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Abstract

Performance pay schemes influence not only workers’ incentives to exert effort

but also the composition of the workforce in terms of skill. Conventional wisdom

suggests that steepening incentives should attract higher-skilled workers. However,

we show that this is not universally true: under certain conditions, steeper incentives

reduce the average skill level of the workforce. We identify sufficient conditions on

observables such that a marginal adjustment to the pay scheme improves the skill

composition of the workforce. Building on these insights, we determine the optimal

adjustment to incentives that enhances performance without compromising worker

selection.
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1 Introduction

The design of appropriate incentives is fundamental to an organization’s success. In

addition to influencing workers’ effort—what we refer to as the “incentive effect”—the

structure of an incentive plan also shapes the pool of job applicants, which we term the

“selection effect.” Therefore, crafting an incentive scheme requires that firms account for

both of these considerations.

In a seminal study, Lazear (2000) examined Safelite Glass Corporation’s switch from

hourly wages to piece rates for its key workers. This change led to a 44% increase in

overall productivity, with half of this gain attributed to the firm attracting more produc-

tive workers. The mechanism is intuitive: a higher-powered incentive scheme is more

attractive to higher-skilled workers, who are in a better position to increase their produc-

tivity, and thereby, their pay. We show that this logic need not always hold, and instead,

steeper incentives may worsen the workforce’s skill composition.

To introduce our main ideas, consider the following example. Suppose you manage a

firm and pay workers according to a linear contract w(x) = β + αx, where β is a fixed

salary, α is a piece rate, and x is output. Once on the job, workers choose how much effort

to exert, where effort raises output but is costly. Suppose also that workers differ in their

skill level, with high-skilled workers having a lower marginal cost of effort than low-

skilled workers. You post a job search announcement, and prospective workers apply for

the job if they prefer it to their outside option. Then you implement a screening test that

high types pass with higher probability than low types, and you hire randomly among

the applicants who passed the test. You are considering raising α and want to know what

will be the effect on the quality of your workforce; i.e., the share of high types among the

hired workers.

As high types have a lower marginal cost of effort, they benefit more than low types from
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the steepening of incentives, so you might conclude that this will improve the quality

of your workforce. However, increasing α improves the contract for both types, and

as a result, the job posting now attracts both more high-skilled and more low-skilled

applicants. Moreover, depending on the distribution of the outside option for each type, it

is possible that more additional low types than high types apply, in which case the quality

of the workforce worsens. The example demonstrates that the sign of the selection effect

following a steepening of incentives depends not only on who benefits the most, but also

on the shape of the outside option distributions.

We extend our results beyond linear contracts by considering how local perturbations to

any given contract in an arbitrary—possibly nonlinear—direction affects efforts, the share

of high types in the workforce, and profits. This approach allows us to define a notion

of “steepening of incentives” for contracts other than linear ones. We say that a given

change in the incentive scheme is a steepening of incentives if it increases the incentives for

effort for both worker types.

Our first main result, Theorem 1, shows that for any status quo contract and perturbation

that steepens incentives, there always exists outside option distributions that worsen se-

lection. In Theorem 2, we also establish a partial converse result: we provide a condition

over the distribution of outside options such that any steepening of incentives must im-

prove selection. This condition requires that the reverse hazard rate (i.e., ratio between

the density and cumulative distribution) evaluated at the utility under the status quo con-

tract is weakly larger for high types than for low types. The intuition is that the mass of

high-type applicants would respond more in percentage terms than the mass of low-type

applicants and, hence, the share of high-skilled workers hired would increase.

Although useful, the previous results hinge on knowledge of the outside option distri-

butions. We identify sufficient statistics over plausibly observable objects that allow us

to test whether a given perturbation to a status quo contract has improved or harmed
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selection. Theorem 3 shows that selection strictly improves (worsens) if and only if the

total mass of applicants increases in percentage terms more than the total mass of rejected

applicants.1 Intuitively, as high types pass the screening test more frequently than low

types, a stronger response on the total mass of applicants compared to the mass of re-

jected applicants implies that the contract change has attracted proportionally more high

types than low types, and hence, selection must have improved.

Theorem 3 enables one to test whether perturbing the contract in a given direction im-

proves or harms selection, but it is silent about other perturbations. Theorem 4 shows

that by observing the outcomes of a single directional change in the contract—which we

refer to as a single experiment—the firm can characterize all perturbations that (weakly)

improve selection.

We then turn to the profit-maximizing perturbation subject to not harming selection. To

do so, we decompose the effect of locally perturbing an incentive scheme on profits into

three parts:

Total effect = Incentives Effect + Selection Effect + Direct Effect.

The incentive effect captures the profit change due to workers adjusting their efforts while

keeping the workforce composition fixed. The selection effect accounts for the change in

the workforce composition, while holding efforts fixed. Finally, the direct effect accounts

for the cost due to changing the contract holding efforts and selection fixed.

Ideally, the firm would like to adjust its incentive scheme in the profit-maximizing direc-

tion; i.e., in the direction in which the “total effect” is the largest. However, fully char-

acterizing each of these effects requires substantial information about the environment,

including features that are difficult to observe such as the distribution of outside options

1Equivalently, selection improves (worsens) if the elasticity of the total mass of applicants (with respect
to incentives) is larger (smaller) than that of the rejected applicants.
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and the workers’ effort cost functions. Instead, we consider maximizing the sum of the

incentive and direct effects subject to not harming selection. Doing so increases workers’

efforts without worsening the composition of the workforce, which may have important

long-run consequences on firm performance.

Our final result—Theorem 5—shows that when the output distribution is affine in effort,

the firm only needs to observe two experiments to characterize the non-harmful-selection

profit-maximizing direction of contract adjustment. The first experiment is an arbitrary

perturbation in the original contract, allowing the firm to construct all directions that

do not harm selection. In the second experiment, the firm offers additional performance

bonuses to workers after they have been hired so that it can back out their effort responses

without affecting selection into the firm. With the characterization of all directions that do

not harm selection and the respective effort responses at hand, we construct the optimal

direction of contract adjustment.

Our paper is related to the literature studying the role of monetary incentives in the pro-

ductivity of organizations. Several papers document productivity gains following an

increase in incentives, for example, Lazear (2000, 2018), Shearer (2004), Bandiera et al.

(2005), and Friebel et al. (2017). However, others also document monetary incentives

being ineffective or even backfiring (e.g., Leuven et al. (2010), Fryer (2011, 2013), and Al-

fitian et al. (2024)). Many theoretical explanations for the backfiring of performance pay

have been raised in the literature, such as crowding out of intrinsic motivation (e.g., Frey

and Oberholzer-Gee (1997), Kreps (1997), Bénabou and Tirole (2003),Casadesus-Masanell

(2004), Bénabou and Tirole (2006)), social norms (e.g., Gneezy and Rustichini (2000), Sli-

wka (2007)), and social preferences/peer pressure (e.g., Hamilton et al. (2003), Ashraf and

Bandiera (2018)). We contribute to this literature by showing that the negative effect on

firm performance can also stem from worsening the firm’s workforce composition, even

in a setting with canonical rational agents.
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This paper also relates to a recent literature examining the effect of monetary incentives

on the selection of employees. Similarly to the literature on productivity, the evidence

is mixed. Following increases in financial rewards, Dal Bó et al. (2013) find evidence of

improved selection of civil servants in Mexico, Guiteras and Jack (2018) document no

improvement in the context of informal labor in rural Malawi, while Deserranno (2019)

finds a negative selection among health-promoters in Uganda. We contribute to this lit-

erature in two main ways: First, we propose another mechanism for negative selection

beyond attracting less intrinsically (or pro-socially) motivated workers. We show that

even absent intrinsic motivation considerations, selection might be harmed depending

on the shape of the workers’ outside option distributions. Second and most importantly,

we provide a simple test for improved selection. A major challenge for studying selection

is getting enough data to evaluate it. Our Theorem 3 provides a parsimonious test that

could potentially be used in future empirical studies.

On a methodological ground, this paper is connected to the literature on sufficient statis-

tics using a variational approach, which exploits envelope conditions from agents’ opti-

mization problems to characterize behavioral responses and optimal policies in terms of

a few model parameters, typically elasticities; see Chetty (2009) for a review. This ap-

proach dates back to Harberger (1964) measuring deadweight losses of commodity taxes

and was also used to study income-taxation (Saez (2001)), designing policies to fight cor-

ruption (Ortner and Chassang (2018)), welfare programs (Finkelstein and Notowidigdo

(2019)) among other applications. The closest paper to ours is Georgiadis and Powell

(2022), who bring these tools to analyze a moral hazard problem. Our main contribu-

tions are twofold: we incorporate the selection of new workers in the analysis, and we

characterize sufficient statistics for improved (harmed) selection.
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2 Model

There is a principal (also referred to as the firm) and a unit mass of agents (also referred

to as the workers). The principal aims to hire a fixed mass of agents and motivate them

to exert hidden effort.

Events unfold in the following order:

i. The principal posts a fixed number of (identical) job openings λ > 0 and a wage

contract w(·), which is a bounded and upper-semicontinuous mapping from output

x to payments.

ii. Each agent has a privately known type t ∈ {l, h}, where the share of high types

(t = h) is p. Each agent, conditional on his type, draws his outside option u from a

type-dependent distribution Gt(·) and decides whether to apply for a job.

iii. The principal has an imperfect screening technology, whereby each type-t applicant

passes the screen with probability 1− rt. We assume that rl > rh so that high types

pass with strictly higher probability than low types. Then, the principal hires at

random among the agents who pass the screen to fill the vacancies.

iv. Each hiree then chooses how much effort, a ∈ [a, a] ⊂ R+ to exert, individual output

x is drawn according to the probability density function f(·|a), payoffs are realized,

and the game ends.

If a type-t agent is hired, is paid y, and exerts effort a, then his payoff is v(y)−ct(a), where

v is strictly increasing, twice continuously differentiable, and weakly concave, while ct is

strictly increasing, strictly convex, and twice continuously differentiable. Thus, a type-t

agent applies whenever his expected utility from taking the job is larger than his outside

option:

ut(w) := max
a

{∫
v
(
w(x)

)
f(x|a)dx− ct(a)

}
≥ ū.
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Before we formulate the principal’s payoff, we introduce some notations. For a given

contract w, we denote by A(w) the total mass of applicants, by R(w) the mass of rejected

applicants, and by q(w) the share of high types among the hired agents. That is,

A(w) = pGh(uh(w)) + (1− p)Gl(ul(w))

R(w) = rhpGh(uh(w)) + rl(1− p)Gl(ul(w))

q(w) =
(1− rh)pGh(uh(w))

A(w)−R(w)

Then the principal’s payoff (per opening) when she posts contract w is

π(w) =

∫ [
x− w(x)

][
q(w)f

(
x|ah(w)

)
+ (1− q(w))f(x|al(w))

]
dx+ γ

(
q(w)

)
,

where at(w) denotes the optimal effort of a type-t agent, and γ(·) is a non-decreasing

differentiable function that captures the continuation payoff of having share q of high-

ability workers.

We will study how the share of high types among the hired agents q and the principal’s

payoff π respond to changes in some arbitrary status quo contract w.

Finally, we impose the following assumptions:

A.1. High types have weakly better outside options; i.e., Gh weakly first-order stochasti-

cally dominates Gl. Moreover, both distributions are continuously differentiable.

A.2. High types have strictly smaller absolute and marginal effort costs than low types;

i.e., cl(a) ≥ ch(a) and c′l(a) > c′h(a) for all a ∈ [a, a].

A.3. The density function f(·|a) has full support over the output space X ⊆ R+, a finite

first moment, and its derivative with respect to a, denoted fa, exists. Without loss

of generality, we normalize a ≡ E[x|a], so that effort is interpreted as an agent’s
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expected output.

A.4. At the status quo contract w, strictly positive masses of both types apply for the

job —i.e., Gh

(
uh(w)

)
, Gl

(
ul(w)

)
> 0— and the mass of approved workers is strictly

larger than the vacancies, i.e., λ < A(w)−R(w).

We will say that a change in the contract causes positive selection if it causes q(·) to rise,

and it causes negative selection otherwise.

2.1 A Useful Observation

We now establish a preliminary result that is informative of the key determinants of se-

lection. Notice that the share of high types among the hired agents under the status quo

contract w can be rewritten as

q(w) =
(1− rh)pGh

(
uh(w)

)
(1− rh)pGh

(
uh(w))

)
+ (1− rl)(1− p)Gl

(
ul(w)

)
=

(1− rh)pGh

(
uh(w))

)
/Gl

(
ul(w)

)
(1− rh)pGh

(
uh(w)

)
/Gl

(
ul(w)

)
+ (1− rl)(1− p)

,

where the first equality stems from the definitions of A(·) and R(·), and the second from

dividing numerator and denominator byGl(ul(w))). We immediately obtain that a change

in the contract leads to positive selection if and only if it causes Gh(uh(·)))/Gl(ul(·))) to

increase.

We use this observation to evaluate how a change in the status quo contract affects selec-

tion. It suffices to inspect how the change affects the ratio between the shares of high and

low types who chose to apply, while the precision of the principal’s screening test (i.e., rl

and rh) and the fraction of high types in the population are immaterial.
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3 Steeper Incentives, Worse Selection

Conventional wisdom suggests that higher-powered incentives attract higher-ability work-

ers because they will have the opportunity to earn more under the new scheme. For

example, when Safelite, a windshield repair firm, switched from hourly wages to piece

rates, productivity increased by 44%, half of which was attributable to increased motiva-

tion and the other half to more productive workers joining the firm (Lazear, 2000); i.e.,

improved selection. Here, we demonstrate that this conclusion need not always be true—

higher-powered incentives may, in fact, harm selection.

An Example

We consider a class of examples where agents are risk-neutral, have isoelastic effort costs,

and the principal offers a linear contract. That is,

v(y) ≡ y, ct(a) =
a1+γ

(1 + γ)θt
, Gl ≡ Gh := G, and w(x) = αx,

where θl ≤ θh and γ > 0.

Using that a ≡ E[x|a] and solving for the agent’s optimal effort, it follows that2

ut(α) =
αγ

1 + γ
(αθt)

1/γ and
dut
dα

= (αθt)
1
γ . (1)

Consider an increase of the slope α to some larger α̂. In response, the expected utility

of both types increases, so more low and high types apply. Let ut and ût denote the

utility of type t before and after the steepening, respectively. As dut/dα is increasing in

θt, we have that high types benefit more from the steepening of incentives than the low

types. However, a larger gain in utility by the high types is not sufficient to guarantee an

2We abuse notation and write ut(α) to simply denote the expected utility of a type-t agent when offered
a linear contract with slope α.
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improvement in selection. As argued before, selection improves if and only if the ratio

between the fraction of high types and low types that applyGh

(
uh(·)

)
/Gl

(
ul(·)

)
increases.

We illustrate this point in Figure (1). Subfigures (1a) and (1b) display each type’s outside

option density function, where the dark shaded areas represent G(ul) and G(uh) under

the status quo contract, while ∆Gl and ∆Gh denote the additional mass of applicants

stemming from the steepening.3 The change in the contract will improve selection if and

only if
G(uh)

G(ul)
<
G(uh) + ∆G(uh)

G(ul) + ∆G(ul)
. (2)

Note, however, that despite the gain in utility being larger for the high type, i.e., ûh−uh >

ûl − ul, we may have ∆G(uh) < ∆G(ul). Hence, (2) need not to hold. A smaller increase

in the utility offered to low types than to high types might still attract a larger mass of the

former, potentially worsening selection.

g(
|L

)

GL

GL

uL uL

(a) Low type

g(
|H

)

GH
GH

uH uH

(b) High type

Figure 1: Outside option distributions

In a nutshell, how a change in the contract affects selection depends not only on how

much it benefits each type but also on the shape of the outside option distributions.

3In Figure 1, we assume gl(u) = exp(−u), gh(u) = (1/2)exp(−u/2), and (ul, ûl, uh, ûh) = (0.6, 1.2, 2, 3);
i.e., the outside option distribution of high types first-order stochastically dominates that of low types.
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If we further assume type-independent outside options, i.e. Gh ≡ Gl := G, the contract

change will generate negative selection if

d

dα

G(uh(α))

G(ul(α))
=s

g(uh)

G(uh)

duh
dα

− g(ul)

G(ul)

dul
dα

=s uhρ(uh)− ulρ(ul) < 0, (3)

where ρ := g/G is the reverse hazard rate function of G.4 This derivative is negative if

(but not only if) uρ(u) decreases in u. Thus, increasing the slope of the contract leads to

negative selection if the reverse hazard rate function, ρ, has elasticity smaller than −1.5

Several distributions have this property. For example, the reverse hazard rate function of

the Uniform distribution has elasticity smaller than −1. Similarly, the exponential distri-

bution has this property, as does the Pareto distribution, as long as the shape parameter

is larger than 1, and the right tail of the normal distribution also has this property; i.e.,

uρ(u) is decreasing for u sufficiently large.

Intuitively, if effort were inelastic, then both types would obtain the same amount of extra

utils from an increase in the slope of the contract, and hence selection would be (unam-

biguously) improved if G were log-convex, and it would be (unambiguously) harmed if

G were log-concave.6 In general, however, high types obtain a larger amount of extra

utils than low types. If the reverse hazard rate is increasing, then this steepening of the

contract improves selection. Otherwise, selection is harmed whenever the reverse hazard

rate decreases sufficiently fast that it offsets the larger increase in uh.

General Framework

The insights in the simple example above extend beyond the setting with linear contracts,

risk-neutral utility, type-independent outside option distributions, and isoelastic costs. In

4We use the symbol “=s” to indicate that the objects on either side have strictly the same sign.
5Notice that uρ(u) is decreasing if and only if uρ′(u)/ρ(u) < −1.
6If G were neither log-convex nor log-concave, then the sign of (3) could be either positive or negative.
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this section, we generalize our results to find conditions under which a marginal change

in a contract in a given direction might improve or harm selection.

To carry out this exercise, we must describe how the share of high types among hired

workers changes as we locally adjust the status quo contract w. Given a contract w and a

function h(w), we define the Gateaux differential of h in the direction ℓ by

Dℓ
h(w) := limε↓0

h(w + εℓ)− h(w)

ε
,

where the direction of adjustment ℓ : X → R is the difference between an adjustment

contract ŵ and the status quo contract w.7 Our main interest is how q(w) varies as we

change the status quo contract w in direction ℓ, i.e., whether (and when) Dℓ
q(w) is positive.

Definition. An adjustment of w in direction ℓ improves (harms) selection if Dℓ
q(w) > (<) 0.

Lemma 1. An adjustment of w in direction ℓ improves (harms) selection if and only if

ρh
(
uh(w)

)
· Dℓ

uh(w) > (<) ρl
(
ul(w)

)
· Dℓ

ul(w) (4)

Lemma 1 allows us to find conditions over Gh and Gl under which steepening incentives

improves or harms selection. When contracts are linear, the definition of “steepening in-

centives” corresponds to increasing the contract’s slope. The following definition extends

the notion of steepening incentives to arbitrary contracts.

Definition. A marginal change in direction ℓ steepens incentives if

∫
v′
(
w(x)

)
ℓ(x)

[
f(x|â)− f(x|ã)

]
dx > 0 ∀â > ã;

7Equivalently, we could define the Gateau derivative from stemming from a convex combination be-
tween contracts w and ŵ with the weight on ŵ being ε and converging from above to zero. Note that as any
w and ŵ are bounded and upper semicontinuous, so it is ℓ.
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i.e., if the greater the effort, the larger the monetary gain in utility.

Equivalently, a marginal change in direction ℓ steepens incentives if and only if it in-

creases marginal incentives; i.e.,
∫
v′
(
w(x)

)
ℓ(x)fa(x|a)dx > 0 for all a. For instance, in our

example with linear contracts and risk-neutrality, steepening incentives is equivalent to

increasing the slope α.

Theorem 1. Consider an arbitrary status quo contract w and a steepening of incentives in di-

rection ℓ, where Dℓ
ul(w) · Dℓ

uh(w) > 0. Then, there exists Gh(·) ≻FOSD Gl(·) for which a local

adjustment in direction ℓ harms selection.

Theorem 1 extends the insights of our example by showing that negative selection can

arise under any steepening of incentives and for any status quo contract as long as the

change affects both types’ utilities in the same direction. For instance, consider a change in

contracts that steepens incentives but weakly raises payments for all output realizations

(à la the change studied by Lazear (2000)). As high types have lower effort cost, uh ≥

ul. Moreover, as incentives are steepened, high types’ utility increases more than low

types’ (i.e., Dℓ
uh(w) ≥ Dℓ

ul(w)), which favors selection. This theorem shows that one can

always construct outside option distributions with a reverse hazard rate that decreases

fast enough that reverses the effect of bigger utility gains for high types by attracting a

sufficiently larger mass of low types.

In Theorem 1, we take as given the workers’ preferences and show that for any given

status quo contract and any steepening of incentives that changes the utility of both types

in the same direction (for instance, a strict Pareto improvement), there exist outside op-

tion distributions under which such steepening harms selection.8 We now look at the

converse: we characterize the outside option distributions under which any strict Pareto-

improving steepening of incentives improves selection for all possible effort cost func-

8We say strict Pareto improvement to refer to changes that strictly increase the utility of both types.
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tions.

Whether a local adjustment generates a strict Pareto improvement or not may depend on

the effort cost function as it affects the agents’ effort choices. We first state a condition on

the direction of the adjustment ℓ(·) that guarantees a strict Pareto improvement for every

effort cost function. This condition requires that this adjustment increases the worker’s

expected monetary utility for any fixed effort level, i.e.,

∫
v′
(
w(x)

)
ℓ(x)f(x|a)dx > 0 ∀ a ∈ [a, a]. (5)

Condition (5) guarantees that any agent strictly benefits from the contract change even if

they do not change their efforts, regardless of what level it was originally at. As agents

can always keep the same initial effort level, both types would strictly benefit from that

change once they can also adjust it.

Theorem 2. Consider an arbitrary status quo contract w and a steepening of incentives in di-

rection ℓ that satisfies (5). A local adjustment in direction ℓ improves selection for all effort cost

functions if and only if ρh(ũ) ≥ ρl(û) for all û and ũ ≥ û.

Theorem 2 generalizes the insights provided by our linear contracts example by showing

that a decreasing reverse hazard rate is the key feature of outside option distributions

potentially generating negative selection. As in our example, if the reverse hazard rate

of the high types’ outside option distribution is significantly smaller than the low types’

one, it can outweigh the fact that high types benefit more from steeper incentives than

low types. This theorem shows that if there is a pair of utility levels ũ ≥ û for which

ρh(ũ) < ρl(û), then we can construct effort cost functions for which

uh(w) = ũ, ul(w) = û, and ρh(ũ)Dℓ
uh(w) < ρl(û)Dℓ

ul(w),
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which by Lemma 1 implies negative selection.

Remark 1. Theorems 1 and 2 require the local change in contracts to affect the utility of

both types in the same direction. However, not all steepening of incentives do. Suppose

one constructs a steepening of incentives for which the high type’s utility increases while

the low type’s decreases. In that case, the firm attracts a larger mass of high and a smaller

mass of low types, necessarily improving selection. One potential example of such a

steepening is a rotation of payments, where the firm simultaneously increases the slope

and reduces the baseline pay in the appropriate amount. The difficulty, however, might

be finding the proper baseline pay reduction. If it is too small, then the rotation would

benefit both types, while if it is too large, it would harm them both, and our results would

apply. The appropriate reduction in the baseline pay would directly depend on each

type’s effort cost function, which might be challenging to observe.

A sufficient statistic for improved selection

Theorem 2 allows us to construct examples under which any steepening of incentives im-

proves selection. However, it relies on knowledge about the outside option distributions,

which are not typically observable. The following result finds conditions over observ-

ables to assess whether a particular adjustment to the status quo contract improves or

harms selection.

Theorem 3. A local adjustment of w in direction ℓ improves (harms) selection if and only if

Dℓ
A(w)

A(w)
−

Dℓ
R(w)

R(w)
> (<)0. (6)

Theorem 3 shows that selection improves (worsens) if and only if the mass of total appli-

cants responds more (less) relative to its initial size than the mass of rejected applicants.

Intuitively, if a change in the contract generates a larger response in the mass of total ap-
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plicants than in the mass of rejected applicants, then it must have attracted more (fewer)

high types than low types since high types are less likely to be rejected.

The terms Dℓ
A(w)/A and Dℓ

R(w)/R can be interpreted as semi-elasticities, where we mea-

sure how the mass of total applicants and the mass of rejected applicants vary rela-

tive to their initial size. Theorem 3 implies that these semi-elasticities suffice to answer

whether a given local contract change improves or harms selection. In particular, answer-

ing whether selection has improved does not require knowledge of many of the model’s

primitives, including the quality of the principal’s screening technology, the distribution

of outside options, the prevalence of each type in the market, the workers’ utility function,

or each type’s effort cost function.

Finding all directions that do not harm selection

Theorem 3 provides a test of whether an adjustment in a given direction ℓ has improved or

harmed selection. We extend the result to identify the information needed to characterize

all local adjustments that do not harm selection.

Suppose the firm knows the workers’ monetary utility function, v : R → R, and its own

screening technology, rl and rh. Moreover, suppose the firm observes the outcome data

generated under a status quo contract w, where the outcome data consists of the distribu-

tion of output generated by each worker-type, f(·|al(w)) and f(·|ah(w)), and the masses

of total and rejected applicants A(w) and R(w).

We consider data from one experiment (Experiment 1) where the firm marginally changes

the status quo contract in direction ℓ. Upon conducting such an experiment, the firm

observes how the total and rejected masses of applicants change; that is, it observes Dℓ
A(w)

and Dℓ
R(w). We shall argue that the data from this experiment suffices for the firm to infer

all adjustments to w that do not hurt selection.
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By the Envelope Theorem, marginally changing the contract in direction ℓ̂ changes the

utility of a type-t worker by

Dℓ̂
ut(w) =

∫
v′
(
w(x)

)
ℓ̂(x)f(x|at)dx ∀t ∈ {l, h}. (7)

Hence, even without information about the effort costs, we can compute how the utility

of each agent’s type varies by marginally changing the contract in any direction ℓ̂. Next,

we combine this observation with the data observed in Experiment 1 to establish the

following result:

Theorem 4. Consider the data generated by Experiment 1, and suppose that Dℓ
ut(w) ̸= 0 for all

t ∈ {l, h}. Then, a local change in direction ℓ̂ does not harm selection if and only if

Dℓ̂
uh(w)

rlDℓ
A(w) −Dℓ

R(w)

(rlA(w)−R(w))Dℓ
uh(w)︸ ︷︷ ︸

:= Kh

≥ Dℓ̂
ul(w)

Dℓ
R(w) − rhDℓ

A(w)

(R(w)− rhA(w))Dℓ
ul(w)︸ ︷︷ ︸

:= Kl

. (8)

Note that Kh and Kl depend only on ℓ and not on ℓ̂. This implies that by observing the

data from a single experiment, the principal can find all adjustments that do not harm

selection. Moreover, (8) is linear in ℓ̂, implying not only that it is a simple condition to

check but also that the set of directions that do not harm selection is convex.

4 Optimal Local Adjustments

So far, we have explored when a local adjustment improves or harms selection and what

information the principal needs to make this assessment. In this section, we will be inter-

ested in the profit-maximizing adjustment to the status quo contract. When the principal

adjusts w in the direction ℓ̂, assuming effort responses are differentiable, the effect in her
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payoff can be decomposed into three terms:9

Dℓ̂
π(w) =

∫
[x− w(x)][q(w)fa(x|ah)Dℓ̂

ah(w) + (1− q(w))fa(x|al)Dℓ̂
al(w)]dx︸ ︷︷ ︸

Incentive effect

+

[ ∫
[x− w(x)][f(x|ah)− f(x|al)]dx+ γ′

(
q(w)

)]
Dℓ̂

q(w)︸ ︷︷ ︸
Selection effect

−
∫
ℓ̂(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx︸ ︷︷ ︸

Direct effect

.

The incentive effect is the change in profit that stems from workers adjusting their effort,

holding the workforce composition fixed. The selection effect is the variation in profits

due to changes the workforce composition, holding effort fixed. Finally, the direct effect

computes the direct cost of changing the payments in direction ℓ̂.

Ideally, the principal would like to adjust the status quo contract in the direction that

leads to the largest profit gain. However, computing Dℓ̂
π(w) for all possible directions l̂

demands substantial information about the environment. As a simplification, we find the

adjustment that maximizes the sum of incentive and direct effects, subject to not hurting

selection. This can be interpreted as adjusting the contract in a way that maximizes short-

term gains without harming selection, which may have significant long-run effects. We

call this the prescriptive problem (PP).

Denote by I ℓ̂(w) the incentive effect on direction ℓ̂ under the status quo contract w. We

can then write the prescriptive problem as:

max
ℓ̂:∥ℓ̂∥≤1

{
I ℓ̂(w)−

∫
ℓ̂(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx

}
(PP )

9We soon impose a sufficient condition for effort responses to be differentiatiable. We present the argu-
ment in this order for expositional purposes.
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subject to

Dℓ̂
q(w) ≥ 0, (NHS)

where (NHS) is the not-harming selection constraint.

Recall that Theorem 4 allows us to represent (NHS) as a linear inequality that can be con-

structed using the data generated by Experiment 1. However, to solve (PP ), we still need

to characterize how the agent’s incentives change for every direction ℓ̂. To achieve that,

we must introduce an additional condition and a second experiment. The following con-

dition assumes that the output distribution is affine in effort, allowing us to extrapolate

how the marginal incentives change irrespective of the initial effort level.

Condition 1. The output distribution f(x|a) is affine in a, that is, f(x|a) = h1(x) + ah0(x) for

some h0(x) and h1(x) satisfying
∫
h0(x)dx = 0 and

∫
h1(x)dx = 1.

An important implication of this condition is that the agent’s effort choice is fully char-

acterized by its first-order condition. Hence, optimal effort is implicitly characterized by

c′t(at) =
∫
v
(
w(x)

)
h0(x)dx. Therefore, locally adjusting a contract w in the direction ℓ

changes the agent’s effort by

Dℓ
at(w) =

∫
ℓ(x)v′

(
w(x)

)
h0(x)dx

c′′t (at)
.

We can then write the effort response in any direction ℓ̂ as a function of the effort response

in direction ℓ. That is,

Dℓ̂
at(w) =

Dℓ
at(w)∫

ℓ(x)v′(w(x))h0(x)dx︸ ︷︷ ︸
Does not depend on ℓ̂

·
∫
ℓ̂(x)v′(w(x))h0(x)dx. (9)

Equation (9) provides a path to recover effort responses in all directions upon observing

the responses from a single direction. However, we must still recover the effort responses
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in a given direction. The main challenge is that changing contracts affects not only incen-

tives but simultaneously the skill composition of the applicant group. We shall show that

this challenge can be addressed with a second experiment (Experiment 2) that keeps the

workforce composition fixed while affecting incentives.

Consider a second experiment where the principal advertises the position at the original

contract w but, after hiring, changes the worker’s contracts in direction ℓ+, where ℓ+ en-

sures that both types are strictly better off and
∫
ℓ+(x)v′

(
w(x)

)
h0(x)dx > 0. As locally

changing contracts in direction ℓ+ strictly benefits both types, all hired types still accept

the job after the change. Moreover, as the change occurs after workers are hired, it does

not affect the composition of the applicant pool and, hence, the share of high types among

the hired workers. Finally, the relevant data generated by this experiment is how the av-

erage output (effort) and the distribution of outputs change when the contract is adjusted

in direction ℓ+ while keeping q fixed at the status quo. That is, upon running Experiment

2, the principal observes

Dℓ+

ā(w) = qDℓ+

ah(w) + (1− q)Dℓ+

al(w),

and

Dℓ+

f̄(w)(x) = qh0(x)Dℓ+

ah(w) + (1− q)h0(x)Dℓ+

al(w) = h0(x)Dℓ+

ā(w),

where ā(w) and f̄(w) respectively denote the average effort and distribution of outputs

under status quo contract w.

From Experiment 2, the principal can recover not only the average effort response Dℓ+

ā(w)

but also the function h0(x) = Dℓ+

f̄(w)
(x)/Dℓ+

ā(w). However, even with the data generated by

Experimetn 2, we still cannot fully reconstruct how each type responds to a local adjust-

ment of the status quo contract in any direction, since the experiment only reveals the

average effort response and not the type-specific response. Nevertheless, the following
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result shows that the data generated from Experiments 1 and 2 suffices to solve (PP ).

Theorem 5. Let w be the status quo contract and assume Condition 1 holds. The data generated

by Experiments 1 and 2 is a sufficient statistic for problem (PP ). Moreover, there exists λ∗, µ∗ ≥ 0

such that the solution ℓ̂∗ is proportional to L(x, λ∗, µ∗), where

L(x, λ∗, µ∗) =

[
µ∗h0(x)

f(x)
+ λ∗

[f(x|ah)Kh − f(x|al)Kl]

f(x)
− 1

v′
(
w(x)

)]f(x)v′(w(x)).
Theorem 5 constructs the local adjustment direction that increases the most the sum of

the incentive and direct effects subject to not hurting selection. The optimal local ad-

justment is in the direction of a modified Holmström-Mirlees-type contract. While in the

traditional Holmström-Mirrlees optimal contract (Mirrlees (1999) and Holmström (1979)),

balances incentives and insurance, here, the optimal adjustment shifts payments to out-

puts that increase incentives but provide sufficiently more utility to high types than low

types to ensure positive selection. The optimal way to balance these two considerations

is determined by the coefficients λ∗ and µ∗, which are characterized in the Appendix.

The prescriptive problem aims to construct improvements to the status quo contract using

only observable information stemming from Experiments 1 and 2. An appealing property

of this approach is that it guarantees that, regardless of the unobservable primitives, i.e.,

Gt and ct(·) for t ∈ {l, h}, the resulting direction of adjustment will not decrease profits. In

particular, if the status quo contract is optimal, the prescriptive approach will recommend

that no changes are made to the contract. The following result formalizes these assertions.

Corollary 1. Suppose that the status quo contract satisfies

∫
[x− w(x)][f(x|ah)− f(x|al)]dx+ γ′

(
q(w)

)
≥ 0. (10)

Then Dℓ̂∗

π(w) ≥ 0. Moreover, if w ∈ argmax
w̃

{π(w̃)}, then ℓ̂∗(x) = 0 for all x ∈ X .
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Our approach looks for adjustments such that the gain in incentives outweighs the direct

cost. Moreover, as we look only for directions that do not harm selection, profits will not

decrease due to worse selection as long as the principal benefits from a more able work-

force (condition (10)). Intuitively, we can think about the principal’s profit depending on

two dimensions: how strongly it motivates workers and the workforce skill composition.

Our procedure finds local profit increases whenever you can improve the former without

worsening the latter.

The prescriptive problem has two important limitations. First, as it only looks for lo-

cal improvements, it would not prescribe any change when the status quo contract is a

local but not a global maximum. The second issue is that we would miss adjustments

that increase profits while harming selection. However, finding global maxima and fully

considering the trade-off between incentives and selection is a complex task that requires

detailed knowledge of the environment, including knowing the workers’ effort costs and

outside option distributions. The advantage of our approach is that imposes more modest

informational demands.

5 Conclusion

This paper speaks to the dual role of incentive schemes in motivating workers and shap-

ing a firm’s workforce. Our findings challenge the straightforward intuition that steeper

incentives automatically improve workforce quality by attracting more skilled workers.

Instead, we show that depending on the distribution of outside options, increasing incen-

tives may actually lower the average skill level of the workforce.

We then establish conditions under which steeper incentives improve the workforce’s

skill composition. We show that the reverse hazard rate of outside option distributions

plays a critical role, as it determines whether high-skilled workers will apply in greater
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numbers relative to low-skilled ones in response to a steepening of incentives. This nu-

ance highlights the importance of considering external labor market conditions and the

shape of outside options when designing incentive schemes.

Our contribution goes beyond theoretical insights and offers a practical test for firms to

assess whether changes to their incentive structure have improved or harmed workforce

composition. We show that a simple comparison between the elasticities of total and re-

jected masses of applicants with respect to the payment scheme is sufficient to determine

the direction of the change in the skill distribution in the firm. This test enables firms to

make informed decisions about the effects of incentive changes on selection, even in the

absence of detailed information about workers’ outside options or effort costs.

Our approach also offers broader implications for firms seeking to improve their incentive

schemes. We show that when output is affine in effort, firms can, from two simple experi-

ments, construct improvements to their compensation scheme that increase the incentives

without harming the skill composition of their workforce. The first experiment adjusts in-

centives prior to hiring, allowing the firm to characterize all directions of changes that do

not harm selection. The second experiment, executed post-hiring, offers additional pay

conditional on good performance and permits firms to calculate effort responses. Com-

bining the data generated by both, firms can construct the best increase of incentives

among all non-selection-harming ones.

We hope that our insights are taken to the data by future empirical research, particu-

larly by studying monetary incentive effects across different industries and labor mar-

kets where the distribution of outside options may vary significantly. Such studies could

further refine our understanding of how incentive schemes interact with labor market

dynamics.
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A Ommitted Proofs

Proof of Lemma 1. The first step is to show that Dℓ
ut(w) exists, which is done through two

intermediate results we name as Claims.

Let

ψ(a, ε) =

∫
v
(
w(x) + εℓ(x)

)
f(x|a)dx− ct(a).

Note that ut(w + εℓ) = max
a

ψ(a, ε).

Claim 1. The family of functions {∂ψ(a, ·)/∂ε}a∈[a,a] is equidifferentiable at ε0 ∈ [0, 1] and

sup
a∈[a,a]

|∂ψ(a, ε0)/∂ε| < +∞.

Proof. Note that as v is continuous and w and ℓ bounded, by the Dominated Convergence

Theorem
∂ψ(a, ε)

∂ε
=

∫
v′
(
w(x) + εℓ(x)

)
ℓ(x)f(x|a)dx < +∞,

since v is twice continuously differentiable. Note also that

∣∣∣∂ψ(a, ε̃)
∂ε

− ∂ψ(a, ε̂)

∂ε

∣∣∣ ≤
∫ ∣∣∣v′(w(x) + ε̃ℓ(x)

)
− v′

(
w(x) + ε̂ℓ(x)

)∣∣∣ · |ℓ(x)| · f(x|a)dx
≤ |ε̃− ε̂| · sup

x
|ℓ2(x)| · sup

y
|v′′(y)|,

which concludes the Claim’s proof.

Claim 2. Dℓ
ut(w) exists and

Dℓ
ut(w) =

∫
v′
(
w(x)

)
ℓ(x)f(x|at)dx.

Proof. Claim 1 shows that the conditions of Theorem 3 in Milgrom and Segal (2002) are

satisfied. Hence, the right-hand derivative of ut
(
w+ε0ℓ) exists and is equal to ∂ψ(at, ε0)/∂ε.
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In particular, at ε0 = 0

Dℓ
ut(w) = lim

ε0↓0

∂ψ(at, ε0)

∂ε
=

∫
v′
(
w(x)

)
ℓ(x)f(x|at)dx.

As noted before, q increases if and only ifGh/Gl increases or, equivalently, ln(Gh)− ln(Gl)

is decreasing. Taking the Gateaux differential in the direction ℓ delivers the result.

Proof of Theorem 1. Fix an arbitrary status quo contract w and a steepening of incentives

ℓ for which Dℓ
ul(w) ·Dℓ

uh(w) > 0. We then construct two distributionsGh(·) ≻FOSD Gl(·) such

that adjusting w in direction ℓ harms selection.

Under contract w, each type-t gets a utility ut = ut(w) if hired. Moreover, as ch(a) < cl(a)

for all a, we know that ul < uh. Also, as c′h(a) < c′l(a), we have that ah ≥ al. By the

definition of steepening of incentives we have that

Dℓ
uh(w) =

∫
v′
(
w(x)

)
f(x|ah)dx ≥

∫
v′
(
w(x)

)
f(x|al)dx = Dℓ

ul(w).

By Lemma 1, a local adjustment in direction ℓ harms selection if and only if

gh
Gh

Dℓ
uh(w) <

gl
Gl

Dℓ
ul(w).

The main argument in the proof is to construct distributions with reversed hazard rates

g/G such that the inequality above holds. We then split the construction of G’s into two

possible cases: Dℓ
uh(w) > 0 or Dℓ

uh(w) < 0.

Case I: Dℓ
uh(w) > 0.

Let G(y|l) = exp
(
− [y + b]−γ

)
and G(y|h) =

[
G(y|l)

]δ, where b > −ul, γ > 0 and δ > 1.

Note that as δ > 1 and G(y|l) < 1 for all y ≥ −b, then Gh(·) ≤ Gl(·), which implies that
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Gh(·) first-order stochastically dominates Gl(·). We then show that selection is harmed

when γ is sufficiently large.

Note that
gh
Gh

Gl

gl
= δ

[
uh + b

ul + b

]−(γ+1)

.

Hence, for γ large enough

gh
Gh

Gl

gl
<

Dℓ
ul(w)

Dℓ
uh(w)

=⇒ Dℓ
q(w) < 0.

Case II: Dℓ
uh(w) < 0.

Let G(y|t) = exp
(
− λt[b − y]

)
, where b > uh and λh > λl > 0. For any point in the sup-

port G(y|h) < G(y|l). Hence, Gh(·) first-order stochastically dominates Gl(·). Moreover,

gt/Gt = λt. Therefore, for a sufficiently large λh/λl

λh
λl

>
Dℓ

ul(w)

Dℓ
uh(w)

=⇒ Dℓ
q(w) < 0.

Proof of Theorem 2.

The “if” part: Suppose that ρh(ũh) ≥ ρl(ũl) for all ũh ≥ ũl.

Recall that

ut(w) = max
a

{∫
v
(
w(x)

)
f(x|a)dx− ct(a)

}
.

As ch(a) ≤ cl(a), we have that uh(w) ≥ ul(w) and ρh(uh(w)) ≥ ρ(ul(w)).

Moreover, by the Envelope Theorem

Dℓ
ut(w) =

∫
v′(w(x)ℓ(x)f(x|at)dx.
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Also, as c′h(a) < c′l(a), then ah ≥ al.

The fact that ℓ is a steepening of incentives implies that Dℓ
uh(w) ≥ Dℓ

ul(w), while by the

Theorem’s statement Dℓ
ul(w) > 0. Hence,

ρh
(
uh(w)

)
Dℓ

uh(w)−ρl
(
ul(w)

)
Dℓ

ul(w) =s ρh
(
uh(w)

)Dℓ
uh(w)

Dℓ
ul(w)

−ρl
(
ul(w)

)
≥ ρh

(
uh(w)

)
−ρl

(
ul(w)

)
≥ 0,

which by Lemma 1 implies that selection must be improved.

The “only if” part: Suppose that there exists ũh ≥ ũl such that ρh(ũh) < ρl(ũl). We will

construct cost functions cl(·) and ch(·) such that selection is harmed by an adjustment in

direction ℓ.

Let ct(a) = βta
2 + γt. We now construct (βl, βh, γl, γh) such that all properties assumed for

the effort cost function are satisfied and ρh(uh(w))Dℓ
uh(w) < ρl(ul(w))Dℓ

ul(w).

Let

ψ∗(β) = max
a∈[a,a]

{∫
v
(
w(x)

)
f(x|a)dx− βa2

}
, and

a∗(β) = argmax
a∈[a,a]

{∫
v
(
w(x)

)
f(x|a)dx− βa2

}
,

where β > 0. Let βH > inf{β ∈ R++ : a∗(β) = a} and βL = βH + ε, where ε > 0. Then let

γt = ψ∗(βt)− βta
2 − ũt.

Note that for ε sufficiently small, γl > γh. Finally, let ct(a) = βta
2+γt, which is a valid cost

function since

• c′t and c′′t > 0;

• cl(a) > ch(a) and c′l(a) > c′h(a).
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Observe then that

ut(w) = max
a

{∫
v
(
w(x)

)
f(x|a)dx− ct(a)

}
= ũt.

Therefore,

ρh(uh(w))Dℓ
uh(w) − ρl(ul(w)Dℓ

ul(w) =

∫
v′(w(x))ℓ(x)f(x|a)dx

[
ρh(ũh)− ρl(ũl)

]
< 0.

Hence, by Lemma 1, an adjustment in direction ℓ harms selection.

Proof of Theorem 3. Recall that

A(w) = pGh(w) + (1− p)Gl(w)

R(w) = rhpGh(w) + rl(1− p)Gl(w).

Hence,

Gl(w) =
R(w)− rhA(w)

(1− p)(rl − rh)
and Gh(w) =

rlA(w)−R(w)

p(rl − rh)
. (11)

Also,

Dℓ
A(w) = pghDℓ

uh(w) + (1− p)glDℓ
ul(w)

Dℓ
R(w) = rhpghDℓ

uh(w) + rl(1− p)glDℓ
ul(w).

Hence,

glDℓ
ul(w) =

Dℓ
R(w) − rhDℓ

A(w)

(1− p)(rl − rh)
and ghDℓ

uh(w) =
rlDℓ

A(w) −Dℓ
R(w)

p(rl − rh)
. (12)
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Replacing (11) and (12) into (4), we get

Dℓ
q(w) =s

gh
Gh

Dℓ
uh(w) −

gl
Gl

Dℓ
ul(w)

=
rlDℓ

A(w) −Dℓ
R(w)

rlA−R
−

Dℓ
R(w) − rhDℓ

A(w)

R− rhA

=
(rl − rh)AR

(rlA−R)(R− rhA)

[Dℓ
A(w)

A(w)
−

Dℓ
R(w)

R(w)

]

=s

Dℓ
A(w)

A(w)
−

Dℓ
R(w)

R(w)
.

Where the last =s stems from (rlA−R)(R− rhA) > 0, which is a consequence of Gl, Gh >

0.

Proof of Theorem 4. Recall that a marginal change in the contract in direction ℓ̂ improves

selection if and only if

Dℓ̂
uh(w)

gh
Gh

≥ Dℓ̂
ul(w)

gl
Gl

.

By equation (7), we can construct Dℓ̂
ut(w) for any direction ℓ̂. It remains to find gt/Gt as a

function of observables. By equations (11) and (12), we have that

gl
Gl

=
Dℓ

R(w) − rhDℓ
A(w)

(R− rhA)Dℓ
ul(w)

, and
gh
Gh

=
rlDℓ

A(w) −Dℓ
R(w)

(rlA−R)Dℓ
uh(w)

,

which concludes the proof.

Proof of Theorem 5. The proof is divided into two parts: first, we rewrite problem (PP )

and argue that all the information needed to state the problem can be recovered from

Experiments 1 and 2. Second, we characterize its solution.

Problem (PP ) can be written as

max
ℓ̂

{
µ∗ ·

∫
ℓ̂(x)v′

(
w(x)

)
h0(x)dx−

∫
ℓ̂(x)f(x)dx

}
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subject to ∫
v′
(
w(x)

)
ℓ̂(x)

[
f(x|ah)Kh − f(x|al)Kl

]
dx ≥ 0,∫

ℓ̂2(x)dx ≤ 1,

where

µ∗ :=

∫
[s− w(s)]h0(s)ds∫

ℓ+(s)v′
(
w(s)

)
h0(s)ds

·
[
qDℓ+

ah(w) + (1− q)Dℓ+

al(w)

]
︸ ︷︷ ︸

≡ Dℓ+

ā(w)

.

From Experiment 1, the firm can reconstructKh andKl. From Experiment 2, the principal

can recover Dℓ+

ā(w) and h0(·). Therefore, the two experiments provide all the necessary

information to solve problem (PP ). We now find its solution.

Letting λ ≥ 0 and ν ≥ 0 denote the dual multipliers associated with the first and second

constraint, we have the Lagrangian

L(λ, ν) = max
ℓ̂

{
ν +

∫
ℓ̂(x)

[
v′
(
w(x)

)(
µ∗h0(x) + λ

[
f(x|ah)Kh − f(x|al)Kl

])
− f(x)− νℓ̂(x)

]
dx

}
.

For any λ, ν ≥ 0, note that the integrand is differentiable and strictly concave. We can

then maximize it pointwise with respect to ℓ̂, with each respective first-order condition

delivering

ℓ̂λ,ν(x) =

[
µ∗h0(x) + λ

(
f(x|ah)Kh − f(x|al)Kl

)]
v′
(
w(x)

)
− f(x)

2ν
.

Next, we find the optimal λ and ν by solving the dual problem:

min
λ≥0,ν≥0

L(λ, ν).
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This problem is convex, and using ℓ̂λ,ν , the solution to the dual problem is

λ∗ = max

{
0,

∫ [
f − µ∗h0

(
fhKh − flKl

)
v′
(
w
)][

fhKh − flKl

]
v′
(
w
)
dx∫ [

v′
(
w
)]2[

fhKh − flKl

]2
dx

}

and

ν∗ =
1

2

√∫ {
v′
(
w(x)

)[
µ∗h0(x) + λ∗

(
f(x|ah)Kh − f(x|al)Kl

)]
− f(x)

}
dx

}
.

Thus, the optimal adjustment direction is

ℓ̂∗(x) =

[
µ∗h0(x) + λ∗

(
f(x|ah)Kh − f(x|al)Kl

)]
v′
(
w(x)

)
− f(x)√∫ {

v′
(
w(x)

)[
µ∗h0(x) + λ∗

(
f(x|ah)Kh − f(x|al)Kl

)]
− f(x)

}
dx

} ,

which is proportional to L(x, λ∗, ν∗).

Up to now, we have shown that ℓ̂∗ solves the dual problem. To show it solves the pri-

mal problem given in (PP ), we will now establish that strong duality holds. Denote the

optimal value of the primal by Π∗. First, by weak duality, we have that L(λ∗, ν∗) ≥ Π∗.

Second, it is straightforward to check that ℓ̂∗ is feasible for problem (PP ), and that λ∗ and

ν∗ are strictly positive if and only if the respective (primal) constraint binds; meaning that

the complementary slackness conditions are satisfied. This implies that L(λ∗, ν∗) ≤ Π∗.

Therefore, L(λ∗, ν∗) = Π∗, which proves that strong duality holds, and ℓ̂∗ solves (PP ).

Proof of Corollary 1. Note that (NHS) and (10) imply that

[ ∫
[x− w(x)][f(x|ah)− f(x|al)]dx+ γ′

(
q(w)

)]
Dℓ̂∗

q(w) ≥ 0.

Hence,

Dℓ̂∗

π(w) ≥ I ℓ̂
∗
(w)−

∫
ℓ̂∗(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx ≥ 0,
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where the final inequality stems from ℓ̂(x) = 0 for all x ∈ X being feasible in problem

(PP ). Therefore, Dℓ̂∗

π(w) ≥ 0.

It remains to show that if the status quo contract w is optimal, we have that ℓ̂∗(x) = 0 for

all x ∈ X .

Suppose w ∈ argmax
w̃

{π(w̃)}. As w maximizes π, it must be that Dℓ̂
π(w) = 0 for any ℓ̂. As a

consequence, any ℓ̂ that satisfies (NHS) must be such that

I ℓ̂(w)−
∫
ℓ̂(x)[q(w)f(x|ah) + (1− q(w))f(x|al)]dx ≤ 0.

Therefore, ℓ̂∗(x) = 0 for all x ∈ X solves problem (PP ).
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