, ω)δ(b|a)

=
∑
a∈A

∑
b ̸=a

δ(b|a)

(∑
ω

p(ω)σ∗(a|ω)ur(b, ω)−
∑
ω

p(ω)σ∗(a|ω)ur(a, ω)

)
≤ 0,

where the last inequality follows from δ(b|a) ≥ 0 for all b ̸= a and (A.2.1). This implies (A.2.3)
as
(∑

θ̃ µθ̃ϕ
′
r(ur(σθ̃, τ

∗))
)
> 0. Therefore, we have shown that τ ∗ ∈ BR(σ, µ).

ONLY IF. The proof is nearly identical and left to the reader.

A.3 Proof of Theorem 1

Proof of Theorem 1. First, we show that there is a unique u ∈ R that solves the equation Φ∗(u) =

0.

Lemma A.3.1. Φ∗(u) satisfies single-crossing, i.e., for any u > u′,

Φ∗(u) ≥ 0 ⇒ Φ∗(u′) > 0.

Thus, there exists a unique u ∈ R such that Φ∗(u) = 0.

Proof of Lemma A.3.1. Φ∗(u) ≥ 0 implies that there exists (λθ, σθ)θ∈Θ such that

∑
θ∈Θ

λθ
ϕs(us(σθ, τ

∗))

ϕ′
r(ur(σθ, τ ∗))

≥
∑
θ∈Θ

λθ
ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

>
∑
θ∈Θ

λθ
ϕs(u

′)

ϕ′
r(ur(σθ, τ ∗))

,

where the last inequality follows from ϕi(·) being strictly increasing for i ∈ {s, r}. It further
implies Φ∗(u′) > 0. Therefore, there is at most a unique solution to Φ∗(u) = 0. Since ϕs is
continuous, Φu is continuous in (σ, u) and, thus, by Berge’s Maximum Theorem, u 7→ Φ∗(u)

is continuous in u. By choosing u > max{us(a, ω)} and u < min{us(a, ω)}, we can generate
Φ∗(u) < 0 and Φ∗(u) > 0, respectively. Thus, there exists a u ∈ R such that Φ∗(u) = 0.
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By Proposition 1, we can rewrite (P) as

(P) =

{
max(σ,µ) Us(σ, µ, τ

∗),

subject to τ ∗ ∈ BR(σ, µ).

We can then show the conclusion using the following lemma.

Lemma A.3.2. For each u ∈ R, (P) > u if, and only if, Φ∗(u) > 0.

Proof of Lemma A.3.2. IF. Suppose there exists a solution (λθ, σθ)θ∈Θ such that Φ∗(u) > 0. Let
σ = (σθ)θ∈Θ and µ be defined by:

µθ =
λθ/ϕ

′
r(ur(σθ, τ

∗))∑
j λj/ϕ′

r(ur(σθ′ , τ ∗))
for each θ ∈ Θ.

By construction, the ambiguous experiment (σ, µ) satisfies em
(σ,µ)
θ = λθ and

∑
θ∈Θ λθσθ ∈ Σ∗.

Lemma 1 implies τ ∗ ∈ BR(σ, µ). Moreover, we have

ϕs(Us(σ, µ, τ
∗))− ϕs(u) =

∑
θ

µθ[ϕs(us(σθ, τ
∗))− ϕs(u)]

=
1∑

j∈I λj/ϕ′
r(ur(σθ′ , τ ∗))

∑
θ∈Θ

λθ
ϕs(us(σθ, τ

∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

> 0,

so that Us(σ, µ, τ
∗) > u, hence (P) > u.

ONLY IF. (P) > u implies the existence of an ambiguous experiment (σ, µ) such that τ ∗ ∈
BR(σ, µ) and Us(σ, µ, τ

∗) > u. Let λθ = em
(σ,µ)
θ . Lemma 1 implies that∑

θ

λθσθ ∈ Σ∗.

Moreover, Us(σ, µ, τ
∗) > u implies

0 < ϕs(Us(σ, µ, τ
∗))− ϕs(u)

=
1∑

θ λθ/ϕ′
r(ur(σθ, τ ∗))

∑
θ

λθ
ϕs(us(σθ, τ

∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

.

Thus,
∑

θ λθΦu(σθ) > 0 and, therefore, Φ∗(u) > 0.

We now complete the proof by showing that (P) = u if, and only if, Φ∗(u) = 0. Suppose
(P) = u. Then for all u′ < u, (P) > u′ and thus Φ∗(u′) > 0 by Lemma A.3.2. By Lemma A.3.1,
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there exists a unique û such that Φ∗(û) = 0. If û > u, then Φ∗(u) > 0 by Lemma A.3.1, and thus
(P) > u by Lemma A.3.2, a contradiction. Thus, Φ∗(u) = 0.

For the other direction, suppose Φ∗(u) = 0. If (P) > u, then Lemma A.3.2 implies Φ∗(u) > 0,
a contradiction. If (P) < u, then there exists u′ < u such that (P) = u′. Then by the previous
direction, Φ∗(u′) = 0, contradicting Lemma A.3.1. Thus, (P) = u.

Recall that Σ is a convex subset of an |Ω| × (|A| − 1)-dimensional Euclidean space. As a
result, the graph of Φu is a subset of a (|Ω| × (|A| − 1) + 1)-dimensional Euclidean space. Sup-
pose that (P) = u. By what has been shown so far, Φ∗(u) = 0. Let (λθ, σθ)θ∈Θ be such that∑

θ∈Θ λθΦu(σθ) = 0 and
∑

θ∈Θ λθσθ = σ∗ ∈ Σ∗. Thus, (σ∗, 0) is on the boundary of the convex
hull of the graph of Φu and, therefore, is an element of a supporting hyperplane of the convex
hull of the graph of Φu. The intersection of this supporting hyperplane with the convex hull of
the graph of Φu is a face of the convex hull of the graph of Φu and thus has dimension at most
|Ω|×(|A|−1). Extreme points of the face are also extreme points of the convex hull of the graph of
Φu. Any such extreme point has the form (σ,Φu(σ)) for some σ ∈ Σ. By Caratheodory’s theorem
applied to the face, (σ∗, 0) can be written as a convex combination of at most (|Ω| × (|A| − 1)+1)

such extreme points. Denote the coefficients in the convex combination and the experiments cor-
responding to these extreme points by (λ̂θ̂, σ̂θ̂)θ̂∈Θ̂ with |Θ̂| ≤ (|Ω| × (|A| − 1) + 1). There-
fore, there exists a solution to (P) with σ∗ = (σ̂θ̂)θ̂∈Θ̂ and µ∗ such that supp(µ∗) ⊆ Θ̂ so that
|supp(µ∗)| ≤ (|Ω| × (|A| − 1) + 1).

A.4 Proofs of Theorem 2 and Proposition 2

To prove Theorem 2 and Proposition 2, we first state and prove two comprehensive results which
we then leverage in the proofs.

Definition A.4.1. For any u ∈ R, let Σ+(u) = {σ ∈ Σ : us(σ, τ
∗) > u} and Σ−(u) = {σ ∈ Σ :

us(σ, τ
∗) ≤ u}.

Theorem A.4.1. Let (λθ, σθ)θ∈Θ be a solution to (Φ∗(u)). The following statements are true.

(i) For all θ and θ′ such that (σθ, σθ′) ∈ Σ+(u) × Σ−(u), if ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)),

then they are Pareto-ranked.

(ii) If 1/ϕ′
r(·) is concave, then for all θ and θ′ such that (σθ, σθ′) ∈ Σ+(u)×Σ+(u), if us(σθ, τ

∗) ̸=
us(σθ′ , τ

∗) and ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)), then they are Pareto-ranked.

(iii) If 1/ϕ′
r(·) is convex, then for all all θ and θ′such that (σθ, σθ′) ∈ Σ−(u)×Σ−(u), if us(σθ, τ

∗) ̸=
us(σθ′ , τ

∗) and ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)), then they are Pareto-ranked.
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Proof of Theorem A.4.1. Fix any u ∈ R. Let (σθ, λθ)θ∈Θ be feasible for the maximization problem
Φ∗(u) . Suppose that there exists a pair (σθ, σθ′) with λθ > 0 and λθ′ > 0 and such that there exists
a λ ∈ (0, 1) for which,

Φu(λσθ + (1− λ)σθ′) > λΦu(σθ) + (1− λ)Φu(σθ′).

Then, (σθ, λθ)θ∈Θ cannot be a solution to the maximization problem Φ∗(u). This can be seen from
the following construction of a strict improvement satisfying the constraints in that problem: If
λθ

λ
≤ λθ′

1−λ
, then replacing σθ by the merged experiment λσθ + (1 − λ)σθ′ and replacing λθ by

λ̂θ =
λθ

λ
and λθ′ by λ̂θ′ = λθ′ − (1− λ)λθ

λ
yields such an improvement. If instead λθ

λ
>

λθ′
1−λ

, then
replacing σθ′ by the merged experiment λσθ + (1 − λ)σθ′ and replacing λθ′ by λ̂θ′ =

λθ′
1−λ

and λθ

by λ̂θ = λθ − λ
λθ′
1−λ

is such an improvement.

(i) Towards a contradiction, suppose in the solution there exists (σθ, σθ′) ∈ Σ+(u)×Σ−(u) with
ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)) and they are not Pareto-ranked, i.e.,

us(σθ, τ
∗) > u ≥ us(σθ′ , τ

∗), and

ur(σθ, τ
∗) < ur(σθ′ , τ

∗).

Then there exists λ ∈ (0, 1) such that ϕ′
r(ur(σθ, τ

∗)) > ϕ′
r(ur(λσθ + (1 − λ)σθ′), τ

∗)) (by
differentiability of ϕr), and

Φu(λσθ + (1− λ)σθ′) > λΦu(σθ) + (1− λ)Φu(σθ′).

To see the last point, notice that

Φu(λσθ + (1− λ)σθ′) =
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

≥ λ[ϕs(us(σθ, τ
∗))− ϕs(u)] + (1− λ)[ϕs(us(σθ′ , τ

∗))− ϕs(u)]

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

=
λϕ′

r(ur(σθ, τ
∗))

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

Φu(σθ) +
(1− λ)ϕ′

r(ur(σθ′ , τ
∗))

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

Φu(σθ′)

> λΦu(σθ) + (1− λ)Φu(σθ′),

where the first inequality follows from concavity of ϕs, and the second inequality follows
from concavity of ϕr and Φu(σθ) > 0 and Φu(σθ′) ≤ 0, and ϕ′

r(ur(σθ, τ
∗)) > ϕ′

r(ur(λσθ +

(1− λ)σθ′ , τ
∗)).

(ii) Towards a contradiction, suppose in the solution there exists (σθ, σθ′) ∈ Σ+(u)×Σ+(u) with
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us(σθ, τ
∗) ̸= us(σθ′ , τ

∗) and ϕ′
r(ur(σθ, τ

∗)) ̸= ϕ′
r(ur(σθ′ , τ

∗)), but they are not Pareto-ranked,
i.e.,

us(σθ, τ
∗) > us(σθ′ , τ

∗) > u, and

ur(σθ, τ
∗) < ur(σθ′ , τ

∗).

Then for any λ ∈ (0, 1), we can show

Φu(λσθ + (1− λ)σθ′) > λΦu(σθ) + (1− λ)Φu(σθ′).

To see this, observe that

Φu(λσθ + (1− λ)σθ′) =
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

≥λ
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(σθ′ , τ ∗))

≥λ
λϕs(us(σθ, τ

∗)) + (1− λ)ϕs(us(σθ′ , τ
∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)
λϕs(us(σθ, τ

∗)) + (1− λ)ϕs(us(σθ′ , τ
∗))− ϕs(u)

ϕ′
r(ur(σθ′ , τ ∗))

=λΦu(σθ) + λ(1− λ)
ϕs(us(σθ′ , τ

∗))− ϕs(us(σθ, τ
∗))

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)Φu(σθ′) + (1− λ)λ
ϕs(us(σθ, τ

∗))− ϕs(us(σθ′ , τ
∗))

ϕ′
r(ur(σθ′ , τ ∗))

=λΦu(σθ) + (1− λ)Φu(σθ′)

+ λ(1− λ)(ϕs(us(σθ, τ
∗))− ϕs(us(σθ′ , τ

∗)))

(
1

ϕ′
r(ur(σθ′ , τ ∗))

− 1

ϕ′
r(ur(σθ, τ ∗))

)
>λΦu(σθ) + (1− λ)Φu(σθ′),

where the first inequality follows from concavity of 1/ϕ′
r and positivity of ϕs(us(λσθ + (1−

λ)σθ′ , τ
∗)) − ϕs(u), the second inequality follows from concavity of ϕs, and the last strict

inequality follows from the presumption.

(iii) The proof is exactly the same as in the proof of (ii), except that the inequality

ϕs(us(λσθ + (1− λ)σθ′ , τ
∗))− ϕs(u)

ϕ′
r(ur(λσθ + (1− λ)σθ′ , τ ∗))

≥
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λ
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(σθ, τ ∗))

+ (1− λ)
ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u)

ϕ′
r(ur(σθ′ , τ ∗))

now holds because 1/ϕ′
r is convex and ϕs(us(λσθ + (1− λ)σθ′ , τ

∗))− ϕs(u) is negative.

Theorem A.4.2. Let (λθ, σθ)θ∈Θ be a solution to the maximization problem Φ∗(u). The following

statements are true:

(i) For all σθ, there does not exist a Pareto-ranked splitting, (σ, σ, λ) with (σ, σ) ∈ Σ+(u) ×
Σ−(u), ϕ′

r(ur(σ, τ
∗)) < ϕ′

r(ur(σ, τ
∗)), and

ϕ′
s(us(σ, τ

∗))

ϕ′
s(us(σ, τ ∗))

>
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σθ, τ ∗))

, if σθ ∈ Σ+(u);

ϕ′
s(us(σ, τ

∗))

ϕ′
s(us(σ, τ ∗))

>
ϕ′
r(ur(σθ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

, if σθ ∈ Σ−(u).

(ii) If 1/ϕ′
r(·) is concave, then for all σθ, there does not exist a Pareto-ranked splitting, (σ, σ, λ)

with (σ, σ) ∈ Σ−(u)× Σ−(u), ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗)), and

ϕ′
s(us(σ, τ

∗))

ϕ′
s(us(σ, τ ∗))

>
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

.

(iii) If 1/ϕ′
r(·) is convex, then for all σθ, there does not exist a Pareto-ranked splitting, (σ, σ, λ)

with (σ, σ) ∈ Σ+(u)× Σ+(u), ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗)), and

ϕ′
s(us(σ, τ

∗))

ϕ′
s(us(σ, τ ∗))

>
ϕ′
r(ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

.

Proof of Theorem A.4.2. Fix any u ∈ R. Let (σθ, λθ)θ∈Θ be feasible for the maximization problem
Φ∗(u) . Suppose that there exist σθ satisfying λθ > 0 and two experiments σ and σ′ such that
σθ = λσ + (1− λ)σ′ for some λ ∈ (0, 1) and

Φu(λσ + (1− λ)σ′) < λΦu(σ) + (1− λ)Φu(σ
′),

then (σθ, λθ)θ∈Θ cannot be a solution to the maximization problem Φ∗(u). This follows by noting
that splitting σθ into σ with probability λλθ and σ′ with probability (1 − λ)λθ′ induces a strict
improvement.
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(i) Towards a contradiction, suppose there exists such a Pareto-ranked splitting (σ, σ, λ) with
λσ + (1− λ)σ ∈ Σ+(u), then we have

λΦu(σ) + (1− λ)Φu(σ)− Φu(λσ + (1− λ)σ)

=λ

(
ϕs(us(σ, τ

∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

− ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

)
+ (1− λ)

(
ϕs(us(σ, τ

∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

− ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

)
≥ λ

ϕ′
r(ur(σ, τ ∗))

(ϕs(us(σ, τ
∗))− ϕs(us(λσ + (1− λ)σ, τ ∗)))

+
1− λ

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

(ϕs(us(σ, τ
∗))− ϕs(us(λσ + (1− λ)σ, τ ∗)))

≥ λ

ϕ′
r(ur(σ, τ ∗))

ϕ′
s(us(σ, τ

∗)) (us(σ, τ
∗)− λus(σ, τ

∗)− (1− λ)us(σ, τ
∗))

+
1− λ

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

ϕ′
s(us(σ, τ

∗)) (us(σ, τ
∗)− λus(σ, τ

∗)− (1− λ)us(σ, τ
∗))

=λ(1− λ)(us(σ, τ
∗)− us(σ, τ

∗))

(
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

− ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

)
> 0

where the first inequality follows from us(λσ+ (1− λ)σ) > u ≥ us(σ, τ
∗), ϕ′

r(ur(σ, τ
∗)) ≤

ϕ′
r(ur(λσ + (1 − λ)σ, τ ∗)) ≤ ϕ′

r(ur(σ, τ
∗)), the second inequality follows from concavity

of ϕs, and the last inequality follows from the presumption. The other case can be shown
similarly.

(ii) If 1/ϕ′
r(·) is concave, towards a contradiction, we have

Φu(λσ + (1− λ)σ) =
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(λσ + (1− λ)σ, τ ∗))

≤λ
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

+ (1− λ)
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u)

ϕ′
r(ur(σ, τ ∗))

=λΦu(σ) + λ
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

+ (1− λ)Φu(σ) + (1− λ)
ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

≤λΦu(σ) + λ(1− λ)
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

(us(σ, τ
∗)− us(σ, τ

∗))

+ (1− λ)Φu(σ) + λ(1− λ)
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

(us(σ, τ
∗)− us(σ, τ

∗))
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=λΦu(σ) + (1− λ)Φu(σ)

+ λ(1− λ)(us(σ, τ
∗)− us(σ, τ

∗))

(
ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

− ϕ′
s(us(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))

)
<λΦu(σ) + (1− λ)Φu(σ),

where the first inequality follows from concavity of 1/ϕ′
r and ϕs(us(λσ + (1 − λ)σ, τ ∗)) −

ϕs(u) ≤ 0, the second inequality follows from concavity of ϕs and the third inequality follows
from presumption.

(iii) The proof is exactly the same as in the proof of (ii), except that the first inequality follows
from the convexity of 1/ϕ′

r and ϕs(us(λσ + (1− λ)σ, τ ∗))− ϕs(u) > 0.

Analogous arguments also prove versions of Theorems A.4.1 and A.4.2 with Σ+(u) and Σ−(u)

defined by swapping the strict and weak inequalities in Definition A.4.1.

Proof of Theorem 2. Suppose (σ, µ) is obedient and ϕr is strictly concave. Let û := Us(σ, µ, τ
∗).

and λθ = em
(σ,µ)
θ for all θ. We have

∑
i

λθ
ϕs(us(σθ, τ

∗))− ϕs(û)

ϕ′
r(ur(σθ, τ ∗))

= 0.

If there exists (λ̂θ, σ̂θ) such that

∑
θ

λ̂θ
ϕs(us(σ̂θ, τ

∗))− ϕs(û)

ϕ′
r(ur(σ̂θ, τ ∗))

> 0,

then the ambiguous experiment (σ̂, µ̂) with em
(σ̂,µ̂)
θ := λ̂θ will strictly improve upon (σ, µ). The

existence of such (λ̂θ, σ̂θ) under the conditions in (i) and (ii) of Theorem 2 follows from the proof
of part (i) of Theorems A.4.1 and A.4.2 (and the variations of them using definitions of Σ+(u) and
Σ−(u) that swap the strict and weak inequalities), respectively.

Proof of Proposition 2. When both ϕs and 1/ϕ′
r are linear, notice all the conditions in Theorem

A.4.1 and Theorem A.4.2 (and the variations of them using definitions of Σ+(u) and Σ−(u) that
swap the strict and weak inequalities) are satisfied.
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A.5 Proof of Theorem 4

Proof of Theorem 4. Suppose that there exists a solution (σ∗, µ∗, τ ∗) to the maximization problem
(P), which benefits the sender. Let σ :=

∑
θ µ

∗
θσ

∗
θ and

σ∗ :=
∑
θ

em
(σ∗,µ∗)
θ σ∗

θ .

We first show that σ and σ∗ satisfy the conditions in part (b) of the theorem. Since em(σ∗,µ∗) and
µ∗ have the same support on Θ, supp σ(·|ω) = supp σ∗(·|ω) for all ω. From Lemma 1, since τ ∗ ∈
BR(σ∗, µ∗), τ ∗ ∈ br(σ∗). Moreover, since the sender benefits from ambiguous communication,
we have that

uBP
s < ϕ−1

s (
∑
θ

µ∗
θϕs (us(σ

∗
θ , τ

∗))) ≤
∑
θ

µ∗
θus(σ

∗
θ , τ

∗) = us(σ, τ
∗).

This further implies that τ ∗ /∈ br(σ), and thus em(σ∗,µ∗) ̸= µ∗ implying that ϕr is not affine. Since
τ ∗ ∈ br(σ∗), we have that uBP

s ≥ us(σ
∗, τ ∗) and, thus, us(σ, τ

∗) > uBP
s ≥ us(σ

∗, τ ∗).

Next, we show that ur(σ, τ
∗) > ur(σ

∗, τ ∗). Since em(σ∗,µ∗) ̸= µ∗ there must exist a pair (θ, θ′)
in the support of µ∗ such that ur(σθ, τ

∗) > ur(σθ′ , τ
∗) and ϕ′

r(ur(σθ, τ
∗)) < ϕ′

r(ur(σθ′ , τ
∗)). We

next use the following lemma and concavity of ϕr to show ur(σ, τ
∗) > ur(σ

∗, τ ∗).

Lemma A.5.1. Fix any two monotonic sequences x1 ≥ x2 ≥ · · · ≥ xn, 0 < y1 ≤ y2 · · · ≤ yn,

and a probability µ ∈ ∆({1, 2, . . . , n}). Assume that there exist indices i∗ < j∗ such that µi∗ > 0,

µj∗ > 0, xi∗ > xj∗ and yi∗ < yj∗ . The following inequality holds:

n∑
i=1

xi
µiyi∑n
j=1 µjyj

<
n∑

i=1

xiµi.

Proof of Lemma A.5.1. Define, for all integers k ∈ [1, n],

Sk =
k∑

i=1

xiµi

[
k∑

j ̸=i:j=1

µj(yi − yj)

]
.

Notice that when k = n, we have

Sn =
n∑

i=1

xiµi

[
n∑

j=1;j ̸=i

µj(yi − yj)

]

=
n∑

i=1

xiµi

[
(1− µi)yi −

n∑
j=1;j ̸=i

µjyj

]
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=
n∑

i=1

xiµi

[
yi −

n∑
j=1

µjyj

]

=

(
n∑

j=1

µjyj

)(
n∑

i=1

xi
µiyi∑n
j=1 µjyj

−
n∑

i=1

xiµi

)
.

Since
(∑n

j=1 µjyj

)
> 0, it suffices to show Sn < 0. We prove this by induction. Observe that

S1 = 0. For k ≥ 1,

Sk+1 =
k+1∑
i=1

xiµi

[
k+1∑

j=1;j ̸=i

µj(yi − yj)

]

=
k∑

i=1

xiµi

[
k∑

j ̸=i:j=1

µj(yi − yj)

]
+

k∑
i=1

xiµi[µk+1(yi − yk+1)]+

xk+1µk+1

k∑
j=1

[µj(yk+1 − yj)]

=
k∑

i=1

xiµi

[
k∑

j ̸=i:j=1

µj(yi − yj)

]
+

k∑
i=1

µiµk+1(xi − xk+1)(yi − yk+1)

=Sk +
k∑

i=1

µiµk+1(xi − xk+1)(yi − yk+1)︸ ︷︷ ︸
≤0

.

For k = j∗ − 1,

j∗−1∑
i=1

µiµj∗(xi − xj∗)(yi − yj∗) ≤ µi∗µj∗(xi∗ − xj∗)(yi∗ − yj∗) < 0.

Therefore, 0 = S1 > Sj∗ ≥ Sn.

To prove ur(σ, τ
∗) > ur(σ

∗, τ ∗), we apply the lemma to the decreasing rearrangement of the
sequence (ur(σ

∗
θ , τ

∗))θ (the xi’s) and the increasing rearrangement of (ϕ′
r(ur(σ

∗
θ , τ

∗)))θ) (the yi’s).
Since ϕr is strictly increasing and concave, we have that ϕ′

r(ur(σ
∗
θ , τ

∗)) > 0, and ur(σ
∗
θ , τ

∗) ≥
ur(σ

∗
θ̃
, τ ∗) implies that ϕ′

r(ur(σ
∗
θ , τ

∗)) ≤ ϕ
′
r(ur(σ

∗
θ̃
, τ ∗)). There exists i∗ < j∗ such that µi∗ >

0, µj∗ > 0, xi∗ > xj∗ and yi∗ < yj∗ since there exists a pair (θ, θ′) in the support of µ such
that ur(σθ, τ

∗) > ur(σθ′ , τ
∗) and ϕ′

r(ur(σθ, τ
∗)) < ϕ′

r(ur(σθ′ , τ
∗)). Applying the lemma and the

definition of σ and σ∗ yields ur(σ, τ
∗) > ur(σ

∗, τ ∗). This completes the proof that the conditions
in (b) are necessary for ambiguity to benefit the sender.

To establish that (b) implies (a), we rely on the following lemma that provides a sufficient
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condition for the existence of a Pareto-ranked splitting of an experiment σ: there exists another
experiment that both the sender and receiver rank strictly higher than σ and that satisfies a support
condition.

Lemma A.5.2. Let σ be an experiment. If there exists σ̂ such that us(σ̂, τ
∗) > us(σ, τ

∗), ur(σ̂, τ
∗) >

ur(σ, τ
∗) and for all ω ∈ Ω, supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)), then there exists a Pareto-ranked split-

ting of σ, (σ, σ, λ) with σ = σ̂.

Proof of Lemma A.5.2. Define

σλ =
1

1− λ
σ − λ

1− λ
σ̂ (A.5.1)

where λ ∈ (0, 1). Observe that if σλ is a well-defined experiment, then

λσ̂ + (1− λ)σλ = σ,

and

us(σ
λ, τ ∗) < us(σ, τ

∗),

ur(σ
λ, τ ∗) < ur(σ, τ

∗),

so that (σ̂, σλ, λ) is a Pareto-ranked splitting of σ.
It remains to show that there exists λ ∈ (0, 1) such that σλ is indeed an experiment. In other

words, for each ω, σλ(·|ω) must be a probability distribution over actions.
If |supp(σ(·|ω))| = 1, then supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)) implies supp(σ̂(·|ω)) = supp(σ(·|ω)).

It follows that σλ(·|ω) = σ(·|ω) for all λ ∈ (0, 1), and is thus a distribution over actions.
If |supp(σ(·|ω))| > 1, embed σ(·|ω) into the Euclidean space R|supp(σ(·|ω))| and notice that

σ(·|ω) is in the relative interior of the probability simplex ∆(supp(σ(·|ω))). Thus there exists
ϵω > 0 such that for all x ∈ R|supp(σ(·|ω))| with

∑
i xi = 1, if ∥x − σ(·|ω)∥ < ϵω, then x ∈

∆(supp(σ(·|ω))). Since supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)), one has σ̂(·|ω) ∈ ∆(supp(σ(·|ω))) as
well. Then, for all λ ∈ (0, 1), σλ(·|ω) ∈ R|supp(σ(·|ω))| and

∑
a σ

λ(a|ω) = 1. Moreover, there exists
λω > 0 such that for all λ ∈ (0, λω), ∥σλ(·|ω)−σ(·|ω)∥ < ϵω, and thus σλ(·|ω) ∈ ∆(supp(σ(·|ω))),
making it a distribution over actions.

Because Ω is finite, λ(σ̂, σ) ≡ minω:|supp(σ(·|ω))|>1 λω > 0. Therefore, for all λ ∈ (0, λ(σ̂, σ)),
σλ is a well-defined experiment.

Observe that the conditions in (b) of Theorem 4 imply the conditions in Lemma A.5.2. There-
fore a Pareto-ranked splitting of σ∗, (σ, σ, λ) exists with σ = σ. Then by condition (ii) in (b) of
Theorem 4, us(σ, τ

∗) > uBP
s . This shows that (b) implies (a).
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It remains to show (a) implies (b). Suppose there exists an obedient experiment σ̂ satisfying
the conditions in (a). Since us(σ, τ

∗) > uBP
s , there exists a γ ∈ (λ, 1) such that for all γ ∈ (γ, 1),

γus(σ, τ
∗) + (1− γ)us(σ, τ

∗) > uBP
s ,

and thus τ ∗ /∈ br(γσ + (1− γ)σ).
Fix any such γ and let

σ = γσ + (1− γ)σ.

Let σ∗ = σ̂. It follows that τ ∗ ∈ br(σ∗) since σ̂ is obedient, and uBP
s ≥ us(σ

∗, τ ∗), hence γ > λ.
Since both σ and σ∗ are strict mixtures of σ and σ, they satisfy the common support condition

(i) of (b). By the definition of Pareto-ranked splitting and γ > λ, ur(σ, τ
∗) > ur(σ

∗, τ ∗). This
establishes that (a) implies (b) and completes the proof of Theorem 4.

A.6 Proof of Corollary 3

Proof of Corollary 3. The proof is by contradiction. Suppose that there exist experiments, σ and
σ∗, satisfying the conditions in (b) of Theorem 4.

Since condition (iii) of (b) implies τ ∗ /∈ br(σ), we either have∑
ω

ur(a1, ω)σ(a1|ω)p(ω) <
∑
ω

ur(a2, ω)σ(a1|ω)p(ω),

or ∑
ω

ur(a2, ω)σ(a2|ω)p(ω) <
∑
ω

ur(a1, ω)σ(a2|ω)p(ω).

Assume the former. (An analogous argument holds if the latter.) Since, by condition (iii) of (b),
τ ∗ ∈ br(σ∗), ∑

ω

ur(a1, ω)σ
∗(a1|ω)p(ω) ≥

∑
ω

ur(a2, ω)σ
∗(a1|ω)p(ω),

it follows that:∑
ω

ur(a1, ω)[σ(a1|ω)− σ∗(a1|ω)]p(ω) <
∑
ω

ur(a2, ω)[σ(a1|ω)− σ∗(a1|ω)]p(ω)

=
∑
ω

ur(a2, ω)[σ
∗(a2|ω)− σ(a2|ω)]p(ω).

Therefore,∑
ω

ur(a2, ω)[σ
∗(a2|ω)− σ(a2|ω)]p(ω) +

∑
ω

ur(a1, ω)[σ
∗(a1|ω)− σ(a1|ω)]p(ω) > 0,

47



i.e.,
ur(σ

∗, τ ∗) > ur(σ, τ
∗),

contradicting condition (ii) of (b).

A.7 Proof of Theorem 3

Proof of Theorem 3. Suppose that the obedient ambiguous experiment (σ, µ) benefits the sender
(i.e., Us(σ, µ, τ

∗) > uBP
s ).

Observe that Σ+(u
BP
s ) and Σ−(u

BP
s ) have non-empty intersections with the support of µ since,

if Σ+(u
BP
s ) did not, then (σ, µ) could not benefit the sender, while if Σ−(u

BP
s ) did not, then

τ ∗ /∈ BR(σ, µ), contradicting that (σ, µ) is obedient. Thus, there exists θ, θ′ ∈ supp(µ) such that
us(σθ, τ

∗) > uBP
s ≥ us(σθ′ , τ

∗), i.e., such that σθ ∈ Σ+(u
BP
s ) and σθ′ ∈ Σ−(u

BP
s ).

Define

σ∗ :=
∑
θ̂

em
(σ,µ)

θ̂
σθ̂

=
∑
θ̂

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
σθ̂

=
∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
σθ̂ +

∑
θ̂:σθ̂∈Σ−(uBP

s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
σθ̂.

By Lemma 1, we have σ∗ is obedient. By definition of uBP
s , this implies

ϕs(us(σ
∗, τ ∗)) ≤ ϕs(u

BP
s ). (A.7.1)

Suppose that for all θ, θ′ ∈ supp(µ) such that σθ ∈ Σ+(u
BP
s ) and σθ′ ∈ Σ−(u

BP
s ), σθ and σθ′

are not Pareto-ranked. This is equivalent to

ur(σθ, τ
∗) ≤ ur(σθ′ , τ

∗). (A.7.2)

The remainder of the proof shows that this contradicts (A.7.1).
From (A.7.2) and concavity of ϕr,

ϕ′
r(ur(σθ, τ

∗)) ≥ ϕ′
r(ur(σθ′ , τ

∗)).
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Observe that,

(ϕs(us(σ
∗, τ ∗))− ϕs(u

BP
s ))(

∑
θ̃

µθ̃ϕ
′

r(ur(σθ̃, τ
∗)))

≥
( ∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
(ϕs(us(σθ̂))− ϕs(u

BP
s ))

+
∑

θ̂:σθ̂∈Σ−(uBP
s )

µθ̂ϕ
′
r(ur(σθ̂, τ

∗))∑
θ̃ µθ̃ϕ

′
r(ur(σθ̃, τ

∗))
(ϕs(us(σθ̂))− ϕs(u

BP
s )
)
(
∑
θ̃

µθ̃ϕ
′

r(ur(σθ̃, τ
∗)))

=
∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂ϕ
′

r(ur(σθ, τ
∗))(ϕs(us(σθ̂, τ

∗))− ϕs(u
BP
s ))

+
∑

θ̂:σθ̂∈Σ−(uBP
s )

µθ̂ϕ
′

r(ur(σθ̂, τ
∗))(ϕs(us(σθ̂, τ

∗))− ϕs(u
BP
s ))

≥ϕ
′

r( max
θ̂∈Σ+(uBP

s )
ur(σθ̂, τ

∗))
∑

θ̂:σθ̂∈Σ+(uBP
s )

µθ̂(ϕs(us(σθ̂, τ
∗))− ϕs(u

BP
s ))

+ ϕ
′

r( min
θ̂∈Σ−(uBP

s )
ur(σθ̂, τ

∗))
∑

θ̂:σθ̂∈Σ−(uBP
s )

µθ̂(ϕs(us(σθ̂, τ
∗))− ϕs(u

BP
s ))

≥ϕ
′

r( min
θ̂∈Σ−(uBP

s )
ur(σθ̂, τ

∗))

∑
θ̂

µθ̂ϕs(us(σθ̂, τ
∗))

− ϕs(u
BP
s )

 > 0,

implying
ϕs(us(σ

∗, τ ∗)) > ϕs(u
BP
s ),

contradicting (A.7.1). The first inequality follows from substituting for σ∗ and the concavity of ϕs,
the second inequality follows from the definitions of Σ+(u

BP
s ) and Σ−(u

BP
s ) and the concavity of

ϕr, the third inequality follows since (A.7.2) implies maxθ̂∈Σ+(uBP
s ) ur(σθ̂, τ

∗) ≤ minθ̂∈Σ−(uBP
s ) ur(σθ̂, τ

∗),
and the final inequality follows since (σ, µ) benefits the sender.

A.8 Proof of Lemma 2

Proof of Lemma 2.

ϕi(ui(λσ + (1− λ)σ, τ ∗))− (λϕi(us(σ, τ
∗)) + (1− λ)ϕi(us(σ, τ

∗)))

ϕi(ui(σ, τ ∗))− ϕi(ui(σ, τ ∗))
< µ− λ

⇔ϕi(ui(λσ + (1− λ)σ, τ ∗)) < µϕi(ui(σ, τ
∗)) + (1− µ)ϕi(ui(σ, τ

∗))

⇔ui(λσ + (1− λ)σ, τ ∗) < Ui(σ, µ, τ
∗).
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A.9 Proofs of Proposition 3 and Corollary 4

Proof of Proposition 3. Throughout, we view a splitting (λθ, σθ)θ∈Θ of some σ ∈ Σ∗ as a finitely
supported distribution in ∆(Σ). With a slight abuse of notation, we write λ for the distribution,
∆simple(Σ) for the set of finitely supported distributions on Σ, and Eλ for the expectation operator
with respect to λ. Since ambiguous communication benefits the sender, {λ ∈ ∆simple(Σ) : Eλ[σ] ∈
Σ∗,Eλ[ΦuBP

s
(σ)] ∈ (0,∞)} ̸= ∅ by Corollary 2. Since Σ∗ is a convex set and has a non-empty

interior, any point in Σ∗ can be approached by points in the interior of Σ∗. As the expectations in the
above set are continuous in λ, this implies that {λ ∈ ∆simple(Σ) : Eλ[σ] ∈ int Σ∗,Eλ[ΦuBP

s
(σ)] ∈

(0,∞)} ≠ ∅. Furthermore, since int Σ∗ × (0,∞) is open in the natural product topology, this set
is open.

Proof of Corollary 4. By Proposition 3, there exists a non-empty open set of ambiguous experi-
ments that benefit the sender. Fix one. Since Eλ[ΦuBP

s
(σ)] is continuous in ϕ′

r, this experiment
continues to benefit the sender under small perturbations of ϕ′

r. Finally, since ϕr is concave, small
perturbations of ϕr imply small perturbations of ϕ′

r (Rockafellar, 1970, Theorem 25.7, p. 248).

A.10 Proof of Theorem 5

Proof of Theorem 5. Fix an obedient σ∗ and let (σ, σ, λ) be a Pareto-ranked splitting of σ∗ satisfy-
ing ui(σ, τ

∗) > ui(σ, τ
∗) for i ∈ {s, r}.

Observe that for i ∈ {s, r}

Ui(σ, µ, τ
∗) = ϕ−1

i (µϕi(ui(σ, τ
∗)) + (1− µ)ϕi(ui(σ, τ

∗))) ,

and
ui(σ

∗, τ ∗) = λui(σ, τ
∗) + (1− λ)ui(σ, τ

∗). (A.10.1)

Algebra shows that Equation (5) implies that

em
(σ,µ)
θ1

= λ,

and
em

(σ,µ)
θ2

= 1− λ.

Lemma 1 then implies that (σ, µ) is obedient since σ∗ is obedient. This proves part (i).
By Lemma 2, Ur(σ, µ, τ

∗) > ur(σ
∗, τ ∗) if and only if the receiver’s ({σ, σ}, λ)-probability
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premium is strictly less than µ− λ. The latter is equivalent to:

ϕr(ur(σ
∗, τ ∗))− λϕr(ur(σ, τ

∗))− (1− λ)ϕr(ur(σ, τ
∗))

ϕr(ur(σ, τ ∗))− ϕr(ur(σ, τ ∗))
+ λ <

λϕ′
r(ur(σ, τ

∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))
.

⇔ ϕr(ur(σ
∗, τ ∗))− ϕr(ur(σ, τ

∗))

ϕr(ur(σ∗, τ ∗))− ϕr(ur(σ, τ ∗)) + ϕr(ur(σ, τ ∗))− ϕr(ur(σ∗, τ ∗))

<
ϕ′
r(ur(σ, τ

∗))(ur(σ
∗, τ ∗)− ur(σ, τ

∗))

ϕ′
r(ur(σ, τ ∗))(ur(σ∗, τ ∗)− ur(σ, τ ∗)) + ϕ′

r(ur(σ, τ ∗))(ur(σ, τ ∗)− ur(σ∗, τ ∗))

⇔ 1

1 + ϕr(ur(σ,τ∗))−ϕr(ur(σ∗,τ∗))
ϕr(ur(σ∗,τ∗))−ϕr(ur(σ,τ∗))

<
1

1 + ϕ′
r(ur(σ,τ∗))(ur(σ,τ∗)−ur(σ∗,τ∗))

ϕ′
r(ur(σ,τ∗))(ur(σ∗,τ∗)−ur(σ,τ∗))

⇔ϕ′
r(ur(σ, τ

∗)) < ϕ′
r(ur(σ, τ

∗))

⇔λ <
λϕ′

r(ur(σ, τ
∗))

λϕ′
r(ur(σ, τ ∗)) + (1− λ)ϕ′

r(ur(σ, τ ∗))
= µ.

where the first equivalence uses the fact that λ = ur(σ∗,τ∗)−ur(σ,τ∗)
ur(σ,τ∗)−ur(σ,τ∗)

, the second is algebra, the third
equivalence follows from (weak) concavity and differentiability of ϕr, and the fourth follows from
the strict positivity of ϕ′

r.
18 This proves part (ii).

Part (iii) of the theorem follows directly from Lemma 2.
Within the smooth ambiguity model, an increase in ambiguity aversion corresponds to ϕ be-

coming more concave (Klibanoff et al., 2005). Given that we assume these functions are differen-
tiable, ϕ̃ more concave than ϕ means that ϕ̃ := φ ◦ ϕ for some strictly increasing, concave, and
differentiable φ. To see that the sender’s probability premium increases in the sender’s ambiguity
aversion, observe that ρϕ̃,us((σ, σ), λ) + λ is equal to

φ(ϕ(u(σ∗, τ ∗)))− φ(ϕ(u(σ, τ ∗)))

φ(ϕ(u(σ, τ ∗)))− φ(ϕ(u(σ∗, τ ∗))) + φ(ϕ(u(σ∗, τ ∗)))− φ(ϕ(u(σ, τ ∗)))

≥ φ′(ϕ(u(σ∗, τ ∗)))(ϕ(u(σ∗, τ ∗))− ϕ(u(σ, τ ∗)))

φ′(ϕ(u(σ∗, τ ∗)))(ϕ(u(σ, τ ∗))− ϕ(u(σ∗, τ ∗))) + φ′(ϕ(u(σ∗, τ ∗)))(ϕ(u(σ∗, τ ∗))− ϕ(u(σ, τ ∗)))

=
ϕ(u(σ∗, τ ∗))− ϕ(u(σ, τ ∗))

ϕ(u(σ, τ ∗))− ϕ(u(σ, τ ∗))

=ρϕ,us({σ, σ}, λ) + λ,

where the inequality follows from the concavity of φ. The inequality is strict if and only if
φ′(ϕ(u(σ, τ ∗))) < φ′(ϕ(u(σ, τ ∗))), as the strict inequality on φ′ implies that either φ′(ϕ(u(σ, τ ∗))) <

φ′(ϕ(u(σ∗, τ ∗))) or φ′(ϕ(u(σ∗, τ ∗))) < φ′(ϕ(u(σ, τ ∗))) or both.
It remains to show that the r.h.s. of (5) is increasing in the receiver’s ambiguity aversion. This

18If ϕr were concave, but not differentiable at ur(σ
∗, τ∗), the third equivalence would fail in one direction since we

could then have a linear piece from ur(σ, τ
∗) to ur(σ

∗, τ∗) with slope ϕ′
r(ur(σ, τ

∗)) and another one from ur(σ
∗, τ∗)

to ur(σ, τ
∗) with slope ϕ′

r(ur(σ, τ
∗)).
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follows since it is increasing in ϕ′
r(ur(σ,τ∗))

ϕ′
r(ur(σ,τ∗))

, and

ϕ̃′(ur(σ, τ
∗))

ϕ̃′(ur(σ, τ ∗))
=

φ′(ϕ(u(σ, τ ∗)))ϕ′(ur(σ, τ
∗))

φ′(ϕ(u(σ, τ ∗)))ϕ′(ur(σ, τ ∗))
≥ ϕ′(ur(σ, τ

∗))

ϕ′(ur(σ, τ ∗))
,

where the inequality follows from concavity of φ, and is strict if and only if φ′(ϕ(u(σ, τ ∗))) <

φ′(ϕ(u(σ, τ ∗))).

A.11 Proof of Proposition 4

Proof of Proposition 4. Let Σσ∗ ⊆ Σ denote the set of experiments that, for all ω ∈ Ω, have the
same support as σ∗. For each ω ∈ Ω, fix any aω ∈ supp(σ∗(·|ω)). For any σ ∈ Σσ∗ , by substituting
σ(aω|ω) = 1−

∑
a̸=aω

σ(a|ω), we have, for i ∈ {s, r},

ui(σ, τ
∗) =

∑
ω,a

σ(a|ω)ui(a, ω)

=
∑

ω∈Ωσ∗ ,a

p(ω)σ(a|ω)(ui(a, ω)− ui(aω, ω)) +
∑
ω

p(ω)ui(aω, ω),

where Ωσ∗ ⊆ Ω denotes the set of ω such that | supp(σ∗(·|ω))| > 1.
Given any σ ∈ Σσ∗ , we use σ̃ ∈ R

∑
ω∈Ωσ∗ | supp(σ∗(·|ω))−1| to denote the vector of those compo-

nents of σ(a|ω) with ω ∈ Ωσ∗ and a ∈ supp(σ∗(·|ω)) \ {aω}. Thus, we can write[
us(σ, τ

∗)

ur(σ, τ
∗)

]
=

[
p(ω)(us(a, ω)− us(aω, ω)) · · ·
p(ω)(ur(a, ω)− ur(aω, ω)) · · ·

]
σ̃ +

[∑
ω p(ω)us(aω, ω)∑
ω p(ω)us(aω, ω)

]

Notice that any non-zero vectors in (6) are exactly the non-zero columns of the first matrix on
the right hand side above. When the former set spans R2, the latter matrix has full rank and thus
the linear mapping from R

∑
ω∈Ωσ∗ | supp(σ∗(·|ω))−1| to R2 defined from the right hand side above is

surjective. Since the set {σ̃ : σ ∈ Σσ∗} is an open set in R
∑

ω∈Ωσ∗ | supp(σ∗(·|ω))−1| and includes
σ̃∗, by the open mapping theorem, the set {(us(σ, τ

∗), ur(σ, τ
∗)) : σ ∈ Σσ∗} is open. Thus,

there exists a point in that set that strictly Pareto dominates (us(σ
∗, τ ∗), ur(σ

∗, τ ∗)). Denote the
corresponding experiment in Σσ∗ by σ̂. By Lemma A.5.2, there exists a Pareto-ranked splitting of
σ∗ with σ = σ̂.
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A.12 Proof of Theorem 6

Proof of Theorem 6. That (σ, µ) benefits the sender means that

ϕ−1
s (µϕs(us(σ, τ

∗)) + (1− µ)ϕs(us(σ, τ
∗))) > uBP

s . (A.12.1)

Any weakly less ambiguity averse sender will have ϕ̃s weakly less concave than ϕs, weakly in-
creasing the left-hand side of (A.12.1), while leaving the right-hand side unchanged. This proves
(i).

Let σ∗ = em
(σ,µ)
θ1

σ+(1−em
(σ,µ)
θ1

)σ. By Lemma 1, τ ∗ ∈ br(σ∗). In light of (A.12.1) and Theo-
rem 3, σ and σ must be Pareto-ranked. Without loss of generality, assume that σ is the better one. A
weakly more ambiguity averse receiver will have a ϕ̃r = φ ◦ ϕr for some increasing, differentiable
and concave φ, resulting in an effective measure ˜em(σ,µ) such that ˜em

(σ,µ)
θ1

≤ em
(σ,µ)
θ1

.
If, as in (iii), τ ∗ ∈ br(σ), then since τ ∗ ∈ br(σ∗) = br(em

(σ,µ)
θ1

σ + (1 − em
(σ,µ)
θ1

)σ), τ ∗ ∈
br( ˜em

(σ,µ)
θ1

σ + (1− ˜em
(σ,µ)
θ1

)σ). By Lemma 1, this implies τ ∗ ∈ BR(σ, µ) for a receiver with any
such ϕ̃r, proving that σ together with µ continues to benefit the sender (and, by the same argument
as for (i), any less ambiguity averse senders as well). This proves (iii).

Finally, if τ ∗ /∈ br(σ), define µ̃ by

µ̃(θ1) =
em

(σ,µ)
θ1

ϕ̃′
r(ur(σ, τ

∗))

em
(σ,µ)
θ1

ϕ̃′
r(ur(σ, τ ∗)) + (1− em

(σ,µ)
θ1

)ϕ̃′
r(ur(σ, τ ∗))

and

µ̃θ2 = 1− µ̃θ1 ,

so that ˜em(σ,µ̃) = em(σ,µ). Lemma 1 and τ ∗ ∈ br(σ∗) then implies τ ∗ ∈ BR(σ, µ̃) for a re-
ceiver with ϕ̃r. Since (us(σ, τ

∗) > us(σ, τ
∗), to show that (σ, µ̃) benefits the sender (and all less

ambiguity averse senders) it suffices to show that µ̃θ1 ≥ µ. Indeed,

µ̃θ1 =
em

(σ,µ)
θ1

ϕ′
r(ur(σ, τ

∗))

em
(σ,µ)
θ1

ϕ′
r(ur(σ, τ ∗)) + (1− em

(σ,µ)
θ1

)φ
′(ϕr(ur(σ,τ∗)))

φ′(ϕr(ur(σ,τ∗)))
ϕ′
r(ur(σ, τ ∗))

≥
em

(σ,µ)
θ1

ϕ′
r(ur(σ, τ

∗))

em
(σ,µ)
θ1

ϕ′
r(ur(σ, τ ∗)) + (1− em

(σ,µ)
θ1

)ϕ′
r(ur(σ, τ ∗))

= µ,

where the inequality follows from

φ′(ϕr(ur(σ, τ
∗))) ≥ φ′(ϕr(ur(σ, τ

∗))).
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A.13 Proof of Lemma 3

Proof of Lemma 3. Let (σ, µ) be an ambiguous experiment. Obedience requires that

min
θ∈Θ

ur(σθ, τ
∗) ≥ min

θ∈Θ
ur(σθ, τ).

From the min-max theorem, this is equivalent to the existence of µ∗ ∈ ∆(Θ) such that∑
θ∈Θ

µθur(σθ, τ
∗) ≥

∑
θ∈Θ

µ∗
θur(σθ, τ

∗) ≥
∑
θ∈Θ

µ∗
θur(σθ, τ),

for all (µ, τ). The result then follows immediately by noting that µ∗ must be a minimizer of the
expected payoff µ 7→

∑
θ∈Θ µθur(σθ, τ

∗).

A.14 Proof of Theorem 7

Proof of Theorem 7. Let σ attain the value of the program in the statement of the theorem for
the sender and σ be an obedient uninformative experiment, so that ur(σ, τ

∗) = u∗
r . Assume that

ur(σ, τ
∗) > ur(σ, τ

∗). If the sender offers the ambiguous experiment ((σ, σ), (µ, 1 − µ)), the
receiver is obedient since the worst payoff is ur(σ, τ

∗). As we can choose µ arbitrarily close to 1,
we approach the value of the program in Theorem 7. Furthermore, it is not possible for the sender
to do better than this, since the receiver’s payoff from any obedient experiment (and thus from any
obedient ambiguous experiment) is at least u∗

r .
If ur(σ, τ

∗) = ur(σ, τ
∗), we need to slightly modify the construction to guarantee obedience.

The idea is to mix σ with a bit of σ̂ to guarantee a unique worst payoff, i.e., ur((1−ε)σ+εσ̂, τ ∗) >

ur(σ, τ
∗) for some arbitrarily small ε > 0. As ε approaches 0 and µ approaches 1, the payoff for

the sender approaches the value of the program in the theorem.

B An Interpretation of the Introductory Example

We present an interpretation of our introductory example from Section 2. This is intended to both
motivate the example and illustrate what the strategic choices in our model might correspond to in
a stylized real-world setting.

Think of the sender as a banking regulatory authority (“the regulator”) who must design, con-
duct and communicate the results of stress testing of the banking sector (“the bank”). The receiver
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can be thought of as a typical investor (“the investor”) choosing among alternative investments
whose payoff depends on the realization of the state ω. The regulator’s choice of communication
strategy can be seen as coming from a combination of the announced specifications of the stress
tests themselves and the protocol for communicating the results.19 Think of the ω as investment-
relevant information about the health of the banking sector, with ω1 and ω2 associated with “bad”
and “good” health, respectively. Actions a1 and a2 are socially-productive (i.e., productive from
the viewpoint of the economy as a whole, a viewpoint that we assume the regulator adopts) invest-
ments. Action a3 is a socially-detrimental purely speculative investment.

The regulator’s challenge is to design and communicate stress tests so as to better coordinate
investment behavior with the health of the banking sector, without diverting investments to the
speculative activity.

How can we think about an ambiguous communication strategy in this context? One realistic
channel through which ambiguity could be introduced into communication arises from the fact20

that some banking regulators use as input to the stress tests “bottom-up” tests conducted by the
banks themselves based on their own in-house models and data. For example, the EU-wide stress
tests conducted by the European Banking Authority have to-date been almost entirely based on
such bottom-up inputs. By choosing in the announced specifications of the stress tests how much
leeway to leave to the banks regarding the exact models/tests the banks will use, the regulator
can manipulate the degree to which test results are subject to ambiguous interpretation. If they
grant no discretion on this dimension, then, at least in principle, the interpretation of test results
coming from a model with known stochastic properties is clear and unambiguous. If, in contrast,
substantial leeway is granted – for example, by prescribing the model/test run by the bank to be
contingent on a parameter value to be calculated based on data private to the bank – the proper
interpretation of any given announced result may then vary substantially with the (unobserved at
the time the specifications are announced and committed to) private information of the bank. This
“model variation” as a function of the bank’s private information would thus generate uncertainty
for parties outside the bank about the precise interpretation of any given bank test results.

How can we think about choosing µ in the banking context of our example? Suppose the regu-
lator requires the bank to carry out different tests depending on the bank’s exposure to a particular
asset class and the calculation of the exposure parameter requires input of data that is privately
known to the bank. Let the parameter space for this private information be modeled by the interval
[0, 1].21 Suppose the belief common to the regulator and investor about the value of this parameter

19See Bergemann and Morris (2016) for another example of Bayesian persuasion in the context of bank stress testing
with a regulator and investor.

20See e.g., Table 1 in Dent, Westwood and Segoviano Basurto (2016).
21It is worth noting here that the parameter in and of itself does not signal a particular state ω. It is only through

complex interactions with many other exposures, the wider domestic and world economy, and imperfectly observed
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is described by a probability measure absolutely continuous with respect to the Lebesgue measure
on this interval. Then, by prescribing different partitions of this parameter space to serve as the
contingencies under which the various models/tests will be run by the bank, the regulator may vary
the µ associated with the stress test. For instance, the regulator may require the bank to undertake
a more sensitive and detailed simulation exercise if the exposure parameter is above a particular
threshold and a less sensitive and comprehensive test otherwise.22

C The insufficiency of binary ambiguous experiments

Proposition C.1. It is not always sufficient to consider only binary ambiguous experiments in

searching for either a strict benefit from ambiguity or optimal ambiguous persuasion.

We provide a detailed sketch of the proof here and the full proof is available in Cheng et al.
(2024).

Sketch of Proof of Proposition C.1. The proof is by construction. We first show an example in
which the only optimal ambiguous experiments are more than binary. A modification of this ex-
ample is then used to provide an example in which the sender may strictly benefit from ambiguous
communication even when no binary ambiguous experiment benefits the sender.

Example in which all optimal ambiguous experiments are more than binary.
Suppose ϕs(x) = x and ϕr(x) = ln(x + 5). Let Ω = {ω1, ω2}, with equal prior probabilities

p = (1/2, 1/2). There are five actions {a1, a2, b1, b2, b3} and the payoff matrix is

(us, ur) ω1 ω2

a1 3, 3 0, 0

a2 −1,−1 3, 3

b1 0, 4 −1,−2

b2 0, 2 1, 2

b3 −2,−4 1, 4

The optimal Bayesian persuasion experiment is

σa(a1|ω1) = 4/5, σa(a2|ω1) = 1/5;

activities of the banking sector that these exposures may influence banking health. Only testing can reveal the particular
strength or vulnerability.

22For instance, in recent EU stress tests (see 2023 EU-Wide Stress Test: Methodological note, Section 2.4.4.):
“Banks with significant foreign currency exposure are required to take into account the altered creditworthiness of
their respective obligors, given the FX development under the baseline and adverse scenarios. In particular, banks are
only required to evaluate this impact if the exposures of certain asset classes in foreign currencies are above certain
thresholds.”
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σa(a1|ω2) = 2/5, σa(a2|ω2) = 3/5.

Notice that

us(σa, τ
∗) = ur(σa, τ

∗) = 2.

Let σ11, σ12, σ21 and σ22 denote the extreme experiments where σij recommends ai and aj

deterministically in states ω1 and ω2, respectively. Notice that these extreme experiments are all
Pareto-ranked:

us(σ11, τ
∗) = ur(σ11, τ

∗) = 3/2;

us(σ12, τ
∗) = ur(σ12, τ

∗) = 3;

us(σ21, τ
∗) = ur(σ21, τ

∗) = −1/2;

us(σ22, τ
∗) = ur(σ22, τ

∗) = 1.

Consider the following splitting of σa,

σa =
1

5
σ11 +

3

5
σ12 +

1

5
σ21.

It can be verified that for σ̂ = (σ11, σ12, σ21) and µ̂ such that
∑

θ em
(σ̂,µ̂)
θ σθ = σa, (σ̂, µ̂) is

an obedient ambiguous experiment yielding the sender a payoff of 159/70 = 2.27143, strictly
higher than Bayesian persuasion of 2. Therefore, any optimal ambiguous experiment must involve
ambiguity and thus be at least binary.

As ϕs(x) = x and ϕr(x) = ln(x+5), by Proposition 2, in any optimal ambiguous experiment,
there cannot exist any further Pareto-ranked splitting of any experiment in the collection.

Observe that σa is the only incentive-compatible experiment that never recommends any of the
b actions. Furthermore, σa cannot be split into a convex combination of two extreme experiments.
Thus, any binary splitting of σa must involve at least one non-extreme experiment. However,
since all these extreme experiments are Pareto-ranked, there must exist a Pareto-ranked splitting of
any such non-extreme experiment (into extreme experiments). Therefore, any binary ambiguous
experiment constructed from splittings of σa cannot be optimal.

The proof goes on to show that an optimal ambiguous experiment in this example also can-
not be a binary ambiguous experiment that is constructed from a splitting of any other incentive-
compatible experiment (in particular, any recommending a b action with a positive probability).

Example in which ambiguous communication benefits the sender, but does not do so when
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restricted to binary ambiguous experiments
Suppose ϕs(x) = x and ϕr(x) = ln(x + 5). Let Ω = {ω1, ω2} and the prior p be uniform.

There are seven actions {a1, a2, b1, b+2 , b−2 , b3, c}. Let the payoff matrix be, for some x > 2,

(us, ur) ω1 ω2

a1 3, 3 0, 0

a2 −1,−1 3, 3

b1 0, 4 0,−2

b−2 0, 5/2 0, 1

b+2 0, 5/4 0, 9/4

b3 0,−4 0, 4

c x, 7/4 x, 7/4

The only differences from the previous example are the addition of c and the replacement of
b2 by b−2 and b+2 . Let σc denote the experiment that recommends action c deterministically in both
states. Because x > 2, the optimal Bayesian persuasion experiment is σc, yielding the sender a
payoff of x. The proof then shows the existence of x > 2 such that the sender’s payoff from (σ̂, µ̂)

is strictly higher than x but the sender’s payoff from any binary ambiguous experiment is lower
than x. The replacement of b2 by b−2 and b+2 serves to make σc obedient only at the prior p, which
helps simplify the calculations in the proof.
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Additional results related to “Persuasion with
Ambiguous Communication”

Xiaoyu Cheng Peter Klibanoff Sujoy Mukerji Ludovic Renou

OA.1 The Complete Proof of Proposition C.1

Proof of Proposition C.1 (Cheng et al., 2024). The proof is by construction. We first show an ex-
ample in which the only optimal ambiguous experiments are more than binary. A modification of
this example is then used to show that the sender may strictly benefit from ambiguous communi-
cation even when no binary ambiguous experiment benefits the sender.

Example in which all optimal ambiguous experiments are more than binary.
Suppose ϕs(x) = x and ϕr(x) = ln(x + 5). Let Ω = {ω1, ω2} and the prior p be uniform.

There are five actions {a1, a2, b1, b2, b3}. Let the payoff matrix be

(us, ur) ω1 ω2

a1 3, 3 0, 0

a2 −1,−1 3, 3

b1 0, 4 −1,−2

b2 0, 2 1, 2

b3 −2,−4 1, 4

The optimal Bayesian persuasion experiment is

σa(a1|ω1) = 4/5, σa(a2|ω1) = 1/5;

σa(a1|ω2) = 2/5, σa(a2|ω2) = 3/5.

Notice that

us(σa, τ
∗) = ur(σa, τ

∗) = 2.

Let σ11, σ12, σ21 and σ22 denote the extreme experiments where σij recommends ai and aj

deterministically in states ω1 and ω2, respectively. Notice that these extreme experiments are all
Pareto-ranked:

us(σ11, τ
∗) = ur(σ11, τ

∗) = 3/2;
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us(σ12, τ
∗) = ur(σ12, τ

∗) = 3;

us(σ21, τ
∗) = ur(σ21, τ

∗) = −1/2;

us(σ22, τ
∗) = ur(σ22, τ

∗) = 1.

Consider the following splitting of σa,

σa =
1

5
σ11 +

3

5
σ12 +

1

5
σ21.

It can be verified that this is an obedient ambiguous experiment and yields the sender a payoff of
159/70 = 2.27143, strictly higher than Bayesian persuasion. Therefore, any optimal ambiguous
experiment must involve ambiguity and therefore be at least binary.

As ϕs(x) = x and ϕr(x) = ln(x + 5), by Proposition 2 of Cheng et al. (2024), in any optimal
ambiguous experiment, any experiment in the collection cannot possess a Pareto-ranked splitting.

Observe that σa is the only incentive-compatible experiment that never recommends any of the
b actions. Furthermore, σa cannot be split into a convex combination of two extreme experiments.
Thus, any binary splitting of σa must involve at least one non-extreme experiment. However,
since all these extreme experiments are Pareto-ranked, there must exist a Pareto-ranked splitting of
any such non-extreme experiment (into extreme experiments). Therefore, any binary ambiguous
experiment given by splittings of σa cannot be optimal.

To see this more concretely, we construct the following program to find the optimal binary
ambiguous experiment given by splitting σa. Define σx to be

σx(a1|ω1) = x1, σx(a2|ω1) = 1− x1;

σx(a1|ω2) = x2, σx(a2|ω2) = 1− x2.

Similarly, define σy to be

σy(a1|ω1) = y1, σy(a2|ω1) = 1− y1;

σy(a1|ω2) = y2, σy(a2|ω2) = 1− y2.

For some λ ∈ [0, 1], (σx, σy, λ) is a splitting of σa if and only if

λx1 + (1− λ)y1 = 4/5, and λx2 + (1− λ)y2 = 2/5.
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The optimal binary ambiguous experiment thus solves the following program:

max
x1,x2,y1,y2,λ

λus(σx, τ
∗)(ur(σx, τ

∗) + 5) + (1− λ)us(σy, τ
∗)(ur(σy, τ

∗) + 5)

λ(ur(σx, τ ∗) + 5) + (1− λ)(ur(σy, τ ∗) + 5)

subject to λx1 + (1− λ)y1 = 4/5, λx2 + (1− λ)y2 = 2/5

x1, x2, y1, y2, λ ∈ [0, 1].

Solving this program (e.g., with Mathematica) shows that the optimal binary ambiguous exper-
iment is obtained when

x1 = 1, x2 = 1/4, y1 = 0, y2 = 1, and λ = 4/5.

From this binary ambiguous experiment, the sender’s payoff is 249/112 = 2.22321, strictly lower
than the payoff from the splitting of σa to three extreme experiments, which is 159/70 = 2.27143.
In fact, notice this improvement is obtained by splitting σx in the previous optimal binary ambigu-
ous experiment to the extreme experiments σ11 and σ12.

To complete the proof, we also show that the optimal ambiguous experiment cannot be a binary
ambiguous experiment given by splitting any incentive-compatible experiment that recommends a
b action with a positive probability.23 By the incentive compatibility constraint for recommending
actions a1 and a2, any incentive-compatible experiment is in the form of, for some k, l ∈ R+,

σ(a1|ω1) = 2k, σ(a2|ω1) = l, σ({b1, b2, b3}|ω1) = 1− 2k − l;

σ(a1|ω2) = k, σ(a2|ω2) = 3l, σ({b1, b2, b3}|ω2) = 1− k − 3l.

If k = 0 or l = 0, then notice among all extreme experiments in this case (recommends only a1

or a2 but not both), the highest payoff for the sender is lower than the optimal Bayesian persuasion
experiment. Thus, there is no splitting of experiments in this case that would generate a strict
benefit for the sender.

Next, consider when k > 0 and l > 0. For any such experiment σ, let (σ1, σ2, λ) be a binary
splitting of it. If there exists a Pareto-ranked splitting of either σ1 or σ2, then by Proposition 2 of
Cheng et al. (2024), such binary ambiguous experiment cannot be optimal. Thus, we can restrict
attention to binary splittings where no further Pareto-ranked splittings exist and show that they are
not optimal. More specifically, we show that among all such binary splittings, the sender’s payoff
is strictly lower than from the splitting of σa to all four extreme experiments.

In the following, we present a sufficient condition for the existence of a Pareto-ranked splitting

23We also confirm the proof here by solving the optimal binary ambiguous experiment using MATLAB, which is
exactly the optimal binary ambiguous experiment that yields the sender a payoff of 2.22321.
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of an experiment, which also implies the condition in Lemma A.5.2 of Cheng et al. (2024):

Lemma OA.1.1. For any experiment σ, if there exists ω̂ ∈ Ω and b, b ∈ supp(σ(·|ω)) such that

us(b, ω) > us(b, ω), and ur(b, ω) > ur(b, ω),

then there exists a Pareto-ranked splitting of σ.

Proof of Lemma OA.1.1. Suppose there exists such ω̂ with b and b, let σ̂ be defined by

σ̂(a|ω) =



σ(a|ω), if ω ̸= ω̂,

σ(a|ω), if ω = ω̂ and a ̸= b, b′,

σ(b|ω) + σ(b|ω) if ω = ω̂ and a = b,

0 if ω = ω̂ and a = b.

Observe that σ̂ and σ satisfy us(σ̂, τ
∗) > us(σ, τ

∗), ur(σ̂, τ
∗) > ur(σ, τ

∗), and for all ω,
supp(σ̂(·|ω)) ⊆ supp(σ(·|ω)). Therefore, Lemma A.5.2 of Cheng et al. (2024) implies the exis-
tence of a Pareto-ranked splitting of σ.

In addition, by considering the contra-positive of Lemma OA.1.1, we also have the following
result.

Lemma OA.1.2. If no Pareto-ranked splitting exists for a canonical experiment σ, then for all ω ∈
Ω, either supp(σ(·|ω)) is a singleton or for any a, b ∈ supp(σ(·|ω)), (us(a, ω)−us(b, ω))(ur(a, ω)−
ur(b, ω)) ≤ 0.

We now apply Lemma OA.1.1 to rule out binary splittings of incentive-compatible experiments
where a further Pareto-ranked splitting exists. Notice that both players have the same preference
ranking over actions a1 and a2 in both states. As k > 0 and l > 0, in any binary splitting, one
experiment must recommend exactly one of a1 and a2 in every state, and the other recommends
oppositely. Moreover, in every state, these experiments can only recommend actions that are not
Pareto-ranked with respect to the action, a1 or a2, that is recommended. This further restricts the
set of actions that can be recommended together with a1 or a2 in each state to the following subsets:

If a1 is recommended in ω1 : {b1};

If a2 is recommended in ω1 : ∅;

If a1 is recommended in ω2 : ∅;

If a2 is recommended in ω2 : {b3}.
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Thus, we can restrict attention to the following subset of incentive-compatible experiments:

σ({a1, b1}|ω1) = 1− l, σ(a2|ω1) = l;

σ(a1|ω2) = k, σ({a2, b3}|ω2) = 1− k,

with the constraint that 1 − l ≥ 2k and 1 − k ≥ 3l. And we only need to consider “extreme
splittings” that recommend either {a1, b1} or {a2} in state ω1 and recommends either {a2, b3} or
{a1} in state ω2. To achieve this, one must have either 1− l = k or l = k.

If 1− l = k, then it cannot be the case that 1− l = k ≥ 2k as k > 0. Thus the only possibility is
when l = k and one of the experiment in the splitting, say σ1, is given by σ1 = σ21. Let l = k = λ,
then the other experiment in the splitting, σ2, by incentive compatibility can be written as

σ2(a1|ω1) = 2λ/(1− λ), σ2(b1|ω1) = (1− 3λ)/(1− λ);

σ2(a2|ω2) = 3λ/(1− λ), σ2(b3|ω2) = (1− 4λ)/(1− λ).

Thus, it suffices to find the optimal λ that gives the sender the highest payoff from such binary
ambiguous experiment using (σ1, σ2, λ). The program is given by

max
λ

λus(σ
1, τ ∗)(ur(σ

1, τ ∗) + 5) + (1− λ)us(σ
2, τ ∗)(ur(σ

2, τ ∗) + 5)

λ(ur(σ1, τ ∗) + 5) + (1− λ)(ur(σ2, τ ∗) + 5)

subject to λ ∈ (0, 1/4].

Solving this program (e.g., with Mathematica) shows that the solution is λ = 1/4 and the
sender’s optimal payoff is 59/29 ≈ 2.034, strictly worse than the payoff from the triple splitting
of σa, which is 159/70 ≈ 2.271. Therefore, we conclude that, for all binary splittings of incentive-
compatible experiments where there is no further Pareto-ranked splittings, the sender’s payoff is
strictly lower than from the extreme splitting of σa. This concludes that the optimal ambiguous
experiment in this example must be more than binary.

Next, we slightly modify the previous example:
Example in which the sender benefits only with more than binary ambiguous experiments
Suppose ϕs(x) = x and ϕr(x) = ln(x + 5). Let Ω = {ω1, ω2} and the prior p be uniform.

There are seven actions {a1, a2, b1, b+2 , b−2 , b3, c}. Let the payoff matrix be, for some x > 2,
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(us, ur) ω1 ω2

a1 3, 3 0, 0

a2 −1,−1 3, 3

b1 0, 4 0,−2

b−2 0, 5/2 0, 1

b+2 0, 5/4 0, 9/4

b3 0,−4 0, 4

c x, 7/4 x, 7/4

Let σc denote the experiment that recommends action c deterministically in both states. When
x > 2, the optimal Bayesian persuasion experiment here is σc. Let x = 249/112 = 2.22321, the
sender’s payoff from the optimal binary ambiguous experiment, among all binary splittings of σa.
Recall the ambiguous experiments using the following splitting of σa:

σa =
1

5
σ11 +

3

5
σ12 +

1

5
σ21.

which gives the sender a payoff of 159/70 = 2.27143 > 2.22321. Thus, the sender benefits from
ambiguity when x = 2.22321, however not so when considering only binary splittings of σa. By
solving the problem with MATLAB, we can confirm that the optimal binary ambiguous experiment
is exactly the one that yields the sender a payoff of 2.22321. In other words, the sender benefits
from ambiguity only with more than binary ambiguous experiments.

OA.2 Formal versions of the refined Lemma 3 and Theorem 7
described in the text at the end of Section 7

As mentioned in Section 7 of Cheng et al. (2024), a stronger notion of obedience that does not
allow positive µ weight on experiments that recommend actions outside the support of the effective
measure weighted experiment of a maxmin receiver is the following:

Lemma OA.2.1. (σ, µ) is (strongly) obedient if, and only if, the experiment σ∗ is obedient, where

σ∗ :=

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθσθ

∑
θ∈ argmin

θ∈supp(µ)
ur(σθ,τ∗)

µθ

,

and supp(σθ) ⊆ supp(σ∗) for all θ ∈ supp(µ).
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Define u∗
r as before

u∗
r := max

a∈A

∑
ω

p(ω)ur(a, ω).

Further define A0 as the set of all actions which can be best responses for the receiver:

A0 := {a ∈ A : ∃q ∈ ∆(Ω) s.t. a ∈ argmax
a′∈A

∑
ω

q(ω)ur(a
′, ω)}.

The following is the version of Theorem 7 of Cheng et al. (2024) using the stronger obedience
notion:

Theorem OA.2.1. Suppose there exists σ̂ such that ur(σ̂, τ
∗) > u∗

r . The value of the following

program is the supremum of the payoff that an ambiguity neutral sender can obtain when the

receiver has maxmin preferences UMEU
r and the version of obedience in Lemma OA.2.1 is used:

sup
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) > u∗

r and, supp(σ) ⊆ A0,

Proof of Theorem OA.2.1. Let σ attain the value for the sender of the following program

max
σ

us(σ, τ
∗),

s.t. ur(σ, τ
∗) ≥ u∗

r and, supp(σ) ⊆ A0.

Let σ be an obedient uninformative experiment, so that ur(σ, τ
∗) = u∗

r . Observe that supp(σ) ⊆
A0. Assume that ur(σ, τ

∗) > ur(σ, τ
∗). There exists an obedient experiment σ̃ such that supp(σ̃) =

A0 and ur(σ̃, τ
∗) > u∗

r .
24 Define a sequence of experiments σn = (1−ϵn)σ+ϵnσ̃ where ϵn > 0 with

ϵn → 0 as n goes to infinity. If the sender offers the ambiguous experiment ((σ, σn), (µ, 1−µ)) for
small enough ϵn, the receiver is strongly obedient since the worst payoff is ur(σn, τ

∗), obedience is
preserved under convex combinations of experiments, and supp(σ) ⊆ A0 = supp(σn). As we can
choose µ arbitrarily close to 1 and ϵn arbitrarily close to 0, we approach the value of the program
in Theorem OA.2.1. Furthermore, it is not possible for the sender to do better than this (i.e., have
a higher supremum), since the receiver’s payoff from any obedient experiment (and thus from any

24For any a ∈ A0, fix some qa ∈ ∆(supp(p)) under which a is optimal for the receiver. There exists a βa ∈ (0, 1)
and a q ∈ ∆(supp(p)) such that p = βaqa + (1 − βa)q

′
a. Let a′a ∈ A0 denote an action that is optimal for the

receiver under q′a. Applying this argument to all a ∈ A0 to construct a set ∪a∈A0
{qa, q′a} whose convex hull contains

p in its interior. Since each probability distribution in the set can be thought of as a Bayesian posterior, this interior
convex combination is a Bayes plausible distribution over the posteriors and thus, by Kamenica and Gentzkow (2011),
corresponds to an obedient σ̃ with supp(σ̃) = A0. Finally, since ur(σ̂, τ

∗) > u∗
r , there exists an a ∈ A0 such that∑

ω qa(ω)ur(a, ω) > u∗
r . Thus, ur(σ̃, τ

∗) > u∗
r .
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obedient ambiguous experiment) is at least u∗
r and the strong version of obedience requires that all

experiments in the support of µ recommend actions in A0.
If ur(σ, τ

∗) = ur(σ, τ
∗), we need to slightly modify the construction to guarantee obedience.

The idea is to mix σ with a bit of σ̃ to guarantee a unique worst payoff, i.e., ur((1 − 2ϵn)σ +

2ϵnσ̃, τ
∗) > ur(σn, τ

∗) for all ϵn > 0. As εn approaches 0 and µ approaches 1, the payoff for the
sender approaches the value of the program in the theorem.
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