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he bullwhip effect is the amplification of demand variability along a supply chain: a company bullwhips

if it purchases from suppliers more variably than it sells to customers. Such bullwhips (amplifications of
demand variability) can lead to mismatches between demand and production and hence to lower supply chain
efficiency. We investigate the bullwhip effect in a sample of 4,689 public U.S. companies over 1974-2008. Overall,
about two-thirds of firms bullwhip. The sample’s mean and median bullwhips, both significantly positive,
respectively measure 15.8% and 6.7% of total demand variability. Put another way, the mean quarterly standard
deviation of upstream orders exceeds that of demand by $20 million. We decompose the bullwhip by information
transmission lead time. Estimating the bullwhip’s information-lead-time components with a two-stage estimator,
we find that demand signals firms observe with more than three-quarters’ notice drive 30% of the bullwhip, and
those firms observe with less than one-quarter’s notice drive 51%. From 1974-1994 to 1995-2008, our sample’s
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mean bullwhip dropped by a third.
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1. Introduction

This paper studies the existence and structure of the
bullwhip effect, one of supply chain management’s
most celebrated hypotheses. When Cachon et al
(2007, p. 457) seek the bullwhip effect in industry-
level data, they find that “retail industries generally
do not exhibit the effect, nor do most manufactur-
ing industries.” Like Cachon et al. (2007), we look at
the bullwhip across the entire U.S. economy, but we
study the effect at the firm rather than the industry
level. In firm-level data, mean and median bullwhips
are significantly positive; 65% of our sample’s firms
bullwhip.

A number of case studies illustrate the bullwhip:
Hammond (1994), Lee et al. (1997), Fransoo and
Wouters (2000), Lai (2005), and Wong et al. (2007),
respectively, find it in pasta, soup, frozen dinner,
toy, and grocery supply chains. However, two factors
make drawing conclusions from single-firm studies
difficult: First, a publication bias may favor positive
results—after all, bullwhip case studies will feature
companies that bullwhip. Second, as our own results
show, companies exhibit substantial bullwhip hetero-
geneity: the bullwhip standard deviation is nearly
three times larger than the bullwhip mean. In fact, we
find that only 24% of firm bullwhips lie between half
and twice the global average—case-study estimates

likely lie nowhere near the economy-wide mean.
Moreover, 35% of our sample exhibits no bullwhip
whatsoever.

Aware of these small-sample pitfalls, Cachon et al.
(2007) search for the phenomenon in a wide panel
of industries. They find mixed results, as seasonal
smoothing—the attenuation of seasonal variation—
dampens much of their effect: out of 75 industries, 61
exhibit a bullwhip when they remove seasonality, but
only 39 do when they do not. However, Cachon et al.
(2007, pp. 477-478) explain that “it is possible that
firms exhibit the bullwhip effect but the industry does
not” and hence conclude that “Now, attention should
turn toward probing data from individual firms...so
that we can deepen our understanding of this phe-
nomenon.” Accordingly, we study the bullwhip in a
panel of U.S. companies. The bullwhip largely man-
ifests itself in firm-level data: out of 31 industries,
30 exhibit positive mean bullwhips when we remove
seasonality, and 26 when we do not. And the effect
is economically meaningful: the mean quarterly stan-
dard deviation of upstream orders exceeds that of
demand by $20 million.

Methodologically, our study differs from the study
of Cachon et al. (2007) in four noteworthy ways:
First, our data—quarterly and firm level, rather than
monthly and industry level—sacrifice temporal for
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cross-sectional granularity. Second, rather than esti-
mate the bullwhip in the fractional growth rate, by
log differencing, we estimate it in the level, a mea-
sure that better aligns with the theoretical bullwhip
literature. Third, we do not just test for the existence
of the bullwhip—we also measure its prevalence: we
estimate the entire distribution of company bullwhips
rather than just their industry-level means. Fourth,
and most importantly, we decompose the effect into
an infinite number of flavors based on demand signal
transmission lead times.

Following Aviv (2007) and Chen and Lee (2009,
2010),' our bullwhip measures distinguish between
demand variability and demand uncertainty. And
they further decompose demand uncertainty by infor-
mation availability. We study the bullwhip effect
in the context of a martingale model of forecast
evolution (MMFE) demand process (Hausman 1969,
Hausman and Peterson 1972), in which demand
uncertainty resolves gradually through a series of
“lead !” demand signals, i.e., signals with [ period
transmission lead times, /=0, 1, 2, .... Following the
MMEFE, we decompose the bullwhip into a series of
lead I bullwhips, the variance amplifications of lead !
demand signals. The lead -I bullwhips provide a pro-
file of information distortion—their patterns reflect
demand-signal twisting.

The mean bullwhip in our sample measures 15.8%
of the magnitude of demand variability when we
incorporate seasonality, and 19.6% when we elimi-
nate it. Both signals with short and long information
lead times contribute to the bullwhip effect: the mean
lead 0 bullwhip, attributable to signals with informa-
tion lead times shorter than one quarter, measures
10.0% the magnitude of demand variability, and the
mean lead 3 + bullwhip, attributable to signals with
information lead times longer than three quarters,
measures 5.8%. Thus, the beer-game impression of the
bullwhip—a manager frantically amending orders,
chasing a runaway demand—does not tell the entire
story; managers can anticipate nearly a third of the
signals driving the phenomenon nine months early.

Others have estimated firm production in response
to dynamic demand forecasts. Cohen et al. (2003)

! Chen and Lee (2009, p. 795) write,

So far, most researchers, including Cachon et al. (2007), have
been looking at order variability as the measure of the bull-
whip effect. Maybe we need to develop a new measure of the
harmful effects of the bullwhip, i.e., a measure that captures
the order uncertainty and not just the order variability.

And Chen and Lee (2010, p. 18) explain that a “bullwhip measure
should be properly discounted to account for the actual demand
uncertainty faced by the upstream stage (which is a conditional
variance as opposed to the total variability captured by the bull-
whip measure).”

use production decisions to estimate semiconduc-
tor equipment manufacturing costs. Terwiesch et al.
(2005) and Krishnan et al. (2007) study the relation-
ship between customers placing orders and a pro-
ducer satisfying them in the semiconductor industry.
Both find gaming inefficiencies. Dong et al. (2011)
study the effect of demand forecast sharing on sup-
ply chain performance. Finally, Sterman (1989) and
Croson and Donohue (2003, 2006) study the bullwhip
effect in the laboratory.

In §2 we study the bullwhip effect theoretically.
We first develop a model of firm production, a con-
text in which to study the bullwhip. We then show
that the bullwhip decomposes by information trans-
mission lead time into an infinite set of lead I bull-
whips. In §3, we construct a consistent estimator of
the lead ! bullwhip from differences in the variances
of demand and order forecast errors. In §4, we present
our bullwhip estimates. In §5, we provide robustness
checks. In §6, we provide our concluding remarks.

2. Modeling the Bullwhip Effect

We begin our analysis with a model that extends the
Graves et al. (1998) single-stage production problem.
Our model, like the model of Chen and Lee (2009),
pertains to a single firm that observes a demand
described by the MMFE and replenishes with a gener-
alized order-up-to policy (GOUTP). The MMFE gen-
eralizes most commonly used, exogenous demand
models, and the GOUTP allows any order scheme
that is stationary and affine in observed demand sig-
nals. Chen and Lee (2009) argue for such order poli-
cies, citing their parsimony and common usage (e.g.,
Graves et al. 1998, Balakrishnan et al. 2004, Aviv
2007). We model a single firm because our data do not
contain buyer-seller relationships, and the bullwhip
across a supply chain is roughly the sum (or prod-
uct, if one measures the variance ratio, rather than
the variance difference) of its contributing firm-level
amplifications, as Fransoo and Wouters (2000, p. 87)
explain:

The total bullwhip effect is the coefficient of variation
of the production plan, divided by the coefficient of
variation of consumer demand. Under specific condi-
tions, this is the product of the measured effect at each
echelon. Suppose Echelon 3 is the retail franchisee,
Echelon 2 is the distribution center, and Echelon 1 is
production, then

Cout1Cout2Cout3 _ Cout1
Cin1Cin2Cin3 Cin3
provided there is consistency between D;,; and D,
S0 Cin; = Coutl+1-

Indeed, demand amplification across a single firm has
become an almost universally accepted measure, in
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both the theoretical> and empirical® bullwhip liter-
atures. Nevertheless, estimating the bullwhip effect
across firms, rather than entire supply chains, limits
our study.

2.1. Production Model

We consider a firm that produces a single output unit
from a single input unit, ordered from a supplier that
meets orders promptly (see Gavirneni et al. 1999, Lee
et al. 2000, Chen and Lee 2009). The firm may freely
return stock, so it can meet any desired order-up-
to level (see Kahn 1987, Lee et al. 1997, Aviv 2003,
Chen and Lee 2009). The supplier delivers orders with
a lead time of L > 0. Without loss of generality, the
firm’s production time is zero, so goods can be sold
as soon as inputs arrive, and the firm only stores
finished-good inventories.

The firm'’s period ¢t demand is

thM+ZEt,l/ 1)

l=0

where u is a baseline mean, and ¢, ; is a demand sig-
nal with an [ period information lead time; namely,
the firm observes ¢, ; in period (t —1I). In period t, the
firm observes signals €, =[€; o, €1 1, €22, ---]- The
first component, ¢, o, gives the portion of period t
demand unknown until period t. The remaining sig-
nals, with longer information lead times, reflect future
demands. We model €, as independent and identically
distributed (i.i.d.) mean-zero multivariate normal ran-
dom variables, with covariance matrix 2. We do not
restrict 2’s top-left (L + 1) x (L + 1) submatrix, but
beyond that, we make it diagonal—namely, €,,, ; and
€.;,; may be correlated as long as [, j < L.*

2SGee Lee et al. (1997, Theorem 1); Cachon and Lariviere (1999,
Theorem 3); Graves (1999, Equation (12)); Chen et al. (2000,
Theorem 2.2); Aviv (2007, Proposition 4); Chen and Lee (2009,
Proposition 6); and Chen and Lee (2010, Proposition 1).

% Lai (2005, p. 3) considers “amplification at one party in the chain,
so one way to qualify [his] paper is that it is about the contribution
by a retailer to the bullwhip effect along the supply chain.” The
primary bullwhip measure of Cachon et al. (2007, p. 464) is “the
amount of volatility and industry contributes to the supply chain,”
an industry-level analog to the firm bullwhip. And Fransoo and
Wouters (2000, p. 88) explain that

The [bullwhip] measurement needs to be determined for each
echelon separately, such that the benefits of partial solutions
may be traded off against benefits of integral solutions. Each
of the echelons may contribute to creating a bullwhip effect
to a greater or smaller extent. Therefore, in order to make a
proper trade-off, it is important to distinguish the contribu-
tion of each of the echelons in the supply chain.

*Chen and Lee (2009, p. 12) explain that the bulk of signal vari-
ations lie in the general covariance region, as the scenario where
“forecast information is not available beyond the lead time L is
fairly common in practice.”

In response to observed demand signals, the firm
follows a GOUTP (see Chen and Lee 2009), stocking
up to

Su=m+Lu+). §t+L, 1r )
1=0

where

o0 o0
S = D Wi €+ (W — 1€ )

i=—L+1 i=L

The coefficients have a clear interpretation: m is the
mean inventory level, and w; ; the cumulative fraction
of € ; that the firm produces i periods early, i.e., by
period (t —i). This policy preserves the MMFE struc-
ture, both in order quantity and inventory level:

J =Ae,

o0
_ 0 0 _r.0 0
oy=pt) €, € =€, €11,

1=0

o]
P i R O B /
h=m+) €, € =€ €4, -]
1=0

— C(D*A —D)e,, 3)

where o, is the period t order quantity, with lead I sig-
nal € ;; i, is the end-of-period t inventory level, with
lead [ signal €; ; C and D" are square matrices with
(i, j)th elements C; ; =1, and D} ; =1,,_,;), respec-
tively; and A is a square matrix with (i, j)th element,
A, i,j = Wijsic1,j = Wisi—141,jr SO A, ; gives the fraction of
lead j demand signals routed to lead i order signals.

Finally, to produce, the firm acquires a fixed
amount of in-house production capacity, z, for which
it pays s > 0 per unit per period to maintain. With
this capacity, the firm produces the first z units in-
house at unit cost ¢, and outsources the rest at unit
cost ¢+ ¢+ s > ¢. Hence, the firm faces newsvendor
production capacity costs of ¢ per unit per period of
capacity shortage, and s per unit per period of capac-
ity surplus (see Ernst and Pyke 1993, Balakrishnan
et al. 2004). In addition, the firm faces newsvendor
inventory costs of b per unit per period of backlogged
demand, and & per unit per period of excess stock.
Recapping, in period t the firm (1) observes €, (and
thus d,); (2) orders o,; (3) receives the period (t — L)
orders and finishes associated production; (4) adjusts
inventory to i,, satisfying the demand it can; and (5)
pays newsvendor costs C(o;, i,) = h(i,)* + b(—1,)" +
c(o,—2)T+s(z—o0)" +(C+ ¢)o,.

Under the GOUTP, the firm

minimizes E[C(o;, i,)],
w; 1,1, 2

subject to w; ;=0 Vi>I[—-L

The constraints prevent the firm from conditioning on
signals it has not yet observed. Because Equations (3)
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set inventory and order quantities to normal random
variables, the optimal production capacity and mean
inventory, with respect to the stock-up-to variables,
are (see Porteus 2002, p. 13)

4 ¢ N
z(w; ;)= 1<E_+s)\/var(ot |w; ), and

e, ) =07 (g ) VarG T ).

Using (4), we recast the objective to depend only

4)

Ii}.i?E[C(O“ ip) | w;,]

=kyy/Var(i, | w, ) +k,\/Var(o, [ w, ), (5)

where k; = (b 4 h)$(®'(b/(b + h))) and k, = (C +5)
¢(P1(¢/(C + s))). The following proposition charac-
terizes the optimal order policy with respect to news-
vendor-costratiok = k;/k, (consultthe online appendix,
available on Robert Bray’s website, for proofs).

ProrosiTiON 1. The optimal order-up-to variables w;
and transformation matrix A satisfy

1A 0>1-L>i,
Ai_)\2+21—2L—i
]_—}——)\ l—L>O ﬂnd
I-L>i>0,
w; =
1 A2172L+1 )

—JrlT)rl“ I—L>0and i <0,
0 I—L<i;

(1—)\))\‘Z I-L=<0, (6)

1-A Ly L-1 1-L+1

1-A

H—/\)\l_L()\_Z—F/\Z—H) Z—L>E,'

A=0/2+1—/(0/2+1)2—1,

ok |varlolwii)
Var(i,| w, )

One can solve this system by searching over 6—
the ratio of the marginal costs of inventory variability
to production variability, evaluated at the optimum—
which entirely characterizes the solution.

Figure 1 depicts the solution. We find (1) the
firm controls inventory more tightly as inventory-
misalignment costs increase; (2) longer signal lead
times allow the firm to shift production from peak
periods to earlier periods; (3) because there is no
preferred backlogging, the firm treats all delinquent

demand signals the same; and (4) because demand
variations are negative as often as they are positive,
consistently producing early costs as much as consis-
tently producing late (i.e., w; ., is rotationally sym-
metric).

2.2. Bullwhip Effect

The following proposition characterizes the sign of
the bullwhip effect, 8 = Var(o,) — Var(d,), with respect
to the newsvendor ratio k =k;/k,.

PRrROPOSITION 2. For some threshold T, > 0 if and
only if k> T and [Y_ye[IS[X 1 e] > X, e/2e;.

Following Lee et al. (1997), our model shows that
the optimal policy can yield a bullwhip: sometimes it
pays off to sacrifice the bullwhip to stabilize inventory
levels. The newsvendor ratio k determines whether
the firm bullwhips: when inventory costs are rela-
tively high the best policy yields a bullwhip, but
when production costs are relatively high it does
not. Whether the bullwhip exists is thus an empirical
question.

Proposition 2 suggests two ways to reduce the bull-
whip effect. The first is to reduce the autocorrelation
among signals with lead times no longer than the pro-
curement lead time—i.e., reduce [Y_,e/]S[> 1, e/] —
S o€ 2e. These autocorrelations drive the “demand
signal processing” underpinning the effect (see Lee
et al. 1997). To reduce these autocorrelations, a
firm can decrease its signal-exposure window L,
or improve its demand forecasts, which, under the
MMEFE, is equivalent to increasing its signal trans-
mission lead times. The second way is to decrease k,
the costliness of inventory misalignments relative to
the costliness of production-capacity misalignments.
For example, our model illustrates that the firm can
reduce the bullwhip effect by increasing product shelf
life: a longer shelf life means a lower holding cost £,
which means the firm carries a higher safety stock,
which in turn means it reacts more calmly to demand
spikes.

2.3. Bullwhip Decomposition

Within the framework of our model, we decompose
the bullwhip, 8, by information lead time. Defining
e, as a unit vector indicating the (I + 1)th position,
we find

B = Var(o,) — Var(d,) = Tr[AZA'] — Tr[Z]
=) ¢(AZA' =3)e =3 B, 7)
1=0 1=0

where 8, = Var(e] ) — Var(e, ;) = ¢/(AXA’ — X)e, is the
lead ! bullwhip, the variance amplification of lead !
demand signals. Equation (7) provides an informa-
tion distortion profile, a drill-down demonstrating the
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Figure 1 Optimal Order Policy
0=1/5 0=1 0=5
1.00 1.00 1 1.00 -
0.75 1 0.75 0.75 1
& 0.50 1 0.50- 0.50 1
0.25 1 0.25 0.25 1
0 0 0-
I\CDLOV(')NFOTCTIC?TL?L?IT I\<DLO<I‘<VJNv—OvI—(\|I(‘|'J<Iru|7«|)IT l\(OLOﬁ‘C")Nv—Ovl—C}I(‘l')TUI')«I)IT
i i i
1.00 1.00 1 1.00 -
0.75+ 0.75 1 0.75
< 0501 0.50- 0.50 1
0.251 0.25 1 0.25 1
0 04 0-

Notes. These plots characterize the optimal stock-up-to coefficients and routing matrix. The top panels plot w; ,, the cumulative fraction of lead-time / signals
produced / periods early (e.g., values at / = 0 give the fraction produced on time); the curves, from left to right, correspondto / = oo, I=L+7,/=L+6,...,
and /=L—7. The bottom panels plot A, ,, the fraction of lead / demand signals, ¢,,, ,, routed to lead / production signals, €7, ; ;; the curves, from left to right,
correspondto /<L, /=L+1, I=L+2,...,and | =L+ 7. Inventory misalignments become relatively more costly as 6 increases.

signals that drive the bullwhip. Naturally, bullwhips
skewed toward short-lead-time distortions cost more,
as short-notice order revisions require suppliers to
produce hastily, in a helter-skelter fashion. For exam-
ple, the supply chain scorecards of Graves et al. (1998)
and Aviv (2007) more severely penalize short-lead-
time order revisions. Also, a bullwhip’s fix depends
on its lead time. Suppliers need time to act (Aviv
2007), so information sharing better mitigates long-
lead-time bullwhips, rather than short-lead-time ones.
On the other hand, order fixing can address short-
lead-time bullwhips, but not long-lead-time ones—a
firm can commit orders for the next quarter, but not
the next year (Balakrishnan et al. 2004).

The final proposition explains that information dis-
tortion requires an element of surprise—a testable
implication of our model:

ProrosITION 3. The firm never bullwhips signals with
arbitrarily long lead times: lim, B, < 0, where the
inequality holds strictly when Var(e, ;) > 0 and k is finite.

This finding best speaks to the “seasonal bull
whip”—the difference in the variances of the pre-
dictable seasonal components of demands and
orders—because firms can fully anticipate these varia-
tions. Thus, Proposition 3 predicts a negative seasonal

bullwhip. For exposition purposes, we henceforth
consider seasonal signals as having infinite, rather
than “arbitrarily long,” lead times. That is, we let
di=p+6€+2206, o=p+€ +>7€ , and
B =B + 212 B, where €, ., and €, are demand’s
and order’s respective seasonal components and 8., =
Var(ef ) — Var(e, ) is the seasonal bullwhip. In con-
trast, we call the 3, coefficients, for finite /, uncertainty
bullwhips.

Bridging from theory to empirics, we conclude
this section with a real-world example. Figure 2 dis-
plays the demand and order MMFE decompositions,
and the bullwhip decomposition, for Teradyne Inc.,
a manufacturer of automatic test equipment for the
telecommunications and electronics sectors. The com-
pany has no seasonal bullwhip, as it faces effectively
no seasonality, but it has meaningful uncertainty bull-
whips. The following section describes how we esti-
mate the lead I bullwhips of Figure 2.

3. Estimation Procedure

3.1. Data
We use COMPUSTAT data, originating from quar-
terly financial statements of public U.S. companies,
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Figure 2 Information-Lead-Time Decompositions

MMFE decomposition

Bullwhip
decomposition

Demand
Orders

B =637

Bo=11.8

By =16.9

Br=9.9

B =03

1980 1985 1990 1995

Year

2000 2005

Notes. These figures decompose Teradyne Inc.’s demands, orders, and bullwhip by information lead time. The first plots overall detrended demands and
orders, {d, — p, 0, — p}, and the lower five plot their decomposed components, {e; o, €/ o}, {€; 1, € 1}, {er 2, €7 o}, {25 €1, XiZg €73, and {e ., €7 .}, in that
order. To the right of each figure is a corresponding bullwhip. The unit of measure for both the plots and bullwhips is the percent of total demand variance.
The lower five bullwhips sum to the top bullwhip, as the lower five plots sum to the top plot.

between 1974 and 2008 from the retailing, wholesal-
ing, manufacturing, and resource extracting sectors
(SIC 5200-5999, 5000-5199, 2000-3999, and 1000-1400,
respectively). Lead I signals correspond to demands
between [ and [+ 1 quarters hence, and lead oo sig-
nals to quarterly seasonal means. We proxy COGS for
demand and production for orders (see Cachon et al.
2007, Lai 2005, Wong et al. 2007, Dong et al. 2011).
(Recall, in our model sales equals demand and pro-
duction equals orders.) We calculate production with
the accounting identity o, =d, +1i, —i,_;. Also, for con-
sistency, we translate all COGS observations to LIFO
form, adding the LIFO reserve to inventory, and sub-
tracting its change from reported COGS.

We eliminate untrustworthy data, observations in
which firms change their reporting schedule or fis-
cal calendar, or post total assets of less than a
million dollars or nonpositive inventories or sales.
Also, we allow companies to acquire others, but
we remove companies from the sample after they
have been acquired, or merge with another. Finally,
we select each firm’s longest series of uninterrupted
data within a single industry, as long as the series

has at least 25 observations, the minimum necessary
to estimate our time-series models. Our final sam-
ple comprises 187,901 observations from 4,297 firms.
Table 1 reports summary statistics.

We transform each firm’s demands and orders by
(1) dividing by total assets, (2) detrending with lin-
ear and quadratic functions of t, (3) Winsorizing the

Table 1 Summary Statistics
Sample  Retail Wholesale Manufacturing Extraction

No. of firms 4,297 602 339 3,161 195
No. of obs. 187,901 27,118 13,964 139,369 7,450
Var(e; o) 29.24  19.88 29.81 30.68 35.31
Var(e, 1) 6.61 4.70 7.18 6.95 5.95
Var(e; ,) 3.45 213 3.82 3.7 2.64
YigVar(e, ;) 23.09 16.78 23.66 24.27 22.83
Var(e; ..) 15.72  34.79 17.13 12.30 7.65
Total assets 1.98 1.47 0.66 2.20 2.19
Inventory 0.23 0.30 0.33 0.22 0.05
Margin 0.19 0.29 0.21 0.16 0.38

Notes. Variable means by industry sector. Total assets are expressed in hil-
lions of 2008 dollars, and inventory as a fraction of total assets.
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top and bottom 1%, and (4) normalizing the demand
variances to one. The first and second transformations
stabilize our series’ first two moments (Granger and
Newbold 1974); the third dampens the effect of sig-
nificant outliers; and the fourth allows us to express
bullwhips as a percent of demand variance, a con-
crete, unitless measure.

3.2. Estimator Construction

We estimate lead [ bullwhips with a sequential
method of moments estimator. Our estimation proce-
dure exploits two well-known features of the MMFE.
The first is that F, ;, the mean-square-error-minimizing
forecast of period ¢ demand from period (¢t — ), is
the true demand net unobserved signals: F, ;= u +
€ 0+ 2 i€ i (We define FFy=d, and F , =pu +
€, -) The second is that the signals contributing to
period t demand are uncorrelated, so Var(Y_\_, € ;)=
Var(Y /2 € ;) + Var(e, ;). Combining these features
we find Var(e, ) = Var (d, — F, ;) — Var(d, — F,)).
Accordingly, we define the following lead ! bullwhip
estimator:

B, = Var(e; ) — Var(e, |)
= [@(Ot - Ft‘,)l+1) - @(Ot - Ftol)]
—[Var(d, — F, 1) - Var(d, - F. )], (8)

where F?, is an equivalent order forecast. Our esti-
mation procedure follows three steps: (1) estimate

the demand and order forecasts, F, ; and 15;’ » (2) esti-
mate the forecast error variances, \//a\r(dt —F ) and
Var(o, — F?}); and (3) calculate B, from (8).

To estimate forecasts, we specify that demands
and orders follow deterministic seasonal shifts com-
bined with linear functions of an underlying vector
autoregressive process. In this case, fitted values of
regressions of future demands and orders on contem-
poraneous explanatory variables and quarter dum-
mies consistently estimate F, ; and F’; (see Liitkepohl
2005). For explanatory variables we use current inven-
tory levels, and demands and orders from the current
and prior four quarters.’

Next, we estimate forecast error variances with
their sample moments:®

T
Var(d, —F, ) =Y (d, £ )* /T,
t=1

) ©)
Var(o,— ') = Y (o, — 2.7 [ T.
t=1

5 We consider alternate specifications in §5.

¢ Alternatively, you can observe Bessel’s correction, and divide the
sum of the square residuals by T — 1 instead of by T. Both denom-
inators are valid, however (see Davidson and MacKinnon 2004,
Equations 3.46, 3.49).

Plugging the relevant variance estimates into (8)
yields B,. (We similarly define B. = [Va\r(ot) —\//a\r(ot —
Fe. )] ~[Var(d,) ~Var(d,—F, )] and X, B, = [Var(o, -
F ) —Var(o, — F?))] — [Var(d, — F, ) — Var(d, — F; ;)].)

To estimate a bullwhip’s mean across a collection of
companies, we estimate each firm’s forecasts individ-
ually, and then estimate the unconditional variances,
(9), jointly across the relevant firms’ forecast errors.
To account for temporal and cross-sectional correla-
tions, as well as heteroskedasticity, we use two-way
cluster robust standard errors (Petersen 2009, Gow
et al. 2010, Cameron et al. 2011). Because the moment
conditions across our estimator’s two stages—the
first estimating the forecasts, and the second estimat-
ing their error variances—are asymptotically uncor-
related, we can use second-stage standard errors
directly, without having to correct for first-stage mis-
estimation (Newey 1984). We translate the two-way
cluster-robust estimator covariance matrix of [\//e;'(ot —
E*\,.), Var(o, - E?,), Var(d, — F, 1,1, Var(d, — E, ] into
Bz standard errors with the Delta method (Cameron
and Trivedi 2005).

3.3. Estimator Properties

Our forecast-error variance estimators, belonging to
the sequential m-estimator class characterized in §6.6
of Cameron and Trivedi (2005), are root-n consistent
and asymptotically normal.” Our bullwhip estimates,
linear combinations of these forecast-error variance
estimates, are thus also root-n consistent and asymp-
totically normal.

Our estimates are robust to measurement error.
Suppose we observe d, =d, +n,, and 6, =d, + i, —
i,_; (recall, we calculate production from demand
and inventory changes), where 7, is a measurement
error term uncorrelated with demands, orders, and
our forecast variables. Despite measurement error, the
lead ! bullwhip estimate remains consistent:

B = [@(@_ t?l+1)_@(5f_1:t?l)]
—[@(Eit—ﬁ,”l)_@(i‘_ﬁ,ﬂ]

T T
— ~t_ﬁ;o+ 2 T— ~t_ﬁ;U 2 Ti|
|Z6-F? /T-X6-F

T R T R
| D@t T2 1]

t=1
piim [ Var(o,—E,,;) + Var(n,) — Var(o, — F’) — Var(n,)
—[Var(d, = F, ;1) +Var(n,)
—Var(d, —F, ;1) — Var(n,)] =B,
7The moment conditions defining @(dt — F,)) are E[(d, —

E,i(W,t, )W, ] =0 and E[Var(d, — F,)) — (d, = F, \(W,., 6))*] =0,
where W,_,; are forecast variables and 6 forecast parameters.
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4. Results

4.1. Existence and Prevalence of the
Bullwhip Effect

First, we estimate mean firm-level bullwhips across
industries, sectors, and the entire sample, listing the
results in Table 2.% As predicted, the seasonal bull-
whip is largely negative: out of 31 industries, 26 have
negative seasonal mean bullwhips. These negative
seasonal bullwhips induce a drop in seasonality
across sectors, from retailing to resource extraction
(see Table 1). However, out of 31 industries, 30, 29,
25, and 30 have positive lead 0, lead 1, lead 2, and
lead 34 mean bullwhips, respectively. Additionally,
26 industries exhibit positive overall bullwhip means,
so the positive uncertainty bullwhips generally out-
weigh their negative seasonal counterparts, a finding
that differs from the Cachon et al. (2007) conclusion
that seasonal smoothing generally outweighs uncer-
tainty amplification, and hence that most industries
exhibit no bullwhip.

Industry aggregation, which overweighs the nega-
tive seasonal bullwhip, can explain this discrepancy.
Seasonal signals correlate more highly across com-
panies than do firm-specific shocks. Thus, industry
aggregation attenuates uncertainty bullwhips more
than it does seasonal bullwhips, as stochastic varia-
tions largely cancel out upon aggregation, whereas
seasonal variations do not. To demonstrate, we
explore the effect of industry aggregation ourselves,
measuring at the firm-level, the four-digit SIC, the
three-digit SIC, and the two-digit SIC the relative
mean seasonal bullwhip, [8.1/(|B.| + |2 1= B;]), and
the mean overall bullwhip, 3. As the level of aggrega-
tion increases, |B../(|8..] +| Yoo B,|) indeed increases,
from 19% to 33%, to 46%, to 53%. In turn, B converges
to the Cachon et al. (2007) zero bullwhips, going from
15.8% the magnitude of underlying demand variabil-
ity to 5.5%, to 1.2%, to —1.7%.

Next we consider our decomposition, which par-
titions the bullwhip into economically meaningful
components: the sample’s mean uncertainty bull-
whips—all significantly positive, yet diminishing
with information lead time as signals become less
informative—decompose into those with

short lead times (<1 quarter) 51%,
midrange lead times (1 —3 quarters) 19%,
long lead times (>3 quarters) 30%.

The bullwhip effect boasts a long tail: signals arriving
with more than nine months” notice drive nearly a
third of the effect.

8 In Table 2, ﬁo, ﬁl, ﬁz, Y s B, and B.. do not quite sum to B, as
Winsorizing the data slightly rattles our estimates.

However, means tell only part of the story, so
we now consider the entire distribution of firm-
level bullwhips. Figure 3 characterizes the bull-
whips’ marginal distributions. The boxplots illustrate
a striking degree of heterogeneity: the coefficients of
variation are all larger than two, and each interquar-
tile range spans both positive and negative values—
the bullwhip is by no means universal. Also, the
boxplots depict skewed distributions. Because of
these skews, the median bullwhips fall short of the
means: the across-sample medians ﬁ, ﬁo, ﬁl, ﬁz,
>, B, and B, measure 6.7,4.2,1.0,0.2,2.7, and
—1.2, respectively; these figures each differ from zero
significantly at p = 0.01. We block bootstrap to calcu-
late the median estimators” standard errors (see Hahn
1995, Hall et al. 1995).

We present the firm-level bullwhip probability den-
sity functions, which we estimate nonparametrically,
in Figures 3 and 4. The former plot depicts modes
of zero: every sector has a handful of companies that
precisely peg production to demand, which yields
zero bullwhip. It also demonstrates that retailers,
because of their strong proclivity to smooth seasonal-
ity, are the only sector without an average bullwhip.
Figure 4 presents the joint distributions of g and
By- Although each sector has its mode at the origin,
retailers and wholesalers have secondary production-
smoothing peaks. In our sample, 65% of firms exhibit
a positive overall bullwhip, 72% a positive lead 0 bull-
whip, and 56% exhibit both.

4.2. Has the Bullwhip Changed over Time?

Chen et al. (2005, pp. 1015, 1024) found that “inven-
tories were significantly reduced” over the 1981-2000
time span as the “manufacturing firms [they stud-
ied] improved their interactions with suppliers and
their own internal operations.” Moreover, Kahn et al.
(2002, p. 183) and Davis and Kahn (2008, p. 155) argue
that “changes in inventory behavior stemming from
improvements in information technology (IT) have
played a direct role in reducing real output volatil-
ity,” causing a “striking decline in volatility of aggre-
gate economic activity since the early 1980s.” These
changes suggest a drop in the bullwhip effect. Indeed,
citing the “significant improvements in information
technology and supply chain management” Cachon
et al. (2007, pp. 467, 476) hypothesize such a drop,
yet find their industry bullwhips “mostly stable over
[their] sample period.”

Conversely, our firm-level data indicate that the
bullwhips drop dramatically from before 1995 to
after—see Table 3. We choose the 1995 breakpoint
because (Jorgenson 2001, Jorgenson et al. 2003, Basu
et al. 2003) and others deem it the first year of
the “information age,” as “a substantial accelera-
tion in the IT price decline occurred in 1995, trig-
gered by a much sharper acceleration in the price
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Table 2 Mean Bullwhips

B Bo B B2 YiaBi B
Retail

Hardware and garden 15.57 16.30%+ 0.85 0.34 4.62 —10.96%
(6.94) (2.87) (1.13) (0.36) (14.10) (0.51)

General merchandise —26.55** 3.65%** 1.30% 0.26 1.85% —32.70%
(6.30) (0.39) (0.22) (0.22) (0.59) (6.71)
Food 2.37+* 0.25** 0.42+ 0.11 0.88"* 0.80"
(0.57) (0.10) (0.07) (0.11) (0.17) (0.48)

Apparel and accessory 1.78 7.27%* 0.84* 0.38 3.66* —15.07+
(4.28) (1.26) (0.47) (0.79) (1.51) (5.02)

Furniture and home furnishings 3.44 8.63*** 1.83 —0.16 6.60*** —14.22+
(6.00) (1.07) (0.28) (0.61) (1.33) (3.51)

Eating and drinking places 1.02++ 0.43*** —0.05 —0.27+ 0.54+* 0.24+
(0.06) (0.01) (0.02) (0.01) (0.02) (0.01)

Miscellaneous -5.91 6.67* 151+ 0.33 3.98"+ —19.26%*
(4.30) (1.25) (0.50) (0.43) (0.70) (4.45)

Segment mean -3.23 4,62+ 0.89% 0.12 2.69* —12.54**
(3.19) (1.21) (0.27) (0.19) (0.63) (4.21)

Wholesale

Durable goods 24,07+ 10.56** 4,69 2.56%* 9.19%* —4.40*
4.77) (1.76) (1.09) (0.65) (1.25) (1.98)
Nondurable goods 5.98+ 3.24% 1.38% 0.00 2.68% -1.94
(1.97) (1.76) (0.49) (0.27) (0.67) (1.35)

Segment mean 17.81% 8.03*** 3.55% 1.67+ 6.94+* —3.55%
(4.06) (1.53) (0.86) (0.54) (1.11) (1.35)

Manufacturing

Food 18.30% 6.90*** 0.86 0.51* 3.1 2.76
(5.31) (1.50) (0.35) (0.31) (0.72) (2.14)

Textile mill 5.99 6.48" 217 0.11 5.98"+ —9.20"
(6.06) (2.29) (0.98) (0.57) (1.19) (3.59)

Apparel —6.04** 5.53* 3.49+ 1.22 5.83** —22.41%
(2.90) (2.40) (0.91) (0.77) (1.28) (2.89)
Lumber and wood 27.57 9.37+ 2.28 0.60 6.23*** 474
(11.59) (3.79) (0.77) (0.97) (1.83) (4.92)

Furniture and fixtures 11.96% 8.66*** 3.53 1.44 2.65* —6.04+
(3.44) (1.59) (0.95) (1.07) (1.36) (2.07)
Paper 11.48 5.43+ 2,13 0.60 2.90%* 0.09
(2.67) (2.24) (0.50) (0.75) (1.05) (0.38)

Printing and publishing 1.82 5.34+¢ 0.34 —0.01 1.74% —5.92%
(2.55) (1.35) (0.51) (0.43) (0.45) (2.86)

Chemicals 15.37+ 10.39*+ 2.24+ 0.47+ 5.00%* —3.24x
(2.62) (1.34) (0.25) (0.28) (0.64) (0.98)

Petroleum and coal 4,28+ 6.30%** 0.53 —0.01 -0.17 —2.35%
(0.90) (0.63) (0.13) (0.14) (0.20) (0.23)
Rubber and plastics 15.03* 9.73** 2.16% 0.82 433 —3.49¢
(3.98) (1.24) (0.71) (0.50) (1.78) (1.99)

Leather goods 9.54~ 12,14+ 3.29 1.91* 4,32+ —13.28*
(5.54) (0.32) (0.44) (1.08) (0.74) (3.77)

Stone and glass —2.89 3.05* 1.07 1.10* 1.97% —9.98*
(3.68) (1.71) (0.72) (0.49) (0.35) (2.33)
Primary metal 29.50** 12,19+ 472+ 2.20% 8.83+ -0.78
(3.74) (1.69) (1.13) (0.54) (1.12) (1.01)

Fabricated metal 1741 10.49*+ 2.58"* 1.30* 7170 —4 .24+
(5.33) (2.10) (0.57) (0.70) (1.91) (1.63)

Industrial machinery 27.96%* 14,93+ 464+ 2.43 9.21** —4.48+
(2.80) (1.39) (0.45) (0.35) (0.82) (0.94)

Electronic equipment 28.89%+ 15.37* 4,18 1.47+ 8.53*+ —2.27**

(2.98) (1.62) (0.40) (0.36) (1.06) (0.83)
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Table 2 (Continued)
B Bo B B Py B..
Manufacturing
Transportation equipment 14,42+ 7.43 3,15 1,32+ 5.16%* —3.24+
(2.62) (1.24) (0.58) (0.31) (0.78) (1.12)
Instruments and related 29.73+ 15.91* 3.4 1.52%+* 9.08*** —1.62*
(3.14) (1.50) (0.58) (0.37) (1.19) (0.80)
Miscellaneous 6.08 15,11 3.88 0.14 6.04++* —20.78*
(5.29) (3.42) (1.19) (0.50) (1.36) (1.80)
Segment mean 19.62++ 11.40 3.10% 1.24* 6.43** —3.87+
(1.47) (0.61) (0.21) (0.15) (0.46) (0.56)
Extraction
Metal 3.56 5.24++ 1.49* 0.32 0.78 —4.43*
(3.01) (1.17) (0.75) (0.30) (0.85) (2.42)
Coal -3.91 -0.87 —2.00% —1.05%* 171+ —1.54*
(4.85) (3.93) (0.44) (0.27) (0.52) (0.84)
0il and gas 14,64 7.86"* 1.46+ 0.12 4,76 —0.39*
(1.34) (0.95) (0.29) (0.22) (0.49) (0.21)
Segment mean 10.03++ 6.56*** 1,375 0.13 3.28* —1.80"
(2.57) (0.89) (0.30) (0.18) (0.96) (0.97)
Sample mean 15.81* 9.98** 2,74 1.07+ 5.80% —5.02+
(1.51) (0.62) (0.21) (0.14) (0.42) (0.71)

Notes. This table shows mean firm-level bullwhips, aggregated by industry, sector, and the entire economy, measured as a
percent of total demand variance (e.g., a bullwhip of 10 means orders are 10% more variable than demands are). The numbers

in parentheses report two-way cluster robust standard errors.

*p=0.05; *p=0.01.

decline of semiconductors in 1994” (Jorgenson 2001,
p. 1). Comparing the sample-wide pre- and post-
1995 bullwhips (not shown) we find the magmtudes
of mean estimates B, BO, Bl, Bz, Y4B, and BN,

Figure 3

L e B B B B |

Marginal Bullwhip Distributions

[ | [

Bl Retail
B3 Wholesale

respectively, decline by 33, 41,39, 53,25, and 34%.
The manufacturing sector significantly reduced all
uncertainty bullwhips, the retail sector its lead 0
and lead 3+ bullwhips, and the extracting sector

22—

E3 Manufacturing -

EI Extraction

\
[

~—

Retail
Wholesale
Manufacturing

Extraction

Mz

Il
m

Notes. The boxplots on the left identify bullwhip medians across firms, as well as their interquartile and interdecile ranges. The probability density functions
on the right describe the entire marginal distribution of firm-level bullwhips on a log scale. We estimate these densities with kernel regressions.
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Figure 4 Joint Bullwhip Distributions

Retail

Wholesale

Bo Manufacturing
40

Density

Extraction

[ B o004
o . 0.005

Notes. Contour plots of the joint probability density functions of Eand E, We estimate these densities with two-dimensional kernel regressions.

its lead 34 bullwhips. Moreover, the retailing and
wholesaling sectors significantly reduced the magni-
tudes of their seasonal bullwhips (i.e., lessened their
seasonal smoothing), as, over time, these segments
more tightly controlled inventories, and underlying
demand seasonality dropped.

5. Robustness Checks

In this section we study four potential sources of bias
in our estimations: product aggregation, temporal
aggregation, forecast misspecification, and demand
censoring. Table 4 summarizes the results. Although
they certainly are not definitive, we cannot reject
the hypothesis that there are no meaningful biases.
That is, although the checks cannot disprove the exis-
tence of these biases, they increase our confidence in
our results, as they do not suggest that any of them
exist. Additional data and empirical methodologies
may further illuminate these issues, as we discuss in
the concluding remarks.

Product Aggregation. Our data aggregate across firm
product offerings, which could bias bullwhip esti-
mates (Chen and Lee 2010). In theory, this bias should
work against our results, attenuating the bullwhip
estimates (aggregating across products should have
a similar effect as aggregating across firms, which
§4 demonstrates dampens bullwhip estimates).” Nev-
ertheless, for completeness, we empirically explore
the effect of product aggregation by measuring the
change in our estimates attributable to further aggre-
gation (see the online appendix for additional product-
aggregation robustness checks). To create a higher
degree of aggregation, we merge similar companies,
fusing them into couplets by summing their sales and
order quantities. This aggregation scheme simulates
aggregating across a firm’s products: we pool two

? The dampening effect should be drastically smaller in this context,
because aggregating across companies combines fewer and more
similar products than does aggregating across industries.
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Table 3 Bullwhip Trends

(0o N A N s — A
E gy B fo By . Y B
o .
c g Retail
>5 Hardware and garden —14.65 —11.49 2.35 —2.58 —2.57 8.09"*
g c (47.14) (3.85) (6.02) (6.38) (4.73) (0.89)
0® General merchandise 8.87 -3.48 -1.70 1.36 -1.65 12.38
= @ (12.21) (3.61) (0.96) (4.20) (1.67) (9.90)
= -% Food —4.59 -3.29 0.42 -0.14 -1.05 —-0.71
= .@ (2.98) (2.37) (0.51) (0.44) (1.17) (1.17)
%) g Apparel and accessory 31.48 —7.52 —1.64 —1.24 —4.56 41,74+
e g (8.57) (6.43) (1.28) (4.22) (3.90) (16.30)
g fe] Furniture and home furnishings 5.25 4.28 8.82* —5.36"* —0.39 —1.85
S (12.62) (5.65) (5.05) (2.09) (1.82) (6.95)
3 = Eating and drinking places 1,22+ 0.80*** —1.78 —0.46%* —0.28* 2.64"
o 8_ (0.34) (0.23) (0.08) (0.07) (0.16) (0.18)
o Miscellaneous 9.48 —5.48 0.90 —0.68 —4.69 16.95
G,) —
o< (17.94) (3.36) (1.92) (1.01) (3.73) (15.09)
S o
% c Segment mean 6.73 -3.13* 0.25 -0.82 —2.04* 11.46*
= g (7.52) (1.87) (0.98) (0.87) (1.08) (6.34)
% 8 Wholesale
g = Durable goods 17.99 —1.40 427 2.62 3.34 7.84*
o (12.56) (4.54) (7.88) (4.60) (4.83) (4.52)
2]
- Nondurable goods 16.02 -1.23 2.73 -2.82 —-0.01 14.85
_2*__3 § (11.67) (3.22) (2.07) (1.95) (3.26) (10.34)
§ o Segment mean 17.48* —1.36 3.87 1.22 2.48 9.64
- = (9.56) (3.49) (5.92) (3.68) (3.86) (4.64)
®
'(% - Manufacturing
o = Food -15.99 —11.70* —1.62 —1.87 0.76 -2.35
q>) »n (8.20) (3.44) (1.71) (1.57) (1.37) (6.12)
g e Textile mill —35.25 —14.85 —4.87 4.79 -3.90 —21.34
g 8 (21.76) (12.43) (3.93) (4.22) (3.64) (19.39)
;?: o Apparel 17.83 —-0.70 1.36 —6.56 0.05 21.35
c & (18.76) (7.78) (1.80) (19.90) (6.28) (14.65)
; o Lumber and wood 0.06 —2.26 —5.28 —1.40 12.10* 10.69
Q4 (23.63) (9.05) (3.69) (3.11) (5.99) (17.72)
'% S Furniture and fixtures —0.44 -3.10 3.40 -3.27 0.14 1.54
< '*_E, (5.49) (4.78) (4.70) (2.03) (3.53) (4.94)
QL ®© Paper —8.37 —4.79* 0.61 —3.28* 4,03 —4.36
= 2 (7.36) (2.37) (1.84) (1.59) (0.75) (4.46)
o :» Printing and publishing —6.48 -3.87 -1.25 -2.41 —-0.69 3.43
€< (5.86) (3.09) (2.90) (1.54) (1.29) (2.11)
8’3 Chemicals -2.10 —5.64 —3.18* —1.76 0.86 9.21
ETC) (7.00) (4.71) (1.68) (1.68) (3.09) (3.57)
8 . Petroleum and coal -0.77 —4.60 0.26 0.79 1.74 0.82
8 Y (4.72) (3.58) (0.73) (1.68) (2.51) (0.56)
2 Rubber and plastics 11.57 1.73 —6.49 —1.05 —10.14 2215
= ‘1;’ (9.26) (7.54) (4.97) (3.42) (6.50) (6.32)
g 5 Leather goods —14.11 6.85% -0.43 —3.84 —5.50% —11.28*
o & (1.73) (0.64) (0.46) (0.48) (0.66) (1.25)
Q5 Stone and glass 9.49° 8.56%" —2.16 ~0.90 —4.84 8.32+
zZz (5.21) (2.07) (1.81) (3.04) (1.49) (2.78)
o & Primary metal —13.36 —10.17* -1.59 2.68 —9.50% 3.19
'ccn g (9.19) (4.37) (5.08) (1.81) (2.80) (2.16)
o] Fabricated metal —14.28 —10.41 —0.89 —6.23* =217 8.08
E % (20.47) (7.60) (2.46) (3.67) (9.20) (6.96)
8 = Industrial machinery —27.73* —11.88 —4.49* —3.49* —8.05* 0.37
(8.60) (2.70) (2.22) (1.13) (3.22) (3.61)
Electronic equipment —6.75 —2.38 0.34 1.64 —2.09 =517

(10.49) (2.84) (2.36) (1.54) (3.30) (3.01)
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Table 3 (Continued)
B Bo B B P B
Manufacturing
Transportation equipment —22.06* —11.20% —5.70% 2.70 —10.70** 2.76
(9.06) (3.80) (2.40) (1.73) (3.73) (2.87)
Instruments and related 0.67 —2.36 —0.67 —5.27* 2.36 2.36
(15.23) (5.39) (3.84) (3.17) (8.13) (3.59)
Miscellaneous —60.81** —24 14+ —6.34 0.73 —12.52* —16.23
(19.33) (9.04) (4.37) (3.68) (6.15) (10.26)
Segment mean —11.59* —6.67* —2.04* —1.47* —2.88* 1.15
(3.68) (1.25) (0.81) (0.59) (1.57) (1.55)
Extraction
Metal —29.90 —6.54 1.98 —4.21 —0.91 —20.84
(19.82) (6.23) (3.70) (4.10) (1.98) (14.46)
Oil and gas 3.38 1.75 2.61* 1.07 —3.68* 2.88
(3.05) (3.25) (1.36) (0.87) (2.04) (2.15)
Nonmetallic minerals —18.59* —4.79* —4.37 —3.93" —5.63* 0.13
(1.10) (0.56) (0.33) (0.40) (0.68) (0.63)
Segment mean —6.37 —0.80 1.7 —0.64 —3.28* —2.66
(7.78) (3.08) (1.57) (1.57) (1.56) (4.77)
Sample mean —6.86** —5.65** —1.24 —1.19* —2.44~ 3.18*
(3.26) (1.07) (0.78) (0.53) (1.30) (1.55)

Notes. We estimate bullwhip changes between 1974-1994 and 1995-2008 by regressing the squared forecast errors on a
constant and post-1995 indicator variable, reporting the latter’s coefficients. We allow forecast processes and variances to
change after 1995. We include only the 492 firms that have at least 25 clean, consecutive observations both before and after
1995. We include an equal number of observations in each subperiod, for a fair comparison.

companies because couplet-level aggregation is the
next closest to firm-level aggregation, and we attempt
to pool firms that sell similar products. To pair compa-
nies, we match them by four-digit SIC and the mean
inventory-to-sales ratio.!” As Table 4 demonstrates,
running our analysis across couplets yields nearly the
same results as those in Table 2. So we do not find
evidence of a meaningful product aggregation bias.

Temporal Aggregation. Our quarterly data are tempo-
rally aggregated. According to Chen and Lee (2010),
temporal aggregation should attenuate bullwhip esti-
mates: a positive “bullwhip ratio tends to decrease
as the aggregation period increases” (Chen and Lee
2010, p. 13). Thus, like product aggregation, we have
no reason to believe this feature of our data inflates
our estimates. Nevertheless, we study its effect with
the monthly, industry-level Census Bureau data ana-
lyzed by Cachon et al. (2007). We measure the effect
of temporal aggregation, increasing the level of aggre-
gation from one month, to two, to three.!! Table 4
shows that the bullwhip estimates remain qualita-
tively unchanged as the level of temporal aggregation
varies from one to three months.

1" Matching on other variables yields similar results.

"The two-month aggregation combines January and February,
March and April, etc. And the three-month aggregation combines
annual quarters. (Naturally, different aggregation schemes will
yield different results.)

Forecast Misspecification. Misspecifying the demand
and order forecasts can bias our estimates—but only
to an extent, because ,é and Bm do not rely on
these forecasts, and thus neither does the sum of
the uncertainty-bullwhip estimates, > 2, Bz = E — BAN.
What is sensitive to our forecast specification is the
allocation of uncertainty bullwhips to information
lead times. That is, forecast misspecification can lead
us to attribute part of B; to ﬁj, but it cannot create
any additional uncertainty bullwhip, as that quantity
is fixed.

We measure our results’ sensitivity to forecast spec-
ification by repeating our analysis with three alter-
native sets of explanatory variables: The first uses
eight quarters of lagged demands and orders rather
than four. The second uses four quarters of lagged
demands and orders, but includes gross domestic
product, total industrial production index, average
three-month commercial paper interest rate, aggre-
gate sales and production of the firm’s two-digit SIC,
and the change in firm store counts, if it is a retailer
(see Gaur et al. 2005). The third includes these vari-
ables and uses eight quarters of lagged demands and
orders.'? Table 4 demonstrates that the coefficients’

12To accommodate additional forecast variables, we increase our
firm-length cutoff to 30, 35, and 42 quarters, for the first, second,
and third specifications, respectively.
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Table 4 Robustness Checks
B Bo B B> YiaBi B
Baseline 15.81 9.98%* 2,74+ 1.07+ 5.80%* —5.02+
(1.51) (0.62) (0.21) (0.14) (0.42) (0.71)
Couplet 17.54 9.80%* 2.59+* 0.91+ 8.68" —6.04+
(2.16) (0.75) (0.27) (0.20) (0.76) (1.02)
Census
1 month 11,10 13,12 -0.20 0.56 2.74 —6.63
(2.21) (1.79) (0.67) (0.49) (1.31) (1.06)
2 months 11.48+ 9.92+ 0.95 0.87 6.66" —8.20"
(4.39) (3.51) (1.04) (0.96) (1.96) (1.89)
3 months 12.57* 8.09+ 1.46* 1.16 4,83 -3.21*
(5.93) (3.49) (0.80) (1.23) (2.40) (1.81)
Alternative forecasts
Specification 1 15.35% 7.76% 1.99#+ 0.91% 8.65 —5.01"
(1.52) (0.50) (0.19) (0.17) (0.67) (0.72)
Specification 2 14.66 7.09 2.05% 0.88+ 8.42+ —4.99++
(1.47) (0.46) (0.18) (0.11) (0.64) (0.71)
Specification 3 14.16* 5.73%* 1,72+ 0.71% 10.08** —4.98+
(1.48) (0.39) (0.19) (0.13) (0.76) (0.72)
Inventory quartile
Q1 13.34 972+ 2.29%* 0.85%* 4.36* —4 55+
(1.44) (0.66) (0.28) (0.22) (0.55) (0.68)
Q2 1158+ 7.73 2.24+ 1.3 441+ —4.83
(1.40) (0.57) (0.25) (0.20) (0.43) (0.72)
Q3 14.08" 9.02+ 2.46% 1.16% 5.44 —5.16™
(1.59) (0.62) (0.29) (0.20) (0.50) (0.79)
Q4 24,27+ 13.70* 3.84+ 1.00%* 9,12+ —5.33"
(2.16) (0.89) (0.34) (0.24) (0.72) (0.84)

Notes. This table summarizes the results of §4’s four robustness checks. All estimates correspond to sample-wide mean bullwhips.
The first row repeats our main results from Table 2. The second lists the company-couplet bullwhips. The estimates under the “Census”
heading report the bullwhips in the Cachon et al. (2007) Census Bureau data, temporally aggregated at one, two, and three months.
Those under the “Alternative forecasts” heading present the results under different forecast specifications. Specification 1 extends the
number of lagged demands and orders from four to eight; specification 2 includes gross domestic product, total industrial production
index, average three-month commercial paper interest rate, aggregate sales and production of the firm’s two-digit SIC, and the change
in firm store counts, if it is a retailer (see Gaur et al. 2005); and specification 3 includes these variables and extends the number of
lagged demands and orders to eight. And the bottommost estimates report the mean bullwhips of our inventory-quartile subsamples,
with Q1 indicating the lowest-inventory subsample, and Q4 indicating the highest.

*p<0.1;*p <0.05; **p<0.01.

signs and significances hold under the alternative
forecast specifications.

Censoring Bias. Sales, the minimum of demand
and inventory availability, is a censored variable.
Inventory censoring can inflate bullwhip estimates by
truncating demand, making it appear less variable.
To gauge whether a censoring bias drives our results,
we seek to determine whether stockouts relate to our
bullwhip measure. Because we cannot observe stock-
outs, we use period-start inventory levels as a proxy—
according to the newsvendor model, the two should
strongly negatively correlate, as higher inventories
generally mean fewer stockouts. Hence, if a censoring
bias drove our results, we would expect an inverse
relationship between the amount of on-hand inven-
tory at period start and the measured bullwhip effect.
To test this relationship, we divide our sample, by

period start inventory levels, into four subsamples and
compare the mean bullwhips of each. (We used the
same approach in §4.2, but there we classified obser-
vations by date, rather than by inventory level.) To
control for firm and seasonal characteristics, we allo-
cate each firm-quarter evenly between subsamples;
thus, we ultimately divide our sample by the inven-
tory quartiles of each firm in each calendar quarter.

We do not find a censoring bias signature: the mean
bullwhip does not decrease across the subsamples, as
inventories increase. More importantly, the bullwhip
effect is strongest in the highest-inventory subsam-
ple, when stockouts, and hence demand censoring,
should be least likely. However, although suggestive,
this robustness check is not definitive, as it hinges
on an assumed negative relationship between period-
start inventory levels and stockouts.
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Table 5 Bullwhip Summary
B B B B, P B..

Mean 15.81 9.98 2.74 1.07 5.80 —5.02
Median 6.67 4.1 0.99 0.19 2.69 -1.23
Standard deviation 43.91 20.17 9.03 7.40 14.64 19.44
Fraction of firms 0.65 0.71 0.61 0.53 0.68 0.37
Fraction of industries 0.84 0.97 0.94 0.81 0.97 0.16

Notes. This table shows sample-wide bullwhip statistics. The mean and median estimates, measured as a percent
of total demand variance, are all significant at p = 0.01. The last lines report the fraction of firms with positive
bullwhips, and the fraction of industries with positive mean-firm-level bullwhips.

6. Concluding Remarks

This paper studies the bullwhip effect in firm-level
data. Table 5 summarizes our findings. Overall, we
find evidence for the effect—our sample’s mean
and median bullwhips are significantly positive. Yet,
rather than universal, we find the effect idiosyn-
cratic, as the bullwhip varies greatly across firms.
The phenomenon results from a tug-of-war between
two opposing forces: uncertainty amplification and
production smoothing. Our bullwhip decomposition
makes these forces apparent: firms generally amplify
last-minute shocks—the mean lead 0 bullwhips are
positive in 97% of the industries we consider—but
smooth seasonal variations—the mean seasonal bull-
whips are negative in 84% of the industries. Our
model predicts such seasonal smoothing.

Our estimates, however, come with several caveats:
(1) we estimate bullwhips across firms, rather than
across supply chains; (2) we proxy COGS for demand
and production for orders, which could introduce
a censoring bias; (3) we do not observe true fore-
casts; and (4) we use data aggregated temporally at
the quarter, and cross-sectionally at the company. As
a result, the bullwhip effect warrants further study.
Developing a full understanding of the bullwhip
effect will require comprehensive efforts by multiple
researchers, as an ideal bullwhip sample—a multi-
firm collection of separable supply chains, with high-
frequency, product-level demand and order data—
is unlikely to surface soon. Addressing any of the
caveats listed above would substantially improve our
perspective on the phenomenon.

The bullwhip resolves gradually over time as
information about demands and order quantities
is unveiled in the periods leading up to their
final realizations. From this insight, we construct a
decomposition of the bullwhip based on information-
transmission lead times, which clarifies and enriches
the bullwhip, providing an information distortion
profile; rather than lump all demand variations, it
demonstrates which variations firms amplify. Our
decomposition identifies several bullwhip flavors: sig-
nals arriving with more than three-quarters’ notice

drive 30% of the mean bullwhip, and those arriv-
ing with less than one-quarter’s notice drive 51%.
These bullwhip flavors have different supply chain
effects—short-lead-time bullwhips, providing suppli-
ers the least reaction time, presumably cause the most
havoc. Perhaps worse than a big bullwhip is a late
bullwhip.

Addressing the different bullwhip flavors requires
different operational fixes. For example, Caterpil-
lar Inc. waged a multi pronged attack on its var-
ious bullwhip components. Since 2000, Caterpillar
has been engaged in a “supply chain makeover”
(Songini 2000), to address “concerns about the poten-
tial disruptions that could come with a inventory
bullwhip” (Aeppel 2010). The company dealt with
long-lead-time bullwhips by sharing order forecasts
(see Aviv 2007): since 2000 the company has been
engaged in “high-speed sharing of key sales and
business data throughout Caterpillar and between
its product design department and the suppliers”
(Songini 2000). The company addressed midrange-
lead-time bullwhips by ensuring supply chain agility
(see Lee 2004): Caterpillar required “a detailed writ-
ten plan from its suppliers for each part they pro-
duce, explaining how the supplier will respond to the
bullwhip.” Finally, it mitigated short-lead-time bull-
whips by fixing orders (see Balakrishnan et al. 2004):
“the company has promised to stick by ‘freeze peri-
ods’ as it transitions to growth: For a three-month
span after it places an order, it promises not to change
it” (Aeppel 2010). These efforts earned Caterpillar “a
spot in 2010 on Gartner Inc.’s top 10 list of industrial
supply chains” (Katz 2011). Perhaps more impres-
sively, from before 2000 to after 2000, the company
reduced its bullwhip profile, {ﬁo, B, B, > o3 B}, from
{189, 17.8, 15.1, 28.3} to {—1.9,2.9, —0.7, 2.8}.
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