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The bullwhip effect and production smoothing appear antithetical because their empirical tests oppose one
another: production variability exceeding sales variability for bullwhip, and vice versa for smoothing. But

this is a false dichotomy. We distinguish between the phenomena with a new production smoothing measure,
which estimates how much more variable production would be absent production volatility costs. We apply our
metric to an automotive manufacturing sample comprising 162 car models and find 75% smooth production by
at least 5%, despite the fact that 99% exhibit the bullwhip effect. Indeed, we estimate both a strong bullwhip
(on average, production is 220% as variable as sales) and robust smoothing (on average, production would
be 22% more variable without deliberate stabilization). We find firms smooth both production variability and
production uncertainty. We measure production smoothing with a structural econometric production scheduling
model, based on the generalized order-up-to policy.
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1. Introduction
Production smoothing is production stabilization
intended to mitigate the tolls of production vari-
ability: overtime fees and strained toolsets on the
one hand, idle capacity on the other. Firms smooth
production by using safety stocks to insulate pro-
duction schedules from demand volatility. This topic
interests both economists (Blinder and Maccini 1991,
Ramey and West 1999) and operations researchers
(Holt et al. 1960, Klein 1961, Graves et al. 1986, Aviv
2007). Researchers have tested for smoothing by mea-
suring if production is less variable than sales. But
this test fails to identify the phenomenon since “pro-
duction is more variable than sales in all major sec-
tors and in most industries” (Blinder and Maccini
1991, p. 80). Indeed, production variability exceeds
sales variability in 99% of our auto manufacturing
sample—do auto manufacturers disregard production
stability 99% of the time? Unlikely.

Muddling the traditional production smoothing test
is another supply chain phenomenon: the bullwhip
effect. Bullwhip is the amplification of demand fluctu-
ations propagating up a supply chain (Lee et al. 1997).
A constellation of factors underpin bullwhip, e.g.,
order batching, pipeline inventory discounting, and
production cost shocks. These all increase the variance
of production relative to sales, biasing the traditional
production smoothing measure—eclipsing it entirely
in most cases. Accordingly, we develop a new produc-
tion smoothing metric, which estimates how much

more variable production would be if firms did not
moderate it. By benchmarking production to produc-
tion, rather than to demand, the measure eliminates
bullwhip bias.

Measuring production smoothing in a sample of
162 car models produced by 20 auto manufacturers,
we find sizable smoothing: auto production would be
22% more variable without deliberate production sta-
bilization. And this smoothing exists amid a robust
bullwhip effect: auto production is 220% as variable
as auto sales. Coexistence of these phenomena upends
our sense of bullwhip vis-à-vis smoothing. Until now
the supply chain literature has framed bullwhip as
counter to production smoothing, reporting the for-
mer when production variability exceeds sales vari-
ability and the latter when sales variability exceeds
production variability (e.g., Lee et al. 1997, Cachon
et al. 2007, Bray and Mendelson 2012). But the phe-
nomena are operationally distinct and not mutually
exclusive: smoothing pertains to production cost con-
vexities compelling producers to stabilize produc-
tion (Blinder and Maccini 1991), while bullwhip per-
tains to supply chain logistics amplifying demand
shocks (Chen and Lee 2012). Our measurements led
us astray: we considered the phenomena two sides of
the same coin because they shared a common metric.
Giving production smoothing its own yardstick frees
us to embrace both.

To calculate production smoothing, we must antic-
ipate how an auto manufacturer would produce if
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it disregarded production stability. To conduct this
counterfactual analysis, we use structural estimation
(Lucas 1976, Reiss and Wolak 2007, Keane 2010); i.e.,
we (i) describe the data generating process with a pro-
duction scheduling model, (ii) estimate the model’s
primitives with a sample of production schedules,
and (iii) use these primitive estimates to simulate
how the manufacturers would have produced in the
absence of production volatility cost. Our structural
model incorporates the martingale model of forecast evo-
lution (MMFE) and the generalized order-up-to policy
(GOUTP) (Hausman 1969; Graves et al. 1986, 1998;
Chen and Lee 2009). A firm optimizes over the impulse
response functions (IRFs) that govern its demand signal
processing (DSP), its transformation of demand fore-
cast revisions into production forecast revisions. We
show that when a firm faces linear-quadratic costs,
each set of model primitives has a unique DSP signa-
ture; we reverse engineer this DSP pattern to estimate
the firm’s marginal costs.

Our production scheduling model relates to those
of Graves et al. (1986, 1998), Balakrishnan et al.
(2004), Aviv (2007), and Chen and Lee (2009). We
(i) broaden the objective function of Chen and Lee
(2009), (ii) extend the production processes of Graves
et al. (1986) and Balakrishnan et al. (2004), and
(iii) refine the demand processes of Graves et al. (1998)
and Aviv (2007). Each of these theoretical generaliza-
tions furthers our empirical agenda.

We estimate our model with auto manufacturing
data. OM researchers have studied the auto industry
for decades: Bresnahan and Ramey (1992) and Hall
(2000) estimated production cost functions; Ramey
and Vine (2006) and Copeland and Hall (2011) mea-
sured the effect of demand shocks on production
schedules; Gopal et al. (2013) and Shah et al. (2013)
related product launches and recalls to plant utiliza-
tion levels; Cachon and Olivares (2010) and Cachon
et al. (2012a) looked into dealership inventory lev-
els; Guajardo et al. (2012) investigated warranties;
and Moreno and Terwiesch (2011) studied production
flexibility.

2. Model
Underpinning our empirical production scheduling
model is Graves et al. (1998) and Chen and Lee’s
(2009) GOUTP, “an elegant model of 0 0 0production
and inventory planning” (Aviv 2007, p. 778). DSP,
the translation of demand forecast revisions into pro-
duction forecast revisions, drives the model dynamics
(Lee et al. 1997).

2.1. Martingale Model of Forecast Evolution
We model the firm’s information structure with
the martingale model of forecast evolution (MMFE)
(Hausman 1969, Graves et al. 1986, Heath and

Jackson 1994, Oh and Özer 2013). The MMFE de-
scribes the conditional expectations of a covariance-
stationary, discrete stochastic process, 8xt9�−�

. Let Ɛs4xt5
denote a forecaster’s conditional expectation of xt at
time s ≤ t. The forecaster observes xt in period t, so
Ɛt4xt5 = xt . And the forecaster has perfect memory, so
its forecasts follow a martingale:

Ɛr 4xt5= Ɛr 6Ɛr 4xt � Ɛs4xt557= Ɛr 6Ɛs4xt571 for r ≤ s ≤ t0

This is the MMFE’s namesake property.
We suppose that the forecaster has an H -period-

long forecast horizon, beyond which its forecasts are
constant: Ɛt4xt+l5=�, for l ≥H . With this, we decom-
pose xt into a sum of forecast revisions:

xt = 6Ɛt4xt5− Ɛt−14xt57+ 6Ɛt−14xt5− Ɛt−24xt57+ · · ·

+ 6Ɛt−H+14xt5− Ɛt−H 4xt57+ Ɛt−H 4xt5

= �+

H−1
∑

l=0

e′

l�t−l1

where el is a unit vector with a one in its 4l+15th posi-
tion and �t = Ɛt6xt1 0 0 0 1 xt+H−17

′ −Ɛt−16xt1 0 0 0 1 xt+H−17
′ is

a “signal vector” housing the forecast revisions the
firm makes in period t. Henceforth, we use “signal”
and “forecast revision” interchangeably and let el’s
length be context specific.

The forecast’s martingale property implies signal
vectors �s and �t are uncorrelated, for s < t:

Ɛs4�s�
′

t5 = �s Ɛs

[

Ɛt6xt1 0 0 0 1 xt+H−17− Ɛt−16xt1 0 0 0 1 xt+H−17
]

= �s
[

Ɛs6xt1 0 0 0 1 xt+H−17− Ɛs6xt1 0 0 0 1 xt+H−17
]

= 00

However, �t has general covariance matrix è, the trace
of which denotes xt’s variance:

�4è5 =

H−1
∑

l=0

e′

l Ɛ4�t−l�t−l
′5el =

H−1
∑

l=0

�4e′

l�t−l5

= �

(H−1
∑

l=0

e′

l�t−l

)

=�4xt50

2.2. Production Logistics
An auto manufacturer faces exogenous demand for a
single car model. In each period, the firm starts pro-
ducing a new batch of cars, taking � months to finish
each batch. The firm sources inputs quickly and back-
logs demand when it stocks out of finished goods:
the supply chain is decoupled (Kahn 1987, Gavirneni
et al. 1999, Lee et al. 2000, Chen and Lee 2009). The
firm has an H -period-long forecast horizon, rolling
forecasts for the next H demands. Its retail price is
fixed because “automakers only modestly respond
with changes in price when faced with a demand
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shock to a particular vehicle. Instead, demand shocks
are almost entirely absorbed by changes in sales and
production” (Copeland and Hall 2011, p. 233).

Two exogenous processes drive the firm’s inventory
dynamics:

dt = �+

H−1
∑

l=0

e′

l�t−l and (1)

ct = �c
+

H−1
∑

l=0

e′

l�
c
t−l0 (2)

Equation (1) expresses the period t demand, dt ,
as an MMFE with mean � and signal vector �t =

Ɛt6dt1 0 0 0 1 dt+H−17
′ − Ɛt−16dt1 0 0 0 1 dt+H−17

′. Equation (2)
expresses the period t marginal production cost, ct ,
as an MMFE with mean �c and signal vector �ct =

Ɛt6ct1 0 0 0 1 ct+H−17
′ − Ɛt−16ct1 0 0 0 1 ct+H−17

′. Cost shocks ct
reflect metal prices (Hall and Rust 2000), weather
conditions (Cachon et al. 2012a, b), available work
shifts (Copeland and Hall 2011), and labor relations
(Bresnahan and Ramey 1992). Signal vectors �t and
�ct have general covariance matrices è = Ɛ4�t�t

′5 and
èc = Ɛ4�ct �

c
t
′5, but are uncorrelated with one another:

Ɛ4�t�
c
t
′5= 0.

In accordance with the GOUTP, we suppose pro-
duction satisfies all demand within H periods and
follows a linear time-invariant function of observed
signals, �t−l and �ct−l:

pt =�+

H−1
∑

l=0

e′

l�
p

t−l1 (3)

where

�
p
t =A�t +Ac�ct 1 (4)

�′Ac
= 01 �′A= �′1 and �=

H−1
∑

l=0

el0 (5)

Equation (3) expresses the period t production start,
pt , as an MMFE with mean � and signal vector �

p
t =

Ɛt6pt1 0 0 0 1 pt+H−17
′ − Ɛt−16pt1 0 0 0 1 pt+H−17

′.
Equation (4) expresses these production signals as

a linear combination of demand and cost signals.
Specifically, the firm maps �t and �ct into �

p
t with

H × H matrices A and Ac, respectively. Matrix A
characterizes DSP: the mnth element of A routes
the 4n− 15-period-ahead demand forecast revision,
e′
n�t , into the 4m− 15-period-ahead production fore-

cast revision, e′
m�

p
t . And matrix Ac characterizes cost

signal processing (CSP): the mnth element of Ac

routes the 4n− 15-period-ahead cost forecast revisions,
e′
n�

c
t , into the 4m− 15-period-ahead production fore-

cast revisions, e′
m�

p
t . The columns of A and Ac house

the IRFs that characterize the production policy: the
nth column of A is the IRF that maps 4n− 15-period-
information-lead-time demand signals into produc-
tion quantities and the nth column of Ac is the IRF

that maps 4n− 15-period-information-lead-time cost
signals into production quantities. Accordingly, we
call A the DSP IRF matrix and Ac the CSP IRF matrix.

Equation (5) provides market-clearing constraints:
The �′Ac = 0 constraint makes the CSP IRFs integrate
to zero, which makes aggregate workloads insensitive
to cost shocks, and the �′A = �′ constraint makes the
DSP IRFs integrate to one, which makes production
satisfy demand within H +�− 1 periods.

Since the firm fulfills all demand within H +�− 1
periods, its forecast of inventories H + � periods
hence remains constant: Ɛt4it+H+�5 = �i (Graves et al.
1998). With this, we express the firm’s finished goods
inventories in terms of the difference between its
cumulative production starts, delayed � periods, and
its cumulative sales:

it = Ɛt−H−�4it5+ 6it − Ɛt−H−�4it57

= �i
+

[H+�−1
∑

l=0

4pt−�−l − dt−l5

− Ɛt−H−�

(H+�−1
∑

l=0

4pt−�−l − dt−l5

)]

= �i
+

H+�−1
∑

l=0

l
∑

i=0

e′

i4D��
p

t−l − I��t−l5

= �i
+

H+�−1
∑

l=0

( l
∑

i=0

e′

i

)

4D��
p

t−l − I��t−l5

= �i
+

H+�−1
∑

l=0

e′

l�
i
t1

where �it =C�4D��
p

t−l − I��t−l50 (6)

Equation (6) expresses the end-of-period-t finished
goods inventory level, it , as an MMFE with mean �i

and signal vector

�it = Ɛt6it1 0 0 0 1 it+H+�−17
′
− Ɛt−16it1 0 0 0 1 it+H+�−17

′0

We define this inventory signal vector with three
operators:

• Dx is a delay-by-x operator, an 4H + x5 × H
matrix with ones in the xth subdiagonal and
zeros elsewhere. For example, D26v11v21 0 0 0 1 vH 7

′ =

60101v11v21 0 0 0 1 vH 7
′. Multiplying the production sig-

nals by D� accounts for the � period production lead-
time delay.

• Ix is a lengthen-by-x operator, an 4H + x5 ×

H -dimensional version of the identity matrix.
For example, I26v11v21 0 0 0 1 vH 7

′ = 6v11v21 0 0 0 1 vH10107′.
Multiplying the demand signals by I� gives them the
same dimension as the delayed production signals.

• Cx is a cumulative sum operator, an 4H + x5 ×

4H + x5 lower triangular matrix of ones. For exam-
ple, C06v11v21 0 0 0 1 vH 7

′ = 6v11v1 +v21 0 0 0 1 v1 +· · · + vH 7
′.
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Multiplying the production and demand signals
by C� makes inventory depend on the cumulative
sum of production and demand.

2.3. Objective Function
The firm faces linear-quadratic costs (Holt et al.
1960, Blinder and Maccini 1991). In period t, it
incurs baseline production cost C1

t = ctpt , inventory
overage-underage cost C2

t = i2
t , production capac-

ity overage-underage cost C3
t = �p2

t , and produc-
tion input overage-underage cost C4

t =
∑h

l=1 �l4pt −

Ɛt−l4pt55
21 for h < H − 1. For example, suppose pro-

ducing a car requires (i) line capacity, which the firm
builds well in advance, (ii) labor, which the firm
schedules one month ahead, and (iii) raw materials,
which the firm orders two months ahead. In this
case, � parameterizes the line capacity cost, which is
convex in production pt , �1 parameterizes the labor
cost, which is convex in one-month forecast error
pt − Ɛt−14pt5, and �2 parameterizes the raw material
cost, which is convex in two-month forecast error
pt − Ɛt−24pt5.

The firm’s expected operating cost is Ɛ4C1
t + C2

t +

C3
t + C4

t 5 = Ɛ4ctpt5 + �4it5 + ��4pt5 +
∑h

l=1 �l�4pt −

Ɛt−l pt50 The firm chooses the IRF matrices that mini-
mize this expected cost, subject to the market-clearing
constraints of (5):

min
A1Ac

Ɛ4ctpt5+�4it5+��4pt5

+

h
∑

l=1

�l�4pt − Ɛt−l pt51 (7)

s.t. �′A= �′ and �′Ac
= 00

Relative to the marginal cost of inventory variability,
parameter � ≥ 0 denotes the marginal cost of pro-
duction variability and �l ≥ 0 denotes the marginal
cost of “lead-l production uncertainty,” the mean
square error of the l-period-ahead production fore-
cast, �4pt − Ɛt−l pt5. In other words, � parameter-
izes the firm’s aversion to overall production volatil-
ity and �l parameterizes its aversion to production
volatility that resolves in the last l periods. Aviv (2007,
p. 780) calls

∑h
l=1 �l�4pt − Ɛt−l pt5 in expression (7) an

“adherence to production plans [metric], a measure
commonly used in the industry” to measure produc-
tion uncertainty.

2.4. Optimal Policy
The following proposition characterizes the optimal
IRF matrices in terms of �, �, and �= 6�11 0 0 0 1�h7.

Proposition 1. The firm sets A = A4�1�1�5 and
Ac =Ac4�1�1�5, where

A4�1�1�5 = J +K
(

K ′4D′
�C

′
�C�D� +�I +L�5K

)−1

·
(

K ′D′
�C

′
�C�4I� −D�J 5−�K ′J

)

1

Ac4�1�1�5= −K
(

K ′4D′

�C
′

�C�D� +�I +L�5K
)−1

K ′1

J = eH−1�
′1

K = 4I − J 5I ′

−11 and

L� =

h
∑

l=1

l−1
∑

i=0

�leie
′

i0

Figure 1 depicts Proposition 1’s optimal DSP IRF
matrix under various parameter values. A plot’s nth
curve depicts the n − 1th column of A4�1�1�5, the
IRF that determines how demand signals with n-
period information lead times translate into produc-
tion quantities:

• When �= 0 and � and � are small, A mirrors an
identity matrix and production mirrors demand. In
this case, the firm acts like a cross-dock facility with
stable inventories.

• When � is large, the firm disperses mass
throughout A’s columns, which spreads demand
shocks across the production horizon. This is signal
pooling: rather than an individual demand signal, each
production quantity responds to a weighted sum of
all demand signals. Signal pooling attenuates produc-
tion variability.

• When �l is large, the firm diverts mass away
from A’s first l rows, which attenuates production
schedule changes made with less than l periods
notice. This is signal delaying: the firm postpones its
response to demand shocks to stabilize short-run pro-
duction schedules. Signal delaying attenuates produc-
tion uncertainty.

The following section develops an algorithm to
reverse engineer �, �, and � from the measured
degree of signal pooling and signal delaying.

3. Identification and Estimation
We now develop our theoretical model into an empir-
ical model. We treat �pt as a dependent variable, �t as
an independent variable, and et = Ac�ct as statistical
error. Section 3.1 presents our basic identification con-
ditions and estimators, and §3.2 refines these results.

3.1. Basic Specification
We present three propositions: The first defines an
inverse mapping from optimal production policies to
model primitives, the second uses this inverse map-
ping to establish a set of identifying moment condi-
tions, and the third uses these identifying moment
conditions to create generalized method of moment
(GMM) estimators of our model primitives.

The following proposition establishes thatA4�1�1�5
is one-to-one—that each set of primitives has a unique
DSP signature.
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Figure 1 Optimal Demand Signal Processing Impulse Response Functions
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Proposition 2. When H > � + 1, there exists in-
verse mapping A−14 · 5 that satisfies A−14A4�1�1�55 =

8�1�1�9.

We characterize A−1 in the appendix. The func-
tion enables us to empirically identify a firm’s prim-
itives from its DSP IRFs. The identification argument
is straightforward: production variability relative to
inventory variability identifies �, lead-l production
uncertainty relative to inventory variability identi-
fies �l, and the correlation between demand and
lagged production identifies �, since the firm tries to
match production starts in period t −� with demand
in period t.

Proposition 2 enables us to derive �, � and �
from A; Proposition 3, in turn, enables us to derive A
from �t and �

p
t .

Proposition 3. Matrix A is empirically identified in
a sample of demand signals �t , production signals �

p
t , and

instrumental variables �t , if

Rank6E4�t�
′

t57=H and (8)

E4et�
′

t5= 00 (9)

Instrumental variables �t enable us to determine the
causal effect of independent variables �t on depen-
dent variables �

p
t . Condition (8) is a classic instrumen-

tal variable inclusion restriction, ensuring the instru-
ments have enough linearly independent variation
to characterize the demand signals (Cameron and
Trivedi 2005). And condition (9) is a classic instru-
mental variable exclusion restriction, ensuring the
instruments do not correlate with the error terms.

With Proposition 3’s moment conditions, we define
estimators of �, � and � in terms of matrices E =

6�11 0 0 0 1 �T 7
′, Ep = 6�

p
11 0 0 0 1 �

p
T 7

′, and Z = 6�11 0 0 0 1 �T 7
′:

Proposition 4. If (8) and (9) hold, then the following
estimators are consistent:

8�̂1 �̂1 �̂9=A−14Â51 where Â= Ep ′ZZ′E4E ′ZZ′E5−10

Note Â is a GMM estimator corresponding to (9)’s
moment conditions (Cameron and Trivedi 2005).

3.2. Refined Specification
Proposition 4’s estimators have two drawbacks: (i) its
empirical requirements grow quickly with forecast
horizon H , and (ii) it needlessly sacrifices H 2 degrees
of freedom by pre-estimating A. We now refine our
identification conditions and estimators to address
these shortcomings.

Define �t = IH−H�t as the first H elements of �t ,
�
p
t = IH−H�

p
t as the first H elements of �pt , A4�1�1�5=

IH−HA4�1�1�5I ′
H−H as the top-left H × H submatrix

of A, and et = �
p
t −A4�1�1�5�t as a vector of statistical
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errors, where H satisfies 1 + max4�1h5 < H ≤ H . The
following proposition uses these variables to define
identification conditions whose data requirements do
not grow with H :

Proposition 5. Primitives �, �, and � are empiri-
cally identified in a sample of truncated demand signals �t ,
truncated production signals �

p
t , and instrumental vari-

ables �t , if

Rank6Ɛ4�t�
′

t57=H and (10)

Ɛ4et�
′

t5= 00 (11)

Conditions (10) and (11) are analogous to (8)
and (9)’s inclusion and exclusion restrictions, but
they only pertain to signals with information lead
times shorter than H . Thus, Proposition 5 estab-
lishes that the transformation of short-information-
lead-timed demand signals into short-information-
lead-timed production signals identifies our model
primitives.

With Proposition 5’s moment conditions, we define
estimators of �, � and � in terms of matrices E =

6�11 0 0 0 1 �T 7
′, Ep

= 6�
p
11 0 0 0 1 �

p
T 7

′, and Z = 6�11 0 0 0 1 �T 7
′:

Proposition 6. If (10) and (11) hold, then the follow-
ing estimators are consistent:

8�̂1 �̂1 �̂9 = arg min
�1�1�

vec64Ep ′
−A4�1�1�5E ′5Z7′

·W vec64Ep ′
−A4�1�1�5E ′5Z71

where vec is matrix vectorization and W is a GMM
weighting matrix.

4. Data
Hall (2000, p. 684) explains that

0 0 0most production decisions for automobile assem-
bly plants are made at the monthly frequency. Once a
month, there is a capacity planning meeting in which
production schedules are set. At this meeting managers
are presented with last month’s sales and inventory
numbers and a sales forecast. The managers must then
set and revise their production schedule.

We estimate these monthly production schedules
with monthly Wards Auto InfoBank data (WardsAuto
Group 2014), which provide physical-unit sales and
inventory levels of all cars produced in North Amer-
ica from 1985 to 2013.

First, we construct each car model’s demand and
production series. We use sales as a proxy for
demand, and we calculate production by summing
sales and the change in inventory. We begin a car
model’s time series when sales first exceed 1,000
cars and end it when sales last exceed 1,000 cars.
We detrend each sales and production series, divid-
ing them by their LOWESS regression fitted values

Table 1 Sample Overview

Number of Distinct

Cars Periods Obs.

American
Chrysler 12 339 2,906
Ford 23 339 5,521
GM 46 339 9,550
Total 81 339 17,977

Asian
Honda 8 339 1,840
Hyundai 4 291 919
Isuzu 2 238 382
Kia Motors 2 152 299
Mazda 5 292 1,090
Mitsubishi 5 326 1,119
Nissan 9 339 2,128
Subaru 4 287 928
Toyota 19 339 4,139
Total 58 339 12,844

European
Audi 2 210 419
BMW 4 339 1,168
Daimler 6 339 1,636
Jaguar 2 336 408
Porsche 1 305 305
Saab 2 308 308
VW 5 339 1,197
Volvo 1 145 145
Total 23 339 5,586

Total 162 339 36,407

(Cameron and Trivedi 2005). Our sample comprises
the 162 time series that are at least 144 months long.
Table 1 provides summary statistics.

Second, we estimate demand and production fore-
casts Ɛt4dt+l5 and Ɛt4pt+l5 for l ≤ H . We derive
our forecast estimates from the following forecast
variables:

• From Wards Auto InfoBank, we get monthly
sales and inventory levels at the model, firm,
and industry levels, and sales and inventory levels
squared at the model level.

• From the website of the Office of Highway Policy
Information (Federal Highway Administration 2013),
we get monthly aggregate vehicle miles traveled in
the United States.

• From the website of the Bureau of Labor Statistics
(2013), we get the monthly producer price index of
the primary metal manufacturing industry.

• From the website of the Conference Board (Con-
sumer Confidence Survey 2014), we get the monthly
consumer confidence index.

• From the website of the U.S. Energy Informa-
tion Administration (2014), we get the monthly aver-
age New York Harbor conventional gasoline regular
spot price.

We store the 12 forecast variables that resolve in
period t in vector xt . We suppose Ɛt4dt+l5 and Ɛt4pt+l5
are linear in variables 8xt1 0 0 0 1 xt+l−H 9 and seasonal
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dummies st . Accordingly, we define forecast estimates
Ɛ̂t4dt+l5 and Ɛ̂t4pt+l5 as the projections of dt+l and pt+l

on 8st1xt1 0 0 0 1 xt+l−H 9.
Third, we difference these forecast estimates to

obtain our truncated MMFE signal estimates:

�̂t =
[

Ɛ̂t4dt51 0 0 0 1 Ɛ̂t4dt+H−15
]′

−
[

Ɛ̂t−14dt51 0 0 0 1 Ɛ̂t−14dt+H−15
]′ and

�̂
p
t =

[

Ɛ̂t4pt51 0 0 0 1 Ɛ̂t4pt+H−15
]′

−
[

Ɛ̂t−14pt51 0 0 0 1 Ɛ̂t−14pt+H−15
]′
0

Fourth, we derive the instrumental variables. To
satisfy (8), the instruments must correlate with �t’s
demand forecast revisions. Since these forecast revi-
sions won’t correlate with anything forecastable prior
to period t (because of the MMFE’s martingale prop-
erty), the natural choices of instruments are innova-
tions in the demand forecast variables, xt − Ɛt−14xt5.
To satisfy (9), however, we must exclude the fore-
cast variables that may correlate with cost shocks ct .
Accordingly, we use instruments �t = zt − Ɛt−14zt5,
where zt ⊂ xt are a subset of forecast variables that we
assume are uncorrelated with production costs. We
include in zt the demand levels, the consumer con-
fidence index, and the aggregate vehicle miles trav-
eled; we exclude from zt the inventory levels, which
incorporate production quantities, the metal manufac-
turers’ producer price index, which drives the cost of
goods sold, and the price of gasoline, which correlates
with power costs. On average, �t explains 48% of e′

4�̂t ,
55% of e′

3�̂t , 53% of e′
2�̂t , 67% of e′

1�̂t , and 100% of e′
0�̂t

(since e′
0�̂t is an instrument).

Finally, we specify forecast horizons H and H .
Since zt has six elements, (8) holds for H ≤ 6; we set
H = 5 for an extra degree of freedom. We set H = 24
(two years).

5. Parameter Estimates
We estimate each car model’s parameters separately,
with Proposition 6’s estimators. Substituting estimates
�̂t and �̂

p
t for signals �t and �

p
t makes our GMM stan-

dard errors inconsistent (see Newey 1984), so we com-
pute standard errors with the block bootstrap, which
is valid with sequential estimators (Berkowitz and
Kilian 2000, Hardle et al. 2003).

5.1. Cost Parameters
Table 2 presents �̂ and �̂l, which respectively esti-
mate the production variability and lead-l production
uncertainty marginal costs, relative to the inventory
variability marginal cost. We find aversions to both
production variability and uncertainty, with signifi-
cantly positive mean and median �̂ and �̂. Overall,
95% of our sample exhibits some aversion to produc-
tion instability, with positive �̂, �̂1, �̂2, or �̂3.

Table 2 Cost Parameter Estimates

Mean Median

�̂ �̂1 �̂2 �̂3 �̂ �̂1 �̂2 �̂3

American
Chrysler 0045 0063 1010 0071 0000 0000 0050 0024

400295 400375 400425 400355 400215 400045 400315 400205
Ford 0095 0011 1015 1003 0041 0000 0036 0074

400295 400265 400285 400265 400135 400065 400155 400265
GM 1066 0047 1071 2010 0088 0000 0099 0085

400205 400265 400275 400205 400195 400115 400395 400215
Total 1028 0039 1046 1059 0054 0000 0062 0068

400135 400165 400195 400155 400095 400025 400235 400165
Asian

Honda 2055 0000 1033 1062 1016 0000 0042 0071
400695 400465 400745 400535 400635 400135 400505 400485

Hyundai 0027 0004 0028 0016 0013 0000 0025 0000
400225 400275 400335 400285 400115 400015 400145 400085

Isuzu 1002 0000 0033 0013 1002 0000 0033 0013
400795 400715 400815 400555 400795 400715 400815 400555

Kia Motors 0000 0000 0000 0000 0000 0000 0000 0000
400045 400015 400115 400055 400045 400015 400115 400055

Mazda 1074 0000 0013 0053 0062 0000 0004 0082
400535 400095 400245 400285 400155 400075 400195 400205

Mitsubishi 1024 0000 0012 0072 0001 0000 0002 0004
400375 400305 400295 400325 400005 400015 400035 400035

Nissan 1057 0085 2009 1050 0066 0018 1054 0097
400555 400615 400525 400585 400605 400485 400675 400645

Subaru 0073 0000 1022 0069 0036 0000 0076 0058
400475 400375 400695 400455 400275 400005 400285 400315

Toyota 0046 0039 0064 0053 0006 0002 0013 0006
400225 400245 400305 400255 400075 400055 400145 400075

Total 1011 0026 0085 0080 0022 0000 0014 0020
400165 400185 400195 400155 400045 400005 400065 400055

European
Audi 0000 0011 0000 0055 0000 0011 0000 0055

400475 400995 400645 400665 400475 400995 400645 400665
BMW 0000 0000 0015 0000 0000 0000 0013 0000

400085 400015 400095 400195 400015 400005 400085 400045
Daimler 0005 0002 0000 0028 0000 0000 0000 0001

400155 400205 400035 400165 400025 400015 400005 400045
Jaguar 0001 0000 0027 0017 0001 0000 0027 0017

400095 400625 400765 400215 400095 400625 400765 400215
Porsche 0000 0000 0006 0000 0000 0000 0006 0000

400355 400125 400065 400025 400355 400125 400065 400025
Saab 3000 0000 0031 2071 3000 0000 0031 2071

410145 410635 410335 410095 410145 410635 410335 410095
VW 0050 1034 0098 0087 0029 0020 0000 0010

400575 400725 400705 400505 400425 400495 400635 400485
Volvo 0002 0000 0029 0007 0002 0000 0029 0007

400145 410105 410965 410525 400145 410105 410965 410525
Total 0038 0031 0030 0056 0000 0000 0000 0001

400165 400215 400255 400175 400015 400005 400045 400035
Total 1009 0033 1008 1016 0028 0000 0027 0037

400095 400125 400135 400105 400055 400005 400085 400075

Figure 2 depicts the medians (with vertical dashed
lines) and probability density functions (PDFs) of �̂l =

�̂ +
∑h

i=l+1 �̂i, our estimates of the marginal cost of
the variance of production signals with l-period infor-
mation lead times. First, the American firms are par-
ticularly averse to production schedule revisions—
the median American �̂l is more than five times the
median non-American �̂l, for l = 0, 1, 2, and 3+.
This finding points to Detroit’s sluggishness. Second,
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Figure 2 Production Volatility Cost Estimate Medians and PDFs by Information Lead Time
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surprising production fluctuations cost more than
predictable ones: the mean �̂1 is statistically larger
than the mean �̂2, which is statistically larger than
the mean �̂3. For example, the median American
manufacturer deems last-minute production schedule
changes to be three times as costly as inventory fluctu-
ations, but deems three-month-out production sched-
ule changes to be only half as costly as inventory
fluctuations.

5.2. Lead Times
Table 3 tabulates the discrete PDFs of our production
lead-time estimates, �̂ (we cap �̂ to two months since
producing a car should take less than 60 days). Most
�̂ are zero months, which supports the Lieberman
et al. (1995, p. 9) finding that production lead times
only “sometimes exceed one month.” At 0.52 months,
the average Asian lead time is statistically smaller
than the average non-Asian lead time, at 0.80 months.
This finding highlights the Asian firms’ proclivity for
JIT manufacturing. Indeed, of the 13 companies that

Table 3 Lead-Time Estimate PDFs

�̂= 0 �̂= 1 �̂= 2

American 0049 0030 0021
400055 400045 400045

Asian 0064 0021 0016
400065 400055 400045

European 0057 0017 0026
400085 400085 400085

Total 0056 0025 0020
400045 400035 400035

have at least three car models in our sample, Toyota—
the inventor of the Toyota Production System—has
the shortest production lead time, at 0.11 months; Toy-
ota produces statistically faster than the average firm.

5.3. DSP Matrices
We estimate matrices A, è= Ɛ4�t�t

′5, and èe
= Ɛ4etet

′5

with Â = A4�̂1 �̂1 �̂5, è̂ = T −1E ′E, and è̂
e

=

T −14Ep ′
− ÂE ′54Ep ′

− ÂE ′5′0 Figure 3 plots these esti-
mates, normalizing �4è̂5 to one. The Â estimates
demonstrate substantial production policy hetero-
geneity: our data take advantage of our model’s flex-
ibility. The mostly positive �̂ give Â their dispersion;
the mostly positive �̂ give Â their asymmetry; and
the mostly zero �̂ give Â their diagonal ridge. The è̂

estimates confirm that demand signals are positively
correlated and more volatile with shorter information
lead times. The large è̂

e
estimates indicate that the

error terms are influential, which limits our R2 values:
on average, e′

lA�̂t account for 38%, 40%, 41%, 36%,
and 36% of e′

l�̂
p
t , for l = 0, 1, 2, 3, and 4.

6. Application
We now use our model to disentangle production
smoothing from the bullwhip effect. Production
smoothing is production stabilization intended to re-
duce production volatility costs. Microeconomists pre-
dicted “[i]f marginal production costs are increasing
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Figure 3 Quantiles of the DSP and CSP Matrix Estimates
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and sales vary over time, a cost-minimizing strat-
egy that equates marginal costs across time periods
will smooth production relative to sales” (Blinder and
Maccini 1991, p. 78). The bullwhip effect, on the other
hand, is the tendency for demand shocks to amplify,
like the crack of a whip, as they wend their way up
a supply chain (Lee et al. 1997). Although distinct,
these phenomena have shared a common measure—
the ratio of production variability to sales variability
(Cachon et al. 2007, Bray and Mendelson 2012, Shan
et al. 2013). Mapping these two concepts to a sin-
gle measure has forced them to be antithetical: either
a firm exhibited the bullwhip effect, with produc-
tion more volatile than sales, or production smooth-
ing, with sales more volatile than production. We
have therefore implicitly defined production smooth-
ing to be the anti-bullwhip. Empirically, this framing
has enabled the bullwhip effect to steamroll produc-
tion smoothing; e.g., production is more variable than
demand in 160 of the 162 car models in our sample.

We reconcile the false dichotomy between produc-
tion smoothing and the bullwhip effect with a new
production smoothing measure. Rather than bench-
mark production variability to sales variability—
an apples-to-oranges comparison, because of the
bullwhip—we benchmark it to the production vari-
ability in the hypothetical scenario in which firms
have no incentive to smooth. That is, we measure
a firm’s smoothing with the ratio of what its pro-
duction variability actually is to what it would be if

it were indifferent to production stability. We simu-
late the stability-indifferent counterfactual by setting
� and � to zero, since these parameters compel the
firm to stabilize production:

̂PS = �̂�=�̂
�=�̂

4p
t
5/�̂�=0

�=0
4p

t
5

=
�6A4�̂1 �̂1 �̂5è̂A4�̂1 �̂1 �̂5′ + è̂

e
7

�6A40101 �̂5è̂A40101 �̂5′ + è̂
e
7
0 (12)

Equation (12)’s smoothing estimate relies on two sim-
plifications. First, it supposes the et statistical errors
don’t change with � or �. Second, it pertains to p

t
=

pt − Ɛt−H 4pt5 rather than pt , because �̂
p
t doesn’t capture

the production fluctuations firms can anticipate H = 5
months early. (Removing Ɛt−H 4pt5 sacrifices about a
tenth of pt’s variation.)

We measure the bullwhip effect with the traditional
variance amplification ratio:

̂BW = �̂4p
t
5/�̂4dt5=

�6A4�̂1 �̂1 �̂5è̂A4�̂1 �̂1 �̂5′ + è̂
e
7

�6è̂7
0

Note, to match our smoothing metric, we measure
the bullwhip in terms of p

t
= pt − Ɛt−H 4pt5 and dt =

dt − Ɛt−H 4dt5, rather than pt and dt (the results are sim-
ilar either way).

With our new smoothing measure, we no longer
must pit the bullwhip effect against production
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Figure 4 Sales, Production, and Stability-Indifferent Counterfactual
Production of the Dodge Neon
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smoothing. For example, the Dodge Neon exhibits
both the bullwhip effect and production smoothing in
Figure 4. The figure plots the Neon’s demand, pro-
duction, and counterfactual production in the � =

� = 0 scenario. (We estimate the counterfactual pro-
duction with

∑H−1
l=0 e′

lA40101 �̂5�̂t + êt , where êt = �̂
p
t −

A4�̂1 �̂1 �̂5�̂t .) The figure’s top panel depicts the bull-
whip effect, with production 290% more variable
than demand. The bottom panel depicts production
smoothing, with production 14% less variable than
it would be in the stability-indifferent counterfactual
scenario.

Extending these results to the rest of our sample,
Figure 5 plots the joint and marginal distributions of
our bullwhip and smoothing estimates. We find both
phenomena: 99% of our bullwhip estimates exceed

Figure 5 Production Smoothing and Bullwhip Effect Estimates
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one (on average, production is 240% as variable as
demand), and 95% of our production smoothing esti-
mates fall short of one (on average, production is
only 81% as variable as it would be without explicit
stabilization). The median American manufacturer
smooths significantly more than the median non-
American manufacturer and thus has a significantly
smaller bullwhip—intuitively, Americans are better
suited to smoothing, since being less lean gives them
more stabilizing inventories.

So far, we have only considered production
variability, but firms also attenuate production
uncertainty. We measure the smoothing of lead-l pro-
duction uncertainty by comparing its values in the
current and stability-indifferent scenarios:

̂PSl = �̂�=0
�=0

4p
t
− Ɛt−l4pt

55/�̂�=�̂
�=�̂

4p
t
− Ɛt−l4pt

55

=

∑l−1
i=0 e

′
i6A40101 �̂5è̂A40101 �̂5′ + è̂

e
7ei

∑l−1
i=0 e

′
i6A4�̂1 �̂1 �̂5è̂A4�̂1 �̂1 �̂5′ + è̂

e
7ei

0

We likewise define the lead-l bullwhip effect as the
amplification of lead-l uncertainty, from demand to
production (Bray and Mendelson 2012):

̂BWl = �̂4p
t
− Ɛt−l4pt

55/�̂4dt − Ɛt−l4dt55

=

∑l−1
i=0 e

′
i6A4�̂1 �̂1 �̂5è̂A4�̂1 �̂1 �̂5′ + è̂

e
7ei

∑l−1
i=0 e

′
iè̂ei

0

Table 4 tabulates ̂BWl and ̂PSl. The ̂BWl estimates,
significantly greater than one, indicate that uncer-
tainty increases from demand to production, and
the ̂PSl estimates, significantly less than one, indi-
cate that uncertainty increases from actual produc-
tion to stability-indifferent counterfactual production.
The median lead-1 bullwhip is significantly larger
than the median lead-5 bullwhip, which confirms
the finding of Bray and Mendelson (2012) that firms
amplify last-minute surprise more than predictable
fluctuations: the bullwhip thrives in a time crunch.
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Table 4 Quartiles of the Lead-l Production Smoothing and
Bullwhip Effect Estimates

l = 1 l = 2 l = 3 l = 4 l = 5

̂BWl

Q1 1074 1063 1061 1065 1063
400065 400065 400055 400065 400065

Q2 2051 2018 2012 2018 2016
400105 400105 400095 400095 400065

Q3 3042 3005 2098 3005 2085
400175 400135 400115 400125 400125

̂PSl

Q1 0056 0059 0062 0067 0069
400035 400035 400025 400025 400025

Q2 0075 0076 0079 0084 0084
400025 400025 400025 400015 400015

Q3 0088 0090 0092 0094 0095
400025 400015 400015 400015 400015

Nevertheless, firms attenuate surprising production
fluctuations more aggressively; e.g., the median firm
smooths lead-1 uncertainty 56% more than lead-5
uncertainty. Since unexpected production schedule
changes cost more, firms attenuate them more. The
firms smooth lead-1 uncertainty with signal delay-
ing, postponing their response to surprising demand
shocks to freeze short-term production plans, and
they smooth lead-5 uncertainty with signal pooling,
averaging out demand fluctuations across the produc-
tion horizon (see §2.4).

7. Conclusion
In this paper, we do three things. First, we create
a new production smoothing measure: rather than
benchmark production variability to sales variabi-
lity—a comparison bullwhip corrupts—we bench-
mark production variability to what it would be with-
out production stabilization. Whereas the traditional
measure suggests 1% of our sample smooths pro-
duction, our new measure suggests 75% smooths
production by at least 5%. Further, we find produc-
tion smoothing and the bullwhip effect can coexist—
indeed, they do so in the majority of our sample. Thus,
the bullwhip effect is more than merely the opposite
of production smoothing: it has distinct operational
underpinnings and ramifications.

Second, we advance the notion of smoothing pro-
duction uncertainty. Not all production fluctuations
are equal; some are more surprising and hence more
costly. We measure production uncertainty with the
Aviv (2007, p. 780) “adherence to production plans”
metric, which weighs production fluctuations by their
information lead time. We find that firms smooth
production uncertainty, attenuating surprising pro-
duction fluctuations (those they anticipate with less
than two months’ notice) significantly more than pre-
dictable production fluctuations (those they anticipate
with more than four months’ notice).

Third, we develop a new empirical approach:
gleaning operational insights from demand signal

processing. We show that the transformation of de-
mand into production empirically identifies manufac-
turing costs. Our model-cum-estimators give empiri-
cists a flexible means to invoke inventory theory:
managers could use our framework to conduct oper-
ational counterfactuals, such as estimating the value
of shortening production lead times or improving
demand forecasts. A large Midwest manufacturer
plans to use our empirical DSP model to deter-
mine whether their idle upstream capacity stems from
overly optimistic demand forecasts.
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Appendix. Proposition Proofs

Proof of Proposition 1. First, we show that H × H
matrix X satisfies �′X = 0 if and only if X = KX, for some
4H−15×H matrix X. Each column of K sums to zero, which
means �′K = 0, which means X =KX implies �′X = �′KX = 0.
Matrix J takes the form 601 �7′, which means �′X = 0 implies
JX = 0. Thus if �′X = 0, then let X = I−1X, and KX =KI−1X =

4I − J 5X =X.
Second, we show that H × H matrix X satisfies �′X = �′

if and only if X = J +KX, for some 4H − 15×H matrix X.
Each column of J sums to one, which means �′J = �′. Each
column of I − J sums to zero, which means �′K = 0. Thus if
X = J +KX, then �′X = �′4J +KX5= �′J + �′KX = �′ + 0X = �′.
Matrix J takes the form 601 �7′, which means �′X = �′ implies
JX = J . Thus, if �′X = �′, then let X = I−1X, and J + KX =

J + 44I − J 5I ′
−15I−1X = J + 4I − J 5X = JX + 4I − J 5X =X.

Third, we use these results to remove the market clearing
constraints from the firm’s objective. Doing so yields

min
A1Ac

�4KAcèc5
︸ ︷︷ ︸

Ɛ4ctpt 5

+�4C�4D�4J +KA5− I�5è44J
′ +A′K ′5D′

� − I ′
�5C

′
�

+C�D�KA
cècAc ′K ′D′

�C
′
�5

︸ ︷︷ ︸

�4it 5

+�4�4J +KA5è4J ′
+A′K ′5+�KAcècAc ′K ′5

︸ ︷︷ ︸

��4pt 5

+�4L�4J +KA5è4J ′
+A′K ′5+L�KA

cècAc ′K ′5
︸ ︷︷ ︸

∑h
l=1 �l�4pt−Ɛt−l4pt 55

0

Fourth, we differentiate this objective with respect to A. We
do so with two matrix calculus identities: ¡�4AXB5/¡X =

A′B′ and ¡�4AXBX ′A′5/¡X = A′AX4B + B′5 (Petersen and
Pedersen 2008):

¡

¡A

[

�4KAcèc5+�
(

C�4D�4J +KA5−I�5è44J
′
+A′K ′5D′

�−I ′

�5C
′

�

+C�D�KA
cècAc ′K ′D′

�C
′

�

)
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+�
(

�4J +KA5è4J ′
+A′K ′5+�KAcècAc ′K ′

)

+�
(

L�4J +KA5è4J ′
+A′K ′5+L�KA

cècAc ′K ′
)]

=0

⇒
¡

¡A

[

�
(

C�D�KAèA′K ′D′

�C
′

�+2C�D�KAè4J ′D′

�−I ′

�5C
′

�

)

+�
(

�KAèA′K ′
+2�KAèJ ′

)

+�
(

L1/2
� KAèA′K ′L1/2′

� +2L1/2
� KAèJ ′L1/2′

�

)]

=0

⇒K ′D′

�C
′

�C�D�KAè+K ′D′

�C
′

�C�4D�J −I�5è

+�K ′KAè+�K ′Jè+K ′L�KAè+K ′L�Jè=0

⇒A=
(

K ′4D′

�C
′

�C�D�+�I+L�5K
)−1

·
(

K ′D′

�C
′

�C�4I�−D�J 5−�K ′J −K ′L�J
)

⇒A=
(

K ′4D′

�C
′

�C�D�+�I+L�5K
)−1

·
(

K ′D′

�C
′

�C�4I�−D�J 5−�K ′J
)

⇒A= J +K
(

K ′4D′

�C
′

�C�D�+�I+L�5K
)−1

·
(

K ′D′

�C
′

�C�4I�−D�J 5−�K ′J
)

0

Differentiating the firm’s objective with respect to Ac like-
wise yields Ac . �

Proof of Proposition 2. Let A−14A5 = 8�4A51�4A51
�4A590 First we derive �4A5 with three identities:

1. K ′D′
�C

′
�C�D�K + K ′L�K is symmetric and positive

definite.
2. 4D′

�C
′
�C�4I� −D�J 5− L�J 5e�+1 = 4D′

�C
′
�C�4I� −D�J 5−

L�J 5e� − e0.
3. 4D′

�C
′
�C�4I� − D�J 5 − L�J 5el = 4D′

�C
′
�C�4I� − D�J 5 −

L�J 5el+1, for l < �.
The first identity implies K4K ′D′

�C
′
�C�D�K +K ′L�K5

−1K ′

is symmetric and positive definite, which implies
e′

0K4K
′D′

�C
′
�C�D�K + K ′L�K5

−1K ′e0 is nonzero. The second
identity yields

e′

0Ae�+1 = e′

0

[

J +K4K ′D′

�C
′

�C�D�K +K ′L�K5
−1

·K ′4D′

�C
′

�C�4I� −D�J 5−L�J 5
]

e�+1

= e′

0K4K
′D′

�C
′

�C�D�K +K ′L�K5
−1

·K ′4D′

�C
′

�C�4I� −D�J 5−L�J 5e�+1

= e′

0K4K
′D′

�C
′

�C�D�K +K ′L�K5
−1

·K ′
[

4D′

�C
′

�C�4I� −D�J 5−L�J 5e� − e0

]

6= e′

0K4K
′D′

�C
′

�C�D�K +K ′L�K5
−1

·K ′4D′

�C
′

�C�4I� −D�J 5−L�J 5e�

= e′

0

[

J +K4K ′D′

�C
′

�C�D�K +K ′L�K5
−1

·K ′4D′

�C
′

�C�4I� −D�J 5−L�J 5
]

e�

= e′

0Ae�0

The third identity implies that e′
0Ael = e′

0Ael+1, for l < �. Put-
ting this together, we get �4A5= min48l2 e′

0Ael 6= e′
0Ael+195.

Next we define �4A5 and �4A5 implicitly. Let wl = e′
lAe0.

Scalars wl do not depend on è, èc , or �, so we can set
è = I , èc = 0, and � = 0. At the optimum, the benefit of
shifting a marginal unit of mass from wl−1 to wl is zero, a

fact that yields the following difference equations (Graves
et al. 1998):

(

�+

h
∑

i=l+1

�i

)

4wl −wl−15−�lwl−1 + 1 −

l−1
∑

i=0

wi = 01

l ∈ 811 0 0 0 1h91

�4wh+1 −wh5+ 1 −

h
∑

i=0

wi = 00

These h+1 linear equations implicitly define �4A5
and �4A5. �

Proofs of Propositions 3–6. First, estimator Â is consis-
tent (note, condition (8) enables us to invert Ɛ4�t�

′
t5Ɛ4�t�t

′5
and condition (9) enables us to drop Ɛ4et�

′
t5):

lim
T→�

Â = lim
T→�

Ep ′ZZ′E4E′ZZ′E5−1

= Ɛ4�
p
t �

′

t5Ɛ4�t�t
′5
(

Ɛ4�t�
′

t5Ɛ4�t�t
′5
)−1

= Ɛ
(

4A�t + et5�
′

t

)

Ɛ4�t�t
′5
(

Ɛ4�t�
′

t5Ɛ4�t�t
′5
)−1

= AƐ4�t�
′

t5Ɛ4�t�t
′5
(

Ɛ4�t�
′

t5Ɛ4�t�t
′5
)−1

= A0

Since Â converges to A, A−14Â5 must converge to 8�1�1�9,
which proves Propositions 3 and 4. Second, since Propo-
sition 2’s inverse mapping only references elements in A’s
top-left H ×H submatrix, function A4�1�1�5 is also one-to-
one, which implies (11)’s moment conditions are consistent
at the true �, �, and � values only:

lim
T→�

T −1(Ep ′
−A4�̂1 �̂1 �̂5E ′

)

Z

= lim
T→�

T −1
T
∑

t=1

(

�
p
t −A4�̂1 �̂1 �̂5�t

)

�t
′

= lim
T→�

T −1
T
∑

t=1

(

4A4�1�1�5−A4�̂1 �̂1 �̂55�t + et
)

�t
′

=
(

A4�1�1�5−A4�̂1 �̂1 �̂5
)

Ɛ4�t�
′

t5

= 0

if and only if 8�̂1 �̂1 �̂9= 8�1�1�9.
This proves Propositions 5 and 6. �
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