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Abstract. We study the repeated choice interpretation of stochastic choice and the

individual interpretation of the random utility model. We consider a myopic agent

whose distribution over preferences tomorrow potentially depends on their consump-

tion and preference today. Even when the agent is classically rational in each of their

static decisions, there are forms of consumption dependence which are inconsistent

with random utility as a model of intertemporal aggregation. We offer two charac-

terizations of Markovian consumption dependence which are consistent with random

utility. Further, we characterize the behavioral content of consumption dependence

in a two period stochastic choice model.

1. Introduction

The stochastic choice paradigm is one often considered in modern choice theory as it

allows researchers to model data often seen in empirical applications. Stochastic choice

data is frequently assumed to arise from some underlying distribution over preferences

which governs choice. This is called the random utility model and it, along with

stochastic choice, has two common interpretations. The first interpretation is that

stochastic choice is the aggregate choice of a market of heterogeneous agents. In this

case, the random utility model can be thought of as modeling a distribution over

heterogeneous agents, each of whom is classically rational. Borrowing language from
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Lu and Saito (2020), we call this interpretation the population interpretation. The other

interpretation of stochastic choice is that it is the result of aggregating the repeated

decisions of a singular decision maker across time. Here the random utility model

is thought of as modeling the stationary distribution of some stochastic process over

classically rational preferences. We call this interpretation the individual interpretation.

We study the individual interpretation of the random utility model in order to see if

it is valid when the underlying stochastic process between preferences is subject to

consumption dependence.

There are at least two difficulties present in intertemporal aggregation that are not

present when aggregating across agents. When making repeated decisions, an agent

may be dynamically sophisticated and take future periods into account. If this is the

case, an agent’s choice does not represent maximization of a preference over today’s

alternatives but rather maximization of a Bellman equation that takes into account

today’s utility as well as the agent’s continuation value. Lu and Saito (2020) study

an environment where a potentially dynamically sophisticated agent makes repeated

decisions and provides examples of where this dynamic sophistication can cause issues

when performing inference. A second difficulty that may arise, even in the case of a

myopic agent, is that the agent’s preference tomorrow may be a random function of not

only their preference today but of their choice today as well. Borrowing the language

of Frick et al. (2019), this phenomenon is called consumption dependence. In the case

of consumption dependence, the agent’s stationary distribution over preferences may

depend on the set of alternatives available to them. We study this case and our primary

goal is to characterize which forms of (Markovian) consumption dependence lead to

the agent’s stationary distribution over preferences being independent of the set of

alternatives they face.

There are a multitude of environments and causes which can induce consumption

dependence. One such cause is habit formation or addiction as discussed in Becker

and Murphy (1988) and Gul and Pesendorfer (2007). With habit formation, the con-

sumption of a good today increases the relative utility of that good tomorrow. Thus,

when considering habit formation, the choice of a good today would lead to a high
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probability of drawing a preference in favor of that good tomorrow. Due to this, when

looking at the repeated choice of a single agent, we would expect to see long periods of

time where the same choice is made. Alternatively, when facing repeated decisions, an

agent may have a preference for variation. In this case, consuming a good today would

lead to the relative utility of that good decreasing tomorrow. In this setting we would

expect the repeated decisions of an agent to exhibit low frequency of sequential choices

being the same. Preference for variation can be thought of as a dynamic foundation for

preferences for randomization as discussed in Machina (1985), Agranov and Ortoleva

(2017), and Cerreia-Vioglio et al. (2019).

We model consumption dependence through the use of a transition function t. Given

today’s choice x and preference ≻, t(x,≻) returns a distribution over preferences. The

next time the agent faces a decision problem, they draw a preference according to t(x,≻
) and maximize their realized preference. We call this model the Markov random utility

model. The Markov random utility model allows for habit formation, preference for

variation, and any arbitrary form of single period consumption dependence.1 For each

choice set, the transition function t induces a unique Markov chain over preferences.

When the state is ≻, the transition probabilities of this Markov chain are defined by

t(x,≻) where x is the maximal element of ≻ in the agent’s choice set. This Markov

chain may vary between choice sets as the choice of x can never occur in a choice set

that does not include x. Our primary goal is to characterize which transition functions

induce the same stationary distribution over preferences at each choice set. We call

such transition functions stable. We are interested in stable transition functions as this

is the case when the Markov random utility model is consistent with the individual

interpretation of the random utility model.

Our main results, Theorem 1 and Theorem 2, characterize exactly which transition

functions are stable. Theorem 1 does so through the use of a martingale style condition.

Theorem 1 says that a transition function is stable if and only if for every pair of choice

1While the Markov random utility model restricts itself to dependence only on the prior period, the
techniques we use in this paper can be extended to handle dependence on the prior n periods for any
finite and fixed n.
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sets A and A \ {x}, the transition probabilities from preferences which choose x in A

are on average the same in A and in A\{x}. Theorem 2 characterizes stability through

a no money pump condition. We call a zero value bet a bet that costs as much as it

pays conditional on the realization of the agent’s preference. The interpretation is that

some observer is betting on the agent’s preference tomorrow given the agent’s preference

today and is potentially doing so at multiple choice sets. No money pump asks that

there is no zero value bet that gives a strict expected profit for every realization of the

agent’s preference today. Our Theorem 2 says that a transition function is stable if

and only if it satisfies no money pump.

In Theorem 1 and Theorem 2, we make the assumption that the agent repeatedly

makes choices from the same choice set. In Theorem 3, we drop this assumption

and allow the agent’s choice set to vary over time according to some ergodic Markov

chain. Theorem 3 characterizes stability through an extension of the no money pump

condition of Theorem 2. The main difference between the two conditions is that in

Theorem 2, the expected revenue of the bet is calculated assuming that probability of

a preference in choice set A tomorrow is inherited directly from choice set A today.

However, in Theorem 3 the probability of a preference in choice set A tomorrow is

inherited from every choice set according to the stationary distribution of the Markov

chain varying the agent’s choice set.

In Theorem 4 and Theorem 5, we consider a two period stochastic choice model. In

the first period choices are made according to the random utility model. Given the

realized preference and choice in the first period, preferences then transition according

to some transition function t in the second period. Choices in the second period capture

the dynamic properties of the Markov random utility model. Theorem 4 characterizes

this model when the transition function only depends on the agent’s choice. Theorem

5 characterizes the general version of this model.

The rest of this paper is organized is follows. We conclude this section with a review

of the related literature. In Section 2, we formally introduce our model. In Section

3, we introduce and discuss our main results, Theorem 1 and Theorem 2. In Section
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4, we generalize our baseline model to allow choice sets to vary over time and present

Theorem 3. In Section 5, we introduce and characterize a two period stochastic choice

model which captures the dynamic properties of the Markov random utility model. We

conclude in Section 6.

1.1. Related Literature. Our paper is most closely related to Lu and Saito (2020)

and Frick et al. (2019). Lu and Saito (2020) studies the individual interpretation of

stochastic choice when the agent’s utility potentially takes into account both today’s

consumption as well as the agent’s continuation value. They show that if the analyst

fails to take this dynamic sophistication into account, then estimation of key parameters

such as risk aversion or costs in a dynamic discrete choice setting may be biased. In

their setting, they find that dynamic sophistication leads to biased estimation if and

only if the agent’s utility function over today’s consumption c and their continuation

value v does not take the form U(c, v) = (1−β)u(c)+βv where u is a random expected

utility function and β ∈ (0, 1] is a random discount factor.

Frick et al. (2019) proposes the dynamic random expected utility model in order to

axiomatically study choice data that is apparently history dependent. One of their

main goals is to characterize patterns of history dependence which are spurious. In

the two period formulation of their main model, they consider a joint distribution over

random expected utility functions. The first utility function dictates choice in the first

period and the second dictates choice in the second period. Despite the lack of con-

sumption dependence, this model still allows for some forms of history dependence.

In an earlier version of their paper, they extend their model to explicitly allow for

consumption dependence and characterize which forms of history dependence can arise

due to consumption dependence. Our paper is concerned with how consumption de-

pendence, as studied in Frick et al. (2019), may lead to troubles when aggregating the

repeated decisions of a single agent, a similar problem to the one studied in Lu and

Saito (2020).

Closely related to the model of our paper are Li (2022), Chambers et al. (2022),

and Kashaev and Aguiar (2022). Each of these papers study the special case of our
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model in which the transition function of an agent does not depend on their choice

and only depends on their preference. We call this case pure preference dependence.

All three papers show that the set of inequalities we use to characterize our model

is necessary in their environment. Li (2022) also offers a full characterization of pure

preference dependence in the style of Clark (1996). While Chambers et al. (2022) does

study pure preference dependence, their main focus is on joint stochastic choice with

well-defined marginal choice probabilities. Finally, Kashaev and Aguiar (2022) studies

the case of pure preference dependence in the price-wealth domain rather than in the

abstract domain. In doing so they are able to connect the methodologies of McFadden

and Richter (1990) with those of Afriat (1967). This allows the authors to study data

that is both heterogeneous across time as well as across agents. Further, Kashaev and

Aguiar (2022) study a more general type of data than we do. We assume that choice

is observed on all non-empty subsets of a finite choice set. In the price wealth domain

of Kashaev and Aguiar (2022) there are a continuum of possible choices and it is only

assumed that choice is observed on some set of budgets rather than on every budget.

More generally our paper is related to three strands of literature: (i) random utility

and dynamic random utility, (ii) consumption dependence, and (iii) common priors

and feasible distributions over posteriors. There is a large literature on the static

random utility model of Block and Marschak (1959). Falmagne (1978), Barberá and

Pattanaik (1986), McFadden and Richter (1990), and Fiorini (2004) offer axiomatic

characterization of the random utility model. Gul and Pesendorfer (2006) introduces

the random expected utility model which serves as the basis for many of the papers,

including Frick et al. (2019) and Lu and Saito (2020), studying random utility in

dynamic settings. To our knowledge, Fudenberg and Strzalecki (2015) is the first to

study the axioms of a random utility model in a dynamic setting. Duraj (2018) extends

many of the results of Frick et al. (2019) to a setting with a subjective beliefs about

the state of the world. Strack and Taubinsky (2021) studies when an expected utility

preference in one period can be induced by aggregating a random utility in a second

period. Deb and Renou (2021) and Alós-Ferrer and Mihm (2021) consider dynamic

environments where agents can learn from past choices. In Alós-Ferrer and Mihm
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(2021) agents only learn from their past choices while in Deb and Renou (2021) agents

are able to learn from the choices of others.

Our paper is also related to the strand of literature studying consumption depen-

dence. The idea to distinguish between history dependence and consumption depen-

dence dates back to at least Heckman (1978) and Heckman (1981). As mentioned prior,

consumption dependence can arise due to many different factors. Becker and Murphy

(1988) and Gul and Pesendorfer (2007) study consumption dependence that arises due

to addiction. There is also a long literature on consumption dependence that arises

due to consumers learning about product characteristics. To name a few, Erdem and

Keane (1996), Crawford and Shum (2005), and Pakes et al. (2021) each study environ-

ments where a consumer gains knowledge about a product by consuming said product.

Chen (2008) and Chen and Risen (2010) study how cognitive dissonance can lead to

consumption dependence and the difficulties distinguishing choices that arise from this

cognitive dissonance and choices that arise due to some fixed underlying preference.

Lastly, our paper and concept of stability are related to the common prior assumption

and the study of feasible distributions of posteriors. Stability asks that the stationary

distribution over preferences is the same at each choice set. The common prior assump-

tion asks that each agent in a group have the same prior beliefs about the state of the

world. Our Theorem 1 characterizes stability through a martingale condition. In the

single agent case, a distribution over posteriors is consistent with a prior if and only

if the prior and distribution over posteriors satisfy an analogous martingale condition.

In the case of multiple agents, the existence of a common prior has been characterized

via no-trade conditions. Milgrom and Stokey (1982) first notes that, in the case of

a common prior, agents will not engage in speculative trade. Morris (1994) proves a

converse of this statement and shows that agents have a common prior if and only

if they will not engage in speculative trade. This characterization is also studied in

Feinberg (2000) and Samet (1998). Recently, Arieli et al. (2021) studies the question

of feasible joint posterior beliefs.2 In this setting, the common prior assumption is still

2Arieli et al. (2021) restricts to the case of two underlying states. Lang (2022) considers the problem
for an any finite state space and is able to show an equivalence between the feasibility of posteriors
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characterized by a type of no-trade theorem. Morris (2020) shows how to derive the

condition developed in Arieli et al. (2021) from the result of Morris (1994). In doing

so, Morris (2020) shows that there is an equivalence between the no-trade condition

and a no money pump condition. Our Theorem 2 and Theorem 3 characterize stability

through the use of a no money pump condition.

2. Model

2.1. Preliminaries. Let X be a finite set of alternatives with typical elements x, y,

and z. L(X) denotes the set of linear orders of X with typical element ≻. We let

∆(L(X)) denote the set of probability distributions over L(X) with typical element ν.

Further, we let int∆(L(X)) denote the set of full support probability distributions over

L(X). Define N(x,A) = {≻∈ L(X)|x ≻ A \ {x}} and M(x,A) = {≻∈ L(X)|X \A ≻
x ≻ A \ {x}}. N(x,A) is the set of linear orders which are maximized by x in A

and M(x,A) is the set of linear orders which are maximized by x in A but are not

maximized by x in any strict superset of A. Let X denote the collection of subsets of

X with at least two elements with typical elements A and B. Let x(A,≻) denote the

alternative x ∈ A such that x ≻ y for all y ∈ A \ {x}.

Definition. We call a function t : X × L(X) → ∆(L(X)) a transition function.

Further we call a function t : X × L(X) → int∆(L(X)) a strict transition function.

We use t≻′(x,≻) to denote the probability of ≻′ given that (x,≻) is the input to the

transition function.

Definition. A function p : X × X → [0, 1] is a random choice rule (rcr) if it satisfies

the following.

• x ̸∈ A =⇒ p(x,A) = 0

•
∑

x∈A p(x,A) = 1

and the existence of a solution to a given multi-commodity flow problem. Lang (2022) also shows that
this multi-commodity flow problem reduces to a single commodity flow problem when the state space
is binary.
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2.2. Stability and Markov Random Utility. Our first goal in this paper is to

explore the relationship between the random utility model and repeated choice where

preferences evolve according to a transition function t. A strict transition function

t induces an ergodic Markov chain for each choice set A. We are interested in the

stationary distributions of these Markov chains.

For each choice set A, a preference ≻ induces the choice x(A,≻). Consider a Markov

matrixMA whose rows and columns are indexed by the elements of L(X). Let ≻ index

the rows and ≻′ index the columns. MA is then given by
[
mA(≻,≻′) = t≻′(x(A,≻),≻)

]
where mA(≻,≻′) indicates the element of MA indexed by (≻,≻′). When t is a strict

transition function, MA represents an ergodic Markov chain with a unique stationary

distribution νA. Each νA then defines choice in each subset. Specifically, we have the

following.

p(x,A) =
∑

≻∈N(x,A)

νA(≻)

We call this model the Markov random utility model (MRUM). We interpret MRUM as

follows. There is a myopic agent who repeatedly makes choice decisions from a choice

set A. Each time the agent makes a choice, they choose the alternative in A which

is ranked highest by their current preference. The agent’s preference then updates

according to t(x(A,≻),≻).

Recall that the standard random utility model (RUM) supposes that there exists

some ν ∈ ∆(L(X)) such that choices follow the following rule.

p(x,A) =
∑

≻∈N(x,A)

ν(≻)

MRUM and RUM differ in the fact that in RUM ν is the same for each choice set

while in MRUM νA is allowed to vary between choice sets according to the underlying

transitions function. In this sense, RUM is a special case of MRUM.

Definition. A strict transition function t is stable if for each A,B ∈ X , we have

νA = νB.
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Stability exactly captures the cases when MRUM is equivalent to RUM. The indi-

vidual interpretation of RUM is that stochastic choice captures the repeated choice

of a single agent and the underlying distribution ν is the stationary distribution over

preferences for some underlying stochastic process. We argue that this underlying sto-

chastic process may depend on the choices of the agent and our goal is to see when

this consumption dependence is consistent with RUM.

3. Stability and Stationary Distributions

3.1. Two Extreme Cases. Before studying the problem of stability for general strict

transition functions, we consider two special cases: pure preference dependence and

pure consumption dependence.

Definition. We say that a transition function is purely preference dependent if, for all

x, y ∈ X and for all ≻∈ L(X), we have t(x,≻) = t(y,≻). In the case of pure preference

dependence we write t(≻) instead of t(x,≻).

Pure preference dependence captures how analysts have classically thought of the

individual interpretation of RUM.3 Pure preference dependence simply asks that an

agent’s preference tomorrow only depends on their preference today. This case is

consistent with the latent variable hypothesis which assumes that an agent has a fixed

utility function but that utility function takes as input the realization of some random

variable which is unobserved to the analyst. As an example, an agent’s decision to

carry an umbrella is determined by the weather, but the weather may not be a part of

an analyst’s data set.

Observation 1. Suppose a strict transition function t is purely preference dependent.

t is stable.

Observation 1 tells us that every purely preference dependent transition function is

consistent with RUM. This means that the individual interpretation of RUM is valid

3In Lu and Saito (2020), an agent’s utility is determined by an ergodic utility process. This utility
process is a Markov process between expected utility functions.
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when one wants to test the latent variable hypothesis. This result follows from the fact

that a purely preference dependent transition function takes no input from the choice

set of the agent.

Definition. We say that a transition function is purely consumption dependent if, for

all x ∈ X and for all ≻,≻′∈ L(X), we have t(x,≻) = t(x,≻′). In the case of pure

consumption dependence we write t(x) instead of t(x,≻).

Pure consumption dependence is the opposite extreme of pure preference depen-

dence. In the case of pure consumption dependence, the agent’s preference tomorrow

is determined only by their choice today. While pure consumption dependence does

not allow for the latent variable hypothesis, it allows for other interesting dynamic

behaviors. One such case is habit formation, a case which is not consistent with pure

preference dependence.

Proposition 1. Suppose that |X| ≥ 3 and that a strict transition function t is purely

consumption dependent. t is stable if and only if t(x) = t(y) for all x, y ∈ X.

We leave all proofs to the appendix. Proposition 1 is a negative result. It tells us

that pure consumption dependence is consistent with RUM if and only if there is no

consumption dependence. In other words, the condition in Proposition 1 asks that the

distribution over an agent’s preferences tomorrow is independent of their choice today.

The main take away from Proposition 1 is that the individual interpretation of RUM

may not be valid when we have consumption dependence. Pure preference dependence

and pure consumption dependence are the two extreme cases of MRUM and coincide

with two extreme relationships with stability; anything goes and impossibility. For

general transition functions, there will be some forms of consumption dependence that

are still consistent with RUM.

3.2. A Martingale Condition. We just saw that, in the case of pure consumption

dependence, stability holds if and only if the transition function is the same for each

alternative x and y. In the general case, this need not be the case. However, it will

be the case that the transition functions must on average remain the same as we move
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between choice sets. To be formal, as we go from the set A to A \ {x}, the preferences
which chose x in A are now choosing some other alternative y ∈ A \ {x}. Thus, in the

case when t(x,≻) governed transitions in A, t(y,≻) now governs transitions in A\{x}.
The following condition, which we call local stability, captures the idea of transition

functions being the same on average.

Definition. Let νA be the stationary distribution for some set A ∈ X . A transition

function t is locally stable at A if, for all x ∈ B ∈ X with |B| ≥ 3, we have the following.

(1)
∑

≻∈N(x,A)

νA(≻)t(x,≻) =
∑

y∈B\{x}

∑
≻∈N(x,A)∩N(y,A\{x})

νA(≻)t(y,≻)

The left hand side of Equation (1) captures the probability the agent chooses x from

A today times the distribution over the agent’s preference tomorrow when they choose

x from choice set A today. The right hand side of Equation (1) captures the probability

that the agent has drawn a preference that is maximized by x in A tomorrow but has

to choose an alternative from A\{x} times the distribution over the agent’s preference

tomorrow conditional on the prior described event.

Theorem 1. Given a strict transition function t, the following are equivalent.

(1) t is stable.

(2) t is locally stable for all A ∈ X .

(3) t is locally stable for some A ∈ X .

Theorem 1 tells us that stability and local stability are equivalent. The appeal of

local stability is that it tells us, when we compare the stationary distributions of two

choice sets, exactly which parts of the stationary distributions matter for stability. We

simply need to check the preferences which induce different choices in A and A \ {x}.

3.3. A No Money Pump Condition. Theorem 1 provides a simple characterization

of stability. However, the characterization requires first calculating the stationary

distribution of some choice set in X . We now characterize stability through a no money

pump condition which does not require the calculation of any stationary distribution.
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Consider an outside observer who wishes to make a bet about the agent’s preference

tomorrow given the agent’s preference today. This outside observer can make this bet

at each choice set. We restrict attention to what we call zero value bets.

Definition. We call a function b : X × L(X) → R+ a zero value bet.

The outside observer is restricted to bets that cost b(A,≻) to make at choice set A

when the agent’s preference is ≻ but also pay b(A,≻) at choice set A when the agent’s

preference is ≻. If we restrict ourselves to a single choice set, the outside observer

makes a zero expected profit as the bet is repeated. When we look at multiple choice

sets concurrently, this is also the case if the outside observer places the bet in every

period. If, instead, we allow the outside observer to make the bet only when each

choice set agrees on the agent’s preference, the outside observer has the opportunity

to make a strict profit. In this case, we use b(≻) =
∑

A∈X b(A,≻) to denote the total

cost of placing bet b when the agent’s preference is ≻.

Definition. We say that a transition function t satisfies no money pump if for each

zero value bet b the following holds.

(2) min
≻∈L(X)

∑
(A,≻′)∈X×L(X)

b(A,≻′)t≻′(x(A,≻),≻)− b(≻) ≤ 0

The expression b(≻) in Equation (2) is the total cost of placing bet b when the agent’s

preference is ≻. In the expression on the left in Equation (2), t≻′(x(A,≻),≻) denotes

the probability that tomorrow’s preference is ≻′ at choice set A. This means that the

term on the left in Equation (2) captures the expected revenue of bet b tomorrow given

that the agent’s preference is ≻ today. No money pump asks that the outside observer

is unable to make a strict profit for every preference ≻. Our next theorem shows that

no money pump is a tight characterization of stability.

Theorem 2. A strict transition function t is stable if and only if it satisfies no money

pump.
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4. Choice Set Arrival

Thus far we have assumed that an agent’s choice set is fixed. However, this differs

from reality where an agent’s choice set may vary over time and necessarily does so if

an analyst has data for multiple choice sets. In this section we extend MRUM to allow

the agent’s choice set to vary according to an ergodic Markov chain. Our goal is to

characterize transition function and choice set arrival process pairs which are stable.

Definition. A function s : X → ∆(X ) is an arrival function if s represents the

transition probabilities of an ergodic Markov chain.

We use sB(A) to denote the transition probability from A to B. Taken together,

a transition function t and an arrival function s jointly define a Markov chain over

preference and choice set pairs, (≻, A). We say that this Markov chain is defined by st

as the transition probability from (≻, A) to (≻′, B) is given by sB(A)t≻′(x(≻, A),≻).

Let π be a typical element of ∆(X ). Further, we let ψ to denote a typical element of

∆(X × L(X)), the set of probability distribution over preference and choice set pairs.

Definition. We say that a strict transition function and arrival function pair (t, s) are

jointly stable if the unique stationary distribution ψ of the Markov chain defined by st

can be written as ψ(≻, A) = ν(≻)π(A) for some ν ∈ ∆(L(X)) and π ∈ ∆(X ).

Joint stability simply asks that the stationary distribution over preferences does not

depend on the choice set. Of use to us will be the probability of yesterday’s choice

set given today’s choice set in the stationary distribution of s. We use the notation

ρ(Bτ−1|Aτ ) to denote the probability in the stationary distribution that last period’s

choice set was B given that this period’s choice set is A. Formally, given the stationary

distribution π over choice sets, ρ(Bτ−1|Aτ ) is given by the following.

ρ(Bτ−1|Aτ ) =
π(B)sA(B)∑

C∈X π(C)sA(C)
=
π(B)sA(B)

π(A)

Consider the following condition.
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Definition. We say that a transition function and arrival function pair (t, s) satisfies

no money pump if for each zero value bet b the following holds.

(3) min
≻∈L(X)

∑
(A,≻′)∈X×L(X)

∑
B∈X

b(A,≻′)ρ(Bτ−1|Aτ )t≻′(x(B,≻),≻)− b(≻) ≤ 0

Equation (3) has a similar interpretation to that of Equation (2). The expression

on the right captures the cost of placing a zero value bet when the preference at each

choice set is ≻. The expression on the left captures the expected revenue of the zero

value bet when the preference at each choice set is ≻. The major difference between

Equation (2) and Equation (3) is that in Equation (2) the preference of choice set

A tomorrow is inherited only from A. However, in Equation (3), the preference of

choice set A tomorrow is inherited from every choice set according to the stationary

distribution of the arrival function s. As before, Equation (3) asks that no zero value

bet makes a strict profit for every preference ≻.

Theorem 3. A strict transition function and arrival function pair (t, s) is jointly stable

if and only if the pair satisfies no money pump.

Similar to Theorem 2, Theorem 3 tells us that stability is equivalent to no money

pump. Thus far we have provided tests for stability that rely on observation of a

transition function. In empirical settings, choices are observed while preferences are

unobserved. This further means that the probability that the agent’s preference is ≻
tomorrow given that their preference is ≻′ today is unobserved. In addition to choices,

there are environments where the agent’s choice set is observable. This leads us to ask

if we can guarantee stability when we only observe a choice set arrival function s.

Definition. We say that an arrival function s is stable if for every strict transition

function t the pair (t, s) is jointly stable.

Definition. We say that an arrival function is identically distributed if for all A,B,C ∈
X we have that ρ(Bτ−1|Aτ ) = ρ(Bτ−1|Cτ ).

Proposition 2. If an arrival function s is identically distributed then it is stable.
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Proposition 2 provides a partial answer to our question in terms of a sufficient condi-

tion. When an arrival function is identically distributed, in the stationary distribution,

the probability that last period’s choice set is B is the same for every choice set. This

tells us that the probability that a choice set A inherited their preference from choice

set B is the same for each A. This is sufficient to guarantee that each choice set’s

stationary distribution over preferences is identical.

5. Stochastic Choice

In order to capture the behavioral content of consumption dependence, in this section

we look at a two period stochastic choice model where the first period is governed by

RUM and choices in the second period are governed by a transition function. Formally,

we observe a random joint choice rule which captures the joint choices in the first and

second period.

Definition. A function p : X2 × (2X \ {∅})2 → [0, 1] is a random joint choice rule

(rjcr) if it satisfies the following.

• x ̸∈ A or y ̸∈ B =⇒ p(x, y, A,B) = 0

•
∑

x∈A,y∈B p(x, y, A,B) = 1

We consider two representations; one for the general case of MRUM and one for

purely consumption dependent MRUM.4

Definition. We say that a random joint choice rule is consistent with MRUM if there

exists a probability distribution over preferences ν and a transition function t such that

the following holds for all nonempty A,B ⊆ X and for all (x, y) ∈ A×B.

(4) p(x, y, A,B) =
∑

≻∈N(x,A)

ν(≻)
∑

≻′∈N(y,B)

t≻′(x,≻)

Further, we say the random joint choice rule is consistent with purely consumption

dependent MRUM if the transition function is purely consumption dependent.

4The case of purely preference dependent MRUM has been considered in Li (2022) and Chambers
et al. (2022). As such, we do not consider the case of pure preference dependence here.
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The concept of a Möbius inverse will be of importance for both characterizations.

Consider a function f : 2X \{∅} → R. The Möbius inverse of f on the partially ordered

set (2X \{∅},⊇) is given by the function g : 2X \{∅} → R which is recursively defined

by f(A) =
∑

B⊇A g(B). Each function f has a well-defined Möbius inverse which is

unique to f . The Möbius inverse g(A) captures how much the function f changes

at A. When g(A) ≥ 0 for each A, every set A adds some non-negative value to the

function f .5 Notably, the Block-Marschak polynomials (see Block and Marschak (1959)

and Falmagne (1978)) are the Möbius inverse of choice probabilities and are used to

characterize which random choice rules are consistent with RUM. The characterization

asks that each Block-Marschak polynomial is non-negative. This corresponds to a non-

negative amount of probability being added to the choice of each alternative at each

choice set. We use multiple Möbius inverses in our upcoming characterizations.

5.1. Pure Consumption Dependence. In MRUM, the agent is myopic which means

that they do not take into account tomorrow’s choice set when making decisions. While

there is still consumption dependence between the two periods as tomorrow’s preference

is determined by today’s choice, the marginal choice of an alternative x from A in the

first period should not vary with the choice set B in the second period. This leads to

our first axiom.

Axiom 1. A random joint choice rule satisfies marginality if for every nonempty

B,B′ ⊆ X and for each x ∈ A ⊆ X we have the following.∑
y∈B

p(x, y, A,B) =
∑
y∈B′

p(x, y, A,B′)

Marginality asks that the first period choice probabilities have well defined marginal

choice probabilities. Marginality is not a new axiom and appears in earlier work such as

Chambers et al. (2022) and in the form of marginal consistency in Li (2022). However,

unlike in those two settings where marginality must hold in every period, in our setting

5More formally, this is related to the concept of complete monotonicity of functions on semigroups.
(2X ,∪) is the semigroup we are considering here. See Berg et al. (1984) for a reference.
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marginality need only hold in the first period. When a random joint choice rule satisfies

marginality, we can define a marginal random joint choice rule for the first period.

Definition. For a random joint choice rule p satisfying marginality, we use p(x,A) to

denote the marginal choice probability of x from A in the first period.

p(x,A) =
∑
y∈X

p(x, y, A,X)

Once we have well defined marginal choice probabilities in the first period, our

model asks that these choice probabilities arise from RUM. As mentioned prior, RUM

is characterized by non-negativity of the Block-Marschak polynomials which are the

Möbius inverse of choice probabilities.

Definition. For each x ∈ X and for each A such that x ∈ A, we use q(A|x) to denote

the Möbius inverse of p(x,A).

q(A|x) = p(x,A)−
∑

A′:A⊊A′

q(A′|x)

=
∑

A′:A⊆A′

(−1)|A
′\A|p(x,A′)

Axiom 2. A random joint choice rule satisfies complete monotonicity of first

period choice probabilities if q(A|x) ≥ 0 for each x ∈ X and for each A with

x ∈ A.

Axioms 1-2 guarantee that the choices in the first period are consistent with RUM.

All that is left is to guarantee that the second period choice probabilities arise from a

purely consumption dependent transition function. As we are considering the case of

pure consumption dependence, the choices of the second period are connected to the

first period only through the choice in the first period and not through the preference

realization in the first period. With this in mind, we consider second period conditional

choice probabilities.

Definition. For each (x,A) with p(x,A) > 0, denote by p(y,B|x,A) the choice prob-

ability of y from B in the second period conditional on x being chosen from A in the
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first period.

p(y,B|x,A) = p(x, y, A,B)

p(x,A)

Axiom 3. We say that a random joint choice rule satisfies independence of first

period choice set if for each (x,A) and (x,A′) with p(x,A) > 0 and p(x,A′) > 0, we

have p(y,B|x,A) = p(y,B|x,A′).

Axiom 3 asks that second period choices are dependent only on the first period

choices and not on the first period choice sets. When Axiom 3 holds, we use p(y,B|x)
to denote p(y,B|x,A). Since each purely consumption dependent transition function

defines a probability distribution over preferences tomorrow conditional on today’s

choice, each p(·, ·|x) should be consistent with RUM.

Definition. For each x such that there exists A with p(x,A) > 0, for each y ∈ X, and

for each B with y ∈ B, we use q(B|x, y) to denote the Möbius inverse of p(y,B|x).

q(B|x, y) = p(y,B|x)−
∑

B′:B⊊B′

q(B′|x, y)

=
∑

B′:B⊆B′

(−1)|B
′\B|p(y,B′|x)

Axiom 4. A random joint choice rule satisfies complete monotonicity of

consumption dependent second period choice probabilities(CMCD2) if

q(B|x, y) ≥ 0 for each x ∈ X such that there exists A with p(x,A) > 0, for each

y ∈ B, and for each B with y ∈ B.

Axioms 3-4 guarantee that, conditional on the choice of x in the first period, the

choice probabilities in the second period are consistent with RUM and thus a purely

consumption dependent transition function.

Theorem 4. A random joint choice rule is consistent with purely consumption depen-

dent MRUM if and only if it satisfies Axioms 1-4.

5.2. General Transition Functions. In the case of pure consumption dependence,

the agent’s transition function only depends on their choice. We are able to condition
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on the agent’s choice in the first period as it is an observable. However, in general,

an agent’s transition function will depend on both their choice and preference in the

first period. This means that we will need a new set of axioms to characterize general

MRUM. As the agent still chooses according to RUM in the first period, Axioms 1-2

still hold. We now introduce two new functions which will be used in the upcoming

characterization.

Definition. For each x, y ∈ X and each A × B such that (x, y) ∈ A × B, we use

q(A|x, y, B) to denote the Möbius inverse of p(x, y, A,B) as we vary A.

q(A|x, y, B) = p(x, y, A,B)−
∑

A′:A⊊A′

q(A′|x, y, B)

=
∑

A′:A⊆A′

(−1)|A
′\A|p(x, y, A′, B)

Definition. For each x, y ∈ X and each A × B such that (x, y) ∈ A × B, we use

r(B|x, y, A) to denote the Möbius inverse of q(A|x, y, B) as we vary B.

r(B|x, y, A) = q(A|x, y, B)−
∑

B′:B⊊B′

r(B′|x, y, A)

=
∑

B′:B⊆B′

(−1)|B
′\B|q(A|x, y, B′)

Our next result offers an interpretation of these two functions. Recall that M(x,A)

is the set of linear orders which rank x above every element of A and below every

element of X \ A.

Lemma 1. Let (ν, t) be a MRUM representation of a consistent random joint choice

rule p. Then the following holds.

(1) q(A|x) = ν(M(x,A))

(2) q(A|x, y, B) =
∑

≻∈M(x,A)

∑
≻′∈N(y,B) ν(≻)t≻′(x,≻)

(3) r(B|x, y, A) =
∑

≻∈M(x,A)

∑
≻′∈M(y,B) ν(≻)t≻′(x,≻)

In Lemma 1, (1) is due to Falmagne (1978) and tells us that q(A|x) corresponds

exactly to the probability weight put on linear orders which rank x above every element
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of A and below every element of X \ A. (2) tells us that q(A|x, y, B) is equal to the

probability of one of these prior linear orders times the probability of transitioning to

a preference which chooses y from B in the second period. In other words, (2) tells

us that q(A|x, y, B) is the probability of choosing y from B in the second period and

drawing a preference from M(x,A) in the first period conditional on choosing from A

in the first period. Taking this one step further, (3) tells us that r(B|x, y, A) is equal to
the probability of drawing a preference fromM(y,B) in the second period and drawing

a preference from M(x,A) in the first period conditional on choosing from A in the

first period.

Axiom 5. A random joint choice rule satisfies complete monotonicity of joint

choice with respect to the first period (CMJC1) if q(A|x, y, B) ≥ 0 for all x, y ∈
X and for all A,B ⊆ X such that (x, y) ∈ A×B.

In terms of MRUM, Axiom 5 tells us that, for each (x,A), the preferences inM(x,A)

must transition to preferences which choose y from B with non-negative probability.

In terms of data, we interpret Axiom 5 in the case where Axiom 2 holds. Axiom 2 says

that every choice set adds some non-negative amount to the choice probability of x.

In normative terms, Axiom 5 tells us that as more probability is added to the choice

of x, the joint choice probability of (x, y) must not decrease. More formally, Axiom 5

tells us that every set A contributes some non-negative probability to the joint choice

of (x, y) keeping the second period choice set B fixed.

Axiom 6. A random joint choice rule satisfies second degree complete mono-

tonicity of joint choice probabilities (2DCM) if r(B|x, y, A) ≥ 0 for all x, y ∈ X

and for all A,B ⊆ X such that (x, y) ∈ A×B.

In terms of MRUM, Axiom 6 tells us that the transition functions t(x,≻) for ≻∈
M(x,A) transition to preferences inM(y,B) with non-negative probability. In terms of

data, we interpret Axiom 6 in the case where Axiom 2 and Axiom 5 hold. Axiom 5 tells

us that while we keep the second period choice set B fixed, as the choice probability

of x increases, the joint choice of (x, y) must increase. In simple terms, Axiom 6 tells
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us that the amount that (x, y) increases by is larger in B′ than in B when B′ ⊆
B. Alternatively, for B′ ⊆ B, it is an implication of Axiom 6 that q(A|x, y, B′) ≥
q(A|x, y, B). Formally, Axiom 6 tells us that each choice set B adds some non-negative

probability to the amount of probability that each choice set A adds to the joint choice

of (x, y). Axiom 6 can be thought of as capturing increasing differences of the joint

choice probabilities while taking into account the partial order structure of set inclusion.

Theorem 5. Consider a random joint choice rule p. The following are equivalent.

(1) p is consistent with MRUM.

(2) p satisfies Axioms 1-2 and Axioms 5-6.

(3) p satisfies Axiom 1 and Axiom 6.

6. Conclusion

In this paper we discuss the impact of consumption dependence on the individ-

ual interpretation of RUM and stochastic choice. We find that while there are some

forms of consumption dependence which are consistent with RUM, in general consump-

tion dependence is not allowed by the individual interpretation of RUM. The way we

model consumption dependence is Markovian, but, within the Markovian paradigm,

our model is fully nonparametric. However, an analyst may not be concerned about

fully nonparametric consumption dependence but may be concerned about a specific

type of consumption dependence that arises in the environment they are studying. As

an example, consider an analyst who is studying risk aversion and is trying to estimate

the agent’s level of risk aversion. In this setting, when an agent invests in a risky asset

and the value of that risky asset is realized, the realization of the risky asset impacts

the agent’s wealth level. For general risk preferences, an agent’s wealth level impacts

their risk aversion. The analyst may be concerned that consumption dependence enters

through this channel but is not concerned about consumption dependence entering due

to habit formation. An interesting line of study would be to focus on stylized environ-

ments, like the one considered in the previous example, in order to see if specific forms

of consumption dependence impact intertemporal aggregation.
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In addition to studying the relation between consumption dependence and RUM, we

also characterize the behavioral content of consumption dependence in a two period

model.6 Our model is characterized by two axioms. The first asks that marginal choices

in the first period are independent of the choice set in the second period. Our second

axiom asks that joint choice probabilities satisfy two levels of complete monotonicity

and is a statement about increasing differences while taking into account the partial

order structure of set inclusion. While not studied here, an interesting followup question

would be to characterize static random choice rules which are consistent with MRUM.

Recall that a random choice rule is consistent with MRUM if it satisfies p(x,A) =∑
≻∈N(x,A) νA(≻) for some transition function t where νA is the stationary distribution

over preferences of the Markov chain induced by t at A. If these Markov chains are

not guaranteed to be ergodic, then every random choice rule can be explained if we

are allowed to choose a distribution over starting choices. The interesting case is when

these Markov chains are ergodic. In general, MRUM extends RUM by allowing the

distribution over preferences to vary with the agent’s choice set. Characterizing which

static random choice rules are consistent with MRUM is of interest as MRUM may

be able to explain many of the empirical irregularities of RUM such as failures of

regularity.

Appendix A. Proofs

A.1. Proof of Proposition 1. If t(x) = t(y) for all x, y ∈ X, then t(x) defines the

stationary distribution over preferences which is common to each choice set. Now

suppose t(x) ̸= t(y) for some x, y ∈ X and that t is stable with common stationary

distribution ν. Consider the set {x, y} = A. With a slight abuse of notation, let

t(x, y) =
∑

≻∈N(x,{x,y}) t≻(x). Define t(y, x) similarly. It then follows that t defines a

Markov chain between choices on A which is given by the following matrix.[
1− t(x, y) t(x, y)

t(y, x) 1− t(y, x)

]
6This is also done in a working paper version of Frick et al. (2019) in the context of the dynamic
random expected utility model.
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The first row and column of this matrix corresponds to x and the second row and col-

umn corresponds to y. The stationary distribution of this Markov chain is

[
t(y,x)

t(y,x)+t(x,y)

t(x,y)
t(y,x)+t(x,y)

]
.

Since t is strictly positive in each of its elements we can write p(x,A) = α and

p(y, A) = 1−α for some α ∈ (0, 1). It then follows that ν = αt(x)+ (1−α)t(y). Since

t(x) ̸= t(y), there is some ≻ such that, without loss of generality, t≻(x) < ν(≻) < t≻(y).

Consider z ̸∈ {x, y}. Since the stationary distribution for each choice set is equal to ν,

it must be the case that t≻(x) < ν(≻) < t≻(z) and t≻(z) < ν(≻) < t≻(y) which is a

contradiction.

A.2. Proof of Theorem 1. Suppose that transition function t is stable. This means

that νA = νB for all choice sets A and B. Consider x ∈ A with |A| ≥ 3. Consider the

following. ∑
≻′∈L(X)

νA(≻′)t≻(x(A,≻′),≻′)−
∑

≻′∈L(X)

νA(≻′)t≻(x(A \ {x},≻′),≻′)

=
∑

≻′∈N(x,A)

νA(≻′)t≻(x,≻′)−
∑

y∈B\{x}

∑
≻′∈N(x,A)∩N(y,A\{x})

νA(≻′)t≻(y,≻′)

The left hand side of the equation above represents νA(≻) − νA\{x}(≻). Since νA =

νA\{x}, the left hand side of the equation is equal to zero and then so too does the

right hand side of the equation. Since the right hand side of the equation equals zero,

a quick rearrangement gives us local stability.

Now suppose that t is locally stable. Let νA correspond to the stationary distribution

of A used in the definition of local stability. If |A| ≥ 3, then we have the following.∑
≻′∈L(X)

νA(≻′)t≻(x(A,≻′),≻′)−
∑

≻′∈L(X)

νA(≻′)t≻(x(A \ {x},≻′),≻′)

=
∑

≻′∈N(x,A)

νA(≻′)t≻(x,≻′)−
∑

y∈B\{x}

∑
≻′∈N(x,A)∩N(y,A\{x})

νA(≻′)t≻(y,≻′)

The right hand side of the above equation is the local stability condition and thus equals

zero. The left hand side of the above equation represents νA(≻) − ⟨νA,mA\{x}(≻, ·)⟩
where ⟨·, ·⟩ represents the dot product of two vectors. Since the left hand side of the
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equation equals zero, νA(≻) − ⟨νA,mA\{x}(≻, ·)⟩ = 0. This immediately gives us that

νAMA\{x} = νA, and so νA is the stationary distribution of A \ {x}. By an analogous

argument, for A ̸= X, we can conclude that νA is the stationary distribution for A∪{x}.
Now consider some set B. We want to show that νB = νA. By prior arguments, we

have shown we can either add or remove one element and maintain our stationary

distribution if local stability holds. We now simply need to argue that νA = νA∪B by

repeatedly making those arguments while adding a single alternative at each step. We

then can show that νA∪B = νB by once again repeatedly making the same arguments

while removing a single alternative at each step. Thus νA = νB for all A,B ∈ X .

A.3. Proof of Theorem 2. The condition for a distribution to be stationary is ν(M−
I) = 0 where I is the identity matrix. The condition for stability can be written

similarly. Consider the matrixM with rows indexed by elements of L(X) and columns

indexed by elements of X × L(X). The typical element of M is given as follows.

m(≻, (A,≻′)) = t≻′(x(A,≻),≻)− 1{≻=≻′}

Stability can now be written as the existence of a ν such that νM = 0. Ville’s Theorem

of the Alternative (see Ville (1938) and Border (2013)) tells us that there exists ν > 0

such that νM ≤ 0 if and only if there does not exist some b ≥ 0 such that Mb >> 0.

Consider some ν > 0 such that νM ≤ 0. If such a ν exists, then we can rescale ν

to be a probability distribution (i.e. ν · 1 = 1). M is written as a series of (MA − I)

where MA is the Markov transition matrix for choice set A in Section 2. As such

νMA · 1 = νI · 1 = 1. This means that ν(MA − I) · 1 = 0 which in turn tells us that

νM · 1 = 0. Further, if there is some component of νM that is strictly less than zero

then there must be some other component of νM strictly larger than zero. Finally,

this gives us that νM ≤ 0 and ν > 0 if and only if νM = 0 and ν > 0.

Now suppose there exists some b ≥ 0 such that Mb >> 0. This b is a zero value

bet from our no money pump condition. If we write out each inequality implied by
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Mb >> 0 we get the following for each ≻∈ L(X).∑
(A,≻′)∈X×L(X)

b(A,≻′)[t≻′(x(A,≻),≻)− 1{≻=≻′}] > 0

Note that
∑

(A,≻′)∈X×L(X) b(A,≻′)1{≻=≻′} is exactly b(≻). This means we can

rewrite the above as follows.∑
(A,≻′)∈X×L(X)

b(A,≻′)t≻′(x(A,≻),≻)− b(≻) > 0

The negation of the above holding for all ≻ is exactly our no money pump condition.

So our no money pump condition holds if and only if there does not exist some b ≥ 0

with Mb >> 0. This is equivalent to the existence of some ν > 0 satisfying ν · 1 = 1

and νM ≤ 0 by Ville’s Theorem of the Alternative. Finally we showed that this is

equivalent to the existence of some ν > 0 satisfying ν · 1 = 1 and νM = 0 which is

exactly stability.

A.4. Proof of Theorem 3. Our proof of Theorem 3 will proceed in a similar manner

to our proof of Theorem 2. Consider the matrix M with rows indexed by elements of

L(X) and columns indexed by elements of X × L(X). The typical element of M is

given as follows.

m(≻, (A,≻′)) =
∑
B∈X

ρ(Bτ−1|Aτ )t≻′(x(B,≻),≻)− 1{≻=≻′}

As prior, Ville’s Theorem of the Alternative tells us that there exists ν > 0 such that

νM ≤ 0 if and only if there does not exist some b ≥ 0 such that Mb >> 0. Using

an analogous argument from the proof of Theorem 2, we can show that νM ≤ 0 and

ν > 0 if and only if νM = 0 and ν > 0. Now suppose there exists some b ≥ 0 such

that Mb >> 0. This b is a zero value bet from our no money pump condition. If we

write out each inequality implied by Mb >> 0 we get the following for each ≻∈ L(X).∑
(A,≻′)∈X×L(X)

b(A,≻′)[
∑
B∈X

ρ(Bτ−1|Aτ )t≻′(x(B,≻),≻)− 1{≻=≻′}] > 0
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As before, we can rewrite the above as follows.∑
(A,≻′)∈X×L(X)

∑
B∈X

b(A,≻′)ρ(Bτ−1|Aτ )t≻′(x(B,≻),≻)− b(≻) > 0

This is the negation of our no money pump condition. As prior this tells us that our no

money pump condition holds if and only if there exists some ν > 0 satisfying ν · 1 = 1

and νM = 0. Unlike prior, we are not done.

Our goal now is to show that the ν we just found corresponds to πν in the stationary

distribution of our initial Markov chain st. We now verify if πν is the stationary

distribution of st whenever no money pump holds.∑
(≻,B)∈L(X)×X

π(B)ν(≻)t≻′(x(B,≻),≻)sA(B)

= π(A)
∑

(≻,B)∈L(X)×X

ρ(Bτ−1|Aτ )ν(≻)t≻′(x(B,≻),≻)

= π(A)ν(≻)

The first line above is the probability of (≻, A) in the next period given that the

distribution this period is given by πν. The second line follows from multiplying by
π(A)
π(A)

and then collecting like terms to write ρ(Bτ−1|Aτ ). The last line then follows from

the fact that νM = 0. Notably the last line holds for all (≻, A) if and only if we have

νM = 0 which is true if and only if our no money pump condition holds. The equality

above shows that πν is the stationary distribution of st if and only if no money pump

holds and so we are done.
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A.5. Proof of Proposition 2. Suppose that an arrival function s is identically dis-

tributed. Note that for any strict transition function t, we can always write the sta-

tionary distribution st as π(A)νA(≻). Consider the following.∑
(≻,B)∈L(X)×X

π(B)νB(≻)t≻′(x(B,≻),≻)sA(B)

= π(A)
∑

(≻,B)∈L(X)×X

ρ(Bτ−1|Aτ )νB(≻)t≻′(x(B,≻),≻)

= π(A)ν(≻)

As prior, the first line above is the probability of (≻, A) in the next period given that

the distribution in this period is governed by π(B)νB(≻). The second line follows from

the same multiplication as in the proof of Theorem 3. By the fact that s is identically

distributed, the summation term in the second line above is the same for every choice

set A. In other words, the probability of the ≻′ is independent of A which gives us the

third line.

A.6. Proof of Theorem 4. We begin with a preliminary lemma.

Lemma 2. Let (ν, t) be a purely choice dependent MRUM representation of a consistent

random joint choice rule p. When there exists (x,A) such that p(x,A) > 0, then

q(B|x, y) =
∑

≻∈M(y,B) t≻(x)

Proof. First observe that p(y,B|x) =
∑

B′:B⊆B′ q(B′|x, y). Now observe the following.

p(y,B|x) = p(x, y, A,B)

p(x,A)

=

∑
≻′∈N(x,A) ν(≻′)

∑
B′:B⊆B′

∑
≻∈M(y,B) t≻(x)

p(x,A)

=
p(x,A)

∑
B′:B⊆B′

∑
≻∈M(y,B) t≻(x)

p(x,A)

=
∑

B′:B⊆B′

∑
≻∈M(y,B′)

t≻(x)
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It follows from the previous equalities that
∑

B′:B⊆B′
∑

≻∈M(y,B) t≻(x) =∑
B′:B⊆B′ q(B′|x, y). It immediately follows that q(B|x, y) =

∑
≻∈M(y,B) t≻(x). □

We now proceed by showing necessity. Observe the following.∑
y∈B

p(x, y, A,B) =
∑

≻∈N(x,A)

ν(≻)

=
∑
y′∈B′

p(x, y′, A,B′)

Thus Axiom 1 is necessary. From Lemma 1-(1), we know that q(A|x) = ν(M(x,A))

and thus Axiom 2 is necessary as ν is a probability distribution. Observe the following.

p(y,B|x,A) =
∑

≻∈N(x,A) ν(≻)
∑

≻′∈N(y,B) t≻′(x)

p(x,A)

=

∑
≻∈N(x,A′) ν(≻)

∑
≻′∈N(y,B) t≻′(x)

p(x,A′)

= p(y,B|x,A′)

The equality between the second and third lines follows from Axiom 1. This shows

that Axiom 3 is necessary. By Lemma 2, we have q(B|x, y) =
∑

≻∈M(y,B) t≻(x) and so

Axiom 4 is necessary as t(x) is a probability distribution.

We now show sufficiency. By Falmagne (1978), when Axioms 1-2 hold, we know that

p(x,A) admits a random utility representation. Call this representation ν. Further,

when Axioms 3-4 hold, Falmagne (1978) tells us that p(y,B|x) has a random utility

representation for each x such that p(y,B|x) are defined. Call this representation t(x).
We now verify this representation induces our choice probabilities.

p(x, y, A,B) = p(x,A)p(y,B|x)

=
∑

A′:A⊆A′

q(A′|x)
∑

B′:B⊆B′

q(B′|x, y)

=
∑

≻∈N(x,A)

ν(≻)
∑

≻′∈N(y,B)

t≻′(x)
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The equality between the second and third lines follows from our construction and

Falmagne (1978). The third line is exactly our definition of consistency and so we are

done.

A.7. Proof of Lemma 1. Lemma 1-(1) is due to Falmagne (1978) but we provide a

proof here. Observe the following.∑
A′:A⊆A′

∑
≻∈M(x,A′)

ν(≻) = p(x,A) =
∑

A′:A⊆A′

q(A′|x)

Lemma 1-(1) follows from a standard recursive argument. We now prove Lemma 1-(2).∑
A′:A⊆A′

q(A′|x, y, B) = p(x, y, A,B)

=
∑

≻∈N(x,A)

ν(≻)
∑

≻′∈N(y,B)

t≻′(x,≻′)

=
∑

A′:A⊆A′

∑
≻∈M(x,A′)

ν(≻)
∑

≻′∈N(y,B)

t≻′(x,≻)

It follows from a standard recursive argument that q(A′|x, y, B) =∑
≻∈M(x,A′)

∑
≻′∈N(y,B) ν(≻)t≻′(x,≻). This shows Lemma 1-(2) holds. We now

show Lemma 1-(3).∑
B′:B⊆B′

r(B′|x, y, A) = q(A|x, y, B)

=
∑

≻∈M(x,A′)

∑
≻′∈N(y,B)

ν(≻)t≻′(x,≻)

=
∑

B′:B⊆B′

∑
≻∈M(x,A′)

∑
≻′∈M(y,B′)

ν(≻)t≻′(x,≻)

It then follows from a standard recursive argument that r(B′|x, y, A) =∑
≻∈M(x,A′)

∑
≻′∈M(y,B′) ν(≻)t≻′(x,≻). Thus Lemma 1 holds.

A.8. Proof of Theorem 5. We will show (1) =⇒ (3) =⇒ (2) =⇒ (1).
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To show (1) =⇒ (3) we need to show the necessity of Axiom 1 and Axiom 6. The

necessity of Axiom 1 was shown in the proof of Theorem 4. Necessity of Axiom 6

follows from Lemma 1-(3) and the fact that ν and t(x,≻) are probability distributions.

To show (3) =⇒ (2) recall the definition of r(B|x, y, A).

q(A|x, y, B) =
∑

B′:B⊆B′

r(B′|x, y, A)

Axiom 6 implies that each r(B|x, y, A) is non-negative. The above equation then

implies that each q(A|x, y, B) is non-negative and thus Axiom 5 holds. We now show

that Axiom 1 and Axiom 5 imply Axiom 2.

q(A|x) =
∑

A′:A⊆A′

(−1)|A
′\A|p(x,A′)

=
∑

A′:A⊆A′

(−1)|A
′\A|

∑
y∈B

p(x, y, A′, B)

=
∑
y∈B

∑
A′:A⊆A′

(−1)|A
′\A|p(x, y, A′, B)

=
∑
y∈B

q(A|x, y, B)

(5)

Axiom 1 implies that q(A|x) and p(x,A) are well defined. Axiom 5 guarantees that

each q(A|x, y, B) is non-negative and thus implies that each q(A|x) is non-negative

which is exactly Axiom 2.

We now show that (2) =⇒ (1). From Falmagne (1978), we know that p(x,A)

has a random utility representation when Axioms 1-2 hold. Call this representation ν.

We will construct a random utility representation for each t(x,≻) and we will choose

t(x,≻) = t(x,≻′) when ≻,≻′∈ M(x,A). When q(A|x) = 0, set t≻′(x,≻) = 1
|L(X)| for

each ≻∈ M(x,A). When q(A|x) > 0, we use the following construction. We define

a random joint choice rule p̂(y,B|x,A) = q(A|x,y,B)
q(A|x) . By Equation (5), we know that∑

y∈B p̂(y,B|x,A) = 1 for each nonempty B ⊆ X. The Möbius inverse of p̂(y,B|x,A)
with respect to B is given by r(B|x,y,A)

q(A|x) . By Axiom 2 and Axiom 6, r(B|x,y,A)
q(A|x) is non-

negative. By Falmagne (1978), each p̂(·, ·|x,A) has a random utility representation.

Call this representation ν(x,A). For each ≻∈ M(x,A), define t(x,≻) = ν(x,A). This
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means that t(x,≻) is a probability distribution for each (x,A). We now verify our

construction.

p(x, y, A,B) =
∑

A′:A⊆A′

q(A′|x, y, B)

=
∑

A′:A⊆A′

∑
B′:B⊆B′

r(B′|x, y, A′)

=
∑

A′:A⊆A′,q(A′|x)>0

q(A′|x)
∑

B′:B⊆B′

r(B′|x, y, A′)

q(A′|x)

=
∑

A′:A⊆A′

∑
≻∈M(x,A′)

ν(≻)
∑

B′:B⊆B′

∑
≻′∈M(y,B′)

t≻′(x,≻)

=
∑

≻∈N(x,A)

ν(≻)
∑

≻′∈N(y,B)

t≻′(x,≻)

The equalities in the first through third lines follow from the definitions of q(A|x, y, B),

r(B|x, y, A), and p̂(y,B|x,A). The fourth line follows from our construction. The fifth

line is a rearrangement. The above equalities show that our construction is consistent

with the choice probabilities we began with and so we are done.
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