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Abstract

This paper develops the utility gradient (or martingale) approach for computing
portfolio and consumption plans that maximize stochastic differential utility (SDU),
a continuous-time version of recursive utility due to Duffie and Epstein (1992a). The
setting is that of a general stochastic investment opportunity set with Brownian in-
formation (making some of the results novel in the time-additive case, as well). We
characterize the first order conditions of optimality as a system of forward-backward
SDE’s, and for the Markovian case we show how to solve this system in terms of a
system of quasilinear parabolic PDE’s and forward only SDE’s, which is amenable
to numerical computation. Another contribution is a proof of existence, uniqueness,
and basic properties for a parametric class of homothetic SDU that can be thought
of as a continuous-time version of the CES Kreps-Porteus utilities studied by Ep-
stein and Zin (1989). For this class, we show that the solution method simplifies
significantly, resulting in closed form solutions in terms of a single backward SDE
(without imposing a Markovian structure). We conclude with several tractable con-
crete examples involving the type of “affine” state price dynamics that are familiar

from the term structure literature.



1. Introduction

This paper develops the utility gradient, or martingale, approach for solving optimal
consumption-portfolio selection problems in continuous-time complete markets with
Brownian information and stochastic differential utility (SDU). SDU was introduced
by Duffie and Epstein (1992a) as a continuous time limit of the type of recursive
utility studied by Kreps and Porteus (1978), Epstein and Zin (1989), and many
others.

The importance and structure of preferences that are not necessarily temporally
additive has been studied extensively in a literature surveyed by Epstein (1992). It
is, for example, well known that utility additivity with respect to time and states of
nature is overly restrictive in expressing reasonable notions of risk aversion in tem-
poral settings. (The introduction of Duffie and Epstein (1992a) gives a suggestive
example.) As Epstein (1992) explains in his survey, under additive temporal pref-
erences notions of intertemporal substitution and risk aversion are inflexibly linked
to each other. SDU, while nesting the time-additive case, is more flexible in this
regard, capturing the notion that one’s present sense of well-being can depend on
one’s expected future utility levels in a not necessarily risk-neutral manner. This
effect is also related to attitudes toward the timing of resolution of uncertainty, as
discussed, among others, by Kreps and Porteus (1978), Chew and Epstein (1989,
1991), and Skiadas (1998), the last reference covering the case of SDU.

The paper’s approach generalizes the Karatzas, Lehoczky, and Shreve (1987),
and Cox and Huang (1989) treatments! of Merton’s (1971) optimal portfolio selec-
tion problem with additive utilities (textbook accounts of which are given by Merton
(1990), Duffie (1996), and Karatzas and Shreve (1998)). The basic idea is to utilize
market completeness in order to separate the computation of an optimal consump-
tion plan, and that of a corresponding trading strategy. The optimal consumption
is obtained by solving the first order conditions, essentially stating that the agent’s
marginal utility process at the optimum is proportional to an Arrow-Debreu state
price density process. A corresponding financing trading strategy can then be con-
structed using Merton’s standard replication arguments (developed in the context
of the Black-Scholes theory of option pricing). Duffie and Skiadas (1994) showed
that this approach remains valid quite generally, even with non-additive preferences,
provided that a marginal utility process is well defined as the Riesz representation
of the (infinite-dimensional) utility gradient at the optimum. Moreover, they ob-

1 Closely related is the work of Pliska (1986) and Foldes (1990).
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tained closed-form expressions for marginal utilities in this sense for various types
of temporally dependent preferences used in practice, including SDU. Even earlier,
Duffie and Epstein (1992b) used dynamic programming methods to compute the
form of Arrow-Debreu prices under SDU in a more special Markovian setting under
Brownian information. The Duffie-Epstein-Skiadas papers, however, are oriented
toward obtaining equilibrium pricing formulas, and do not in fact solve the first
order conditions for the optimal consumption plan.

With additive utilities, the solution of the first order conditions amounts to a
straightforward inversion of the marginal utility at each state-time separately. With
SDU, the solution of the first order conditions involves the solution of a system of so-
called forward-backward stochastic differential equations (FBSDE’s), a fixed-point
problem involving the complete information filtration at once. The mathematical
theory of FBSDE’s is fairly recent, and a satisfactorily general existence theory is
missing at the moment. Ma, Protter, and Yong (1994) have developed a useful
scheme for solving FBSDE’s in Markovian settings with Brownian information via
the solution of quasilinear partial differential equations (PDE’s). A first contribu-
tion of this paper is to import the methodology of Ma, Protter, and Yong to the
problem of optimal portfolio selection in a Markovian setting with Brownian infor-
mation. The result is a remarkably simple solution procedure that complements the
more traditional dynamic programming approach, and in fact results in a numer-
ically more tractable PDE form than that associated with the Bellman equation.
A similar approach applies with other temporally dependent utility forms whose
gradients are computed by Duffie and Skiadas (1994). In order to keep this pa-
per focused and of manageable size, we will restrict our analysis to the SDU case.
Schroder and Skiadas (1998) present extensions that include habit formation.

Besides providing a general solution method, we will apply this approach to
a parametric class of homothetic SDU that was introduced by Duffie and Epstein
(1992a,b) as a continuous-time limit of the CES Kreps-Porteus specification studied
by Epstein and Zin (1989), and by Weil (1990). Without Markovian assumptions,
we will show that the first order conditions simplify significantly in this case, result-
ing in closed-form expressions in terms of the solution to a single backward SDE.
The latter becomes trivial under a deterministic investment opportunity set, while
in more general Markovian settings the solution of this backward SDE reduces to
the solution of a numerically tractable PDE. Analytic solutions will be derived for
examples involving a stochastic investment opportunity set. A difficulty with this
parametric SDU class is that both the utility specification, and the associated first
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order conditions involve backward SDE’s that violate the usual Lipschitz-growth
assumptions of available existence results by Pardoux and Peng (1990), and Duffie
and Epstein (1992a). Instead, we will prove existence, uniqueness, and basic prop-
erties from first principles using monotonicity arguments. Another difficulty is that
most of the technical restrictions required by the results of Ma, Protter, and Yong
(1994) and Duffie and Skiadas (1994) are also violated in this context. Again, we
will provide the requisite special arguments that prove optimality of the proposed
solutions.

For some of the utility parameter ranges we consider, Svensson (1989) and
Obstfeld (1994) have provided heuristic derivations of the solutions for the special
case of a constant (deterministic) investment opportunity set. They have not ad-
dressed, however, the issues of utility function existence and optimality verification.
Fisher and Gilles (1998), independently and concurrently with the present paper,
have worked on a parametric homothetic case in an infinite horizon setting with
a stochastic investment opportunity set. While their examples can be viewed as
infinite horizon limits of examples we analyze in this paper, the two papers have
quite different objectives. Fisher and Gilles manipulate the first order conditions
heuristically, and proceed quickly to numerical solutions of PDE’s. In contrast, the
present paper contains no numerical examples, but instead concentrates on the the-
oretical development, which, as noted above, includes the requisite backward SDE
theory and optimality verification arguments.

Discrete time versions of some of our homothetic examples have been analyzed
by Giovannini and Weil (1987) and Campbell and Viceira (1998). The former
paper concentrates on special cases resulting in myopic portfolios or consumption
plans, and the latter uses an approximate log-linearization of the budget constraint.
Some special cases involving additive utility and specific parametrizations of price
dynamics are closely related to those by Kim and Omberg (1996), Liu (1998),
and Wachter (1998) (the latter two were written concurrently and independently
with the present paper). Finally, this paper is related to several other papers that
discuss the use of FBSDE’s in different contexts of finance theory, including Cvitani¢
(1997), Cvitani¢ and Ma (1996), Duffie, Ma, and Yong (1995), Duffie, Geoffard and
Skiadas (1994), Duffie, Schroder, and Skiadas (1996, 1997), and El Karoui, Peng,
and Quenez (1997). The latter reference also discusses a dual characterization
of SDU, introduced by Geoffard (1996) (for the deterministic case), and used by
Dumas, Uppal, and Wang (1997) in their study of efficient allocations with SDU.

The remainder of this paper is organized in five sections and three appendices.
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Section 2 gives an abstract formulation of the problem, presenting the first order
conditions of optimality in terms of Arrow-Debreu prices and the Riesz representa-
tion of the utility gradient. Section 3 shows how the general analysis applies with
SDU, and outlines a computational approach in Markovian settings. Section 4 in-
troduces a parametric class of homothetic SDU, develops their basic properties, and
presents optimal consumption and portfolio rules in closed-form for several special
cases. The general solution method for this SDU class is discussed in Section 5,
followed in Section 6 by several examples with a stochastic investment opportunity
set. Section 7 concludes with an outline of how to incorporate a bequest function in
the analysis, and a parametric example. The appendices contain proofs, and they
develop some requisite mathematical theory.

2. Abstract formulation

We begin with a probability space (2, F, P) supporting a n-dimensional standard
Brownian motion, B, over the finite time horizon [0,77]. All stochastic processes
introduced in this paper will be assumed progressively measurable with respect to
the augmented filtration { F; : ¢ € [0,7]} generated by B. We also assume that
F = Fr. The conditional expectation operator E |- | F; ] will be abbreviated to E;
throughout.

We let D denote the Hilbert space containing any progressively measurable
process of the form x : Q x [0,7] — IR satisfying F ( fOT x? dt) < oo. The inner

product of D is defined by (z,y) = E ( fOT TeYs dt). As usual, we identify any
x,y € D such that (x —y,z —y) = 0. The space of all processes is partially ordered
by letting © > (>)y denote the condition: z(w,t) > (>)y(w,t) for almost every
(w,t). The positive cone of D is DT ={z € D : >0}, and the strictly positive
cone is D*t ={x € D : x> 0}. For mathematical background material we refer
to Karatzas and Shreve (1988).

2.1. Optimality in an Arrow-Debreu market

We take as primitive a consumption space C, assumed throughout to satisfy:

C1. C is a cone that is a subset of D", and has the property that for every bounded
he Dt andceC,c+heC.

For example, we can take C = D™, but in our main application we will need to
impose additional integrability conditions on elements of C. A consumption process,
¢, is any element of C, with ¢; representing a time-t consumption rate in terms of

a single numeraire good. For simplicity of exposition, we do not allow terminal
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consumption, although our analysis extends in a straightforward manner to include
it, as outlined in the concluding section.

We will consider an agent with initial wealth w > 0 that maximizes a utility
function Vj : C — IR by trading in a complete securities market (that is, a market
in which every consumption plan can be financed given sufficient initial wealth).

Given ¢ € C, we let F(c) denote the set of feasible directions at ¢, that is, the
set of any h € D for which there exists some a > 0 (depending on h) such that
¢+ ah € C. The Gateauzr derivative of Vy at ¢ is defined by

VVi(e;h) = lim Volerah) =Vole) ) ¢ gy,
« [0

This derivative is closely related to a function m : C — D, that we take as
given throughout the paper, and, for SDU, will be given in closed form. We will
use m through one of two conditions. The first condition, satisfied under general
assumptions on the utility form (see Duffie and Skiadas (1994)), but not always, is

C2. For every c € C, VVy(c; h) = (m(c), h) for all h € F(c).

In particular, C2 implies that, for every ¢, the Gateaux derivative of V|, at ¢ exists
and is linear. Under these conditions, VV{(c,-) is called the wtility gradient of V;
at ¢, with Riesz representation m.

In some applications, condition C2 is unnecessarily strong for the purpose of
confirming optimality of a given consumption plan, and we will instead use the
following inequalities, where ¢ € C is some candidate optimal consumption plan:

C2'. For all c € C, Vi(c) < Vp(¢) + (m(¢),c — ¢).

In complete markets, the determination of an optimal consumption plan de-
pends only on preferences, endowments, and Arrow-Debreu state prices, while
the corresponding financing strategy can be derived using standard replication ar-
guments. An Arrow-Debreu state price density is any strictly positive process,
7 € DT, such that capital plus dividend gains from trade deflated by 7 form a
martingale. Bypassing, for now, the familiar derivation of state price dynamics from
price dynamics, we take as primitive a (normalized) state price density process, ,

with dynamics

d
O At dBy, mo =1,
T

where fOT |7¢| + mime dt < 0o a.s. The process r is the short-rate process, and 7 is

the market-price-of-risk process.?

2 An equivalent formulation results if, instead of state prices, we consider an
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The consumption process ¢ is defined to be optimal if
¢ € argmax { Vo(c) : (mc) <w, ceC}.

2.2. First order conditions

Given C2, the first order conditions for optimality of ¢ € C take the familiar form:
m¢(c) = Amp on{c; >0} for ae. t € [0,T],
my(c) < Ampon{c =0} for ae. t €[0,7), (1)

(m,e) <w, Mw—{(mc)=0, Ne€IR".

The specification “on” some event in (1), and throughout the paper, should be
interpreted in the almost sure sense.

PROPOSITION 1. (a) Suppose that conditions C1 and C2 hold. Then (1) holds for
every optimal ¢ € C. (b) Suppose that conditions C1 and C2' hold, for some ¢ € C.
If (1) is satisfied with ¢ = ¢, then ¢ is optimal. (c) If Vj is concave and continuous
and C is convex and closed, then an optimal consumption process exists.

PROOF: (a) Consider the following first order conditions for optimality of ¢ € C:

VVo(e;h) — X, h) <0, h € F(e),
(m,e) <w, Mw—{(mc)=0, McIR".

By the generalized Kuhn-Tucker theorem, these conditions are necessary for opti-
mality of c¢. For example, Theorem 1 of Section 9.4 of Luenberger (1969) can be
used, with only a straightforward modification of the proof to account for the fact
that the underlying space is a positive cone, and not a linear space. Given C1 and
the utility gradient Riesz representation, m, the above conditions imply that for all
bounded h € Dt, (m(c) — Am, h) < 0, and therefore m;(c) < Am a.s. for almost ev-
ery t. Since we also have (m(c) — Am,ac) <0 for a« > —1, my(c) = Ampon {¢; >0}
for almost every ¢. This proves part (a).

equivalent martingale measure, in the sense of Harrison and Kreps (1979), relative
to the short-rate process r. This, for example, is the approach taken by Cox and
Huang (1989). For the purposes of this paper, the formulation in terms of state
prices is notationally more parsimonious. A textbook exposition of the relationship
between state prices and equivalent martingale measures can be found in Duffie
(1996).



(b) If (1) holds with ¢ = ¢, then (m(¢),c—¢) < 0 for any budget feasible ¢ € C, and
the result follows from the gradient inequality of condition C2'.

(c) If Vi is concave and norm-continuous, it is weakly upper-semicontinuous. By
Alaoglu’s theorem, and since for convex sets strong closure is the same as weak
closure, the budget feasible set is weakly compact. The maximum is therefore
achieved. W

2.3. Securities market

The above discussion is all in the setting of an Arrow-Debreu market. The im-
plementation of the optimal consumption plan by trading in a securities market is
well understood. In order to fix notation in discussing applications later on, we
now outline a simple securities market that implements the above Arrow-Debreu
market. More general formulations and details can be found in the expositions of
Duffie (1996) and Karatzas and Shreve (1998).

In addition to short-term default-free borrowing and lending at a rate given by
the process r, there are n risky securities (one for each component of the Brownian
motion B). The risky asset instantaneous excess returns (relative to r) are repre-
sented by the n-dimensional Ito process Ry = [R}, ..., R}, with decomposition

dR, = pl dt + o dB;,,

where 1t and ot are progressively measurable processes valued in IR™ and IR™*",
respectively, and satisfy fOT | ,uﬂ + ol (o) dt < oo a.s. We assume that of is
invertible almost everywhere, and n; = (off) ~ pf.

A trading strategy is any progressively measurable process, 1, valued in IR",
such that fot |Wipl| + vioB(oF) )y ds < 0o as. for all t < T. We interpret ¢ as
the time-t proportion of wealth invested in security i € {1,...,n}, the remaining
wealth being invested at the short rate r. Given any initial wealth w, consumption
plan ¢, and trading strategy 1), the corresponding wealth process W% is defined
by the budget equation:

AW = WP (WidRy + rdt) — ey dt, t <T, WY = w.

We say that 1 finances ¢ given initial wealth w if W% >0 a.s. for all t < T'.
For every consumption plan ¢, we define the process

1 T
Wt(C) = 7T_tEt /t TsCs ds| .
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Recalling the normalization 7y = 1, we have Wy(c) = (m,¢). It can be shown (see,
for example, Karatzas and Shreve (1998)), that for every consumption plan ¢, there
exists a trading strategy v that finances ¢ given initial wealth w = (m, ¢), such that
W(c) = Ww-¥, This trading strategy can be calculated in terms of the wealth
dynamics dW;(c)/Wi(c) = utW ) gt + UXV © 4B, by matching the diffusion term
with that of the budget equation, to obtain ¢ = (¢ft')1a;" @ Conversely, if ¢ can
be financed given some initial wealth w, then (7, ¢) < w. These familiar results
imply that the problem of determining an optimal trading strategy given initial
wealth w reduces to the optimal consumption problem of Section 2.1.

3. Solution method with stochastic differential utility

The general approach of the last section is further developed in this section for the
special case of stochastic differential utility.

3.1. Stochastic differential utility

Stochastic differential utility (SDU) is defined in terms of a function f : [0,77] x
R x IR — IR, called the intertemporal aggregator. We refer to the three arguments
of f as the time, consumption, and utility argument, respectively, and we write f,
and f, for the partial derivatives of f with respect to the consumption and utility
arguments, respectively. To every ¢ € C we assign a utility process, V(c), that
satisfies

Vi(c) = E; [/t f(s,cs,VS(c))ds] , te[0,T]. (2)

The following condition will be assumed throughout:

C3. There exists V C D such that, for every ¢ € C, a unique V (c) € V satisfies (2).
The utility function Vy : C — IR is defined by the initial values of V(c) € V, ¢ € C,
and the function m : C — D (appearing in C2 or C2') is given by

(o) = ( [ (5,00 Val0)) i) Llt e Vo) 3)

The combined results of Duffie and Epstein (1992a) and Duffie and Skiadas
(1994) show that conditions C2 and C3 (with C = DT and V = D) hold if f
satisfies certain continuity-Lipschitz-growth type conditions.> Moreover, under the

3 More specifically, it is sufficient that f be continuously differentiable in its
consumption and utility arguments, and for some constant K, |f(¢,¢,0)] < K(14¢),
|fe(t,c,v)] < K(1+4c+|v]), and |f,(t,c,v)] < K, for all t € [0,T], c € RT, and
v e IR.
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same restrictions on f, V{ is continuous, V; is increasing if f is increasing in its
consumption argument, and Vj is concave if f is concave jointly in its consumption
and utility arguments.

Unfortunately, the conditions on f imposed by the Duffie-Epstein-Skiadas re-
sults are violated in the parametric cases discussed later in this paper. We will
therefore present the general solution method by directly assuming the validity of
conditions C1, C2 or C2’, and C3, as well as the following restriction on f whose
purpose is to simplify the first order conditions for optimality:

C4. Forallt € [0,T],c€ R", andv € R, f.(t,c,v) > 0 and lim,_, fc(t,z,v) = 0.

In applications, the above conditions will be verified on a case-by-case basis.

For the case of a concave intertemporal aggregator, the following result provides
a direct justification for the expression (3), and an easy way of confirming C2’, and
hence the sufficiency of the first order conditions for optimality.

LEMMA 1. Suppose that condition C3 is satisfied, f(t,-,-) is concave (jointly in
consumption and utility) for all t € [0, T, and for some ¢ € C,

E /O (maxx { fo(t, &, Vi(@),0})% dt | < oo,

Then condition C2' is satisfied (with m defined in equation (3)).

Lemma 1 implies in particular that V} is concave if f is concave jointly in
its consumption and utility arguments, provided that the assumed integrability
condition holds for any ¢ € C. This conclusion generalizes Proposition 5 of Duffie
and Epstein (1992a) by allowing f, to be unbounded. Later we will encounter
applications in which V4 is concave, but f is not jointly concave in consumption
and utility.

3.2. First order conditions

Let the function I : [0,7] x IR? — IR™ be defined by

I(t,z,v) =0, if e* > f.(t,0,v);
fe(t, I(t,x,v),v) =€, if e® < f.(t,0,v).

Assuming that Vj is strictly increasing (a consequence of C2 and C4), the first order
conditions under SDU are equivalent to the system

t t
X; = log(\) — / <fv(s,l(s,Xs,Vs), Vi) +rs + %U;%) ds — / n. dBs, (4a)
0 0
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T
v, — B / F(s,1(s, X4, V), V) ds | | (4b)
t

T
E / ml(t, X, Vi)dt| =w, A€ RTT. (4c)
0

ProprosIiTION 2. Given C1, C2, C3, and C4, every optimal consumption process
c € C takes the form ¢, = I(t, X;,V;), t € [0,T], where (X,V,\) € D xV x R+
is a solution to (4). Conversely, if conditions C1, C2', C3, and C4 hold for a given
¢ € C of this form, then ¢ is optimal.

PROOF: Introducing the process X;(\, ¢) = log(Am:) — fg fu(s,cs, Vs(c)) ds, the first
order conditions, under our assumptions, can be written as ¢; = I(t, X;(\, ¢), Vi(¢))
and (7, ¢) = w. The result is an easy consequence of this observation and Proposi-
tion1. W

The system of equations (4a,b) is a forward-backward stochastic differential
equation (FBSDE) system, X being the forward component, and V' being the back-
ward component. General existence-uniqueness results for this type of equations
that do not rely on additional Markovian structure and PDE techniques are lack-
ing. Antonelli (1993) presents some related results under conditions that are likely
to be violated in this context. Antonelli’s examples illustrate what can go wrong if
his assumptions are relaxed. In our context, Proposition 1(c) shows that a solution
to (4) is guaranteed if Vj is continuous and concave, and C is closed and convex.

3.3. Computational approach

Computationally, system (4) can be approached by the methodology of Ma, Protter,
and Yong (1994), as we now show. A Markovian structure is required for this
purpose. We therefore assume that the following condition holds throughout this
subsection:

C5. (a) The functions p¥ : [0,T] x R™ — IR™, and ¥ : [0,T] x IR™ — IR" are
such that the following SDE has a unique (strong) solution, Y, valued in IR™:

t t
E:YO+/ uy(s,Ys)d8+/ 0¥ (s,Y,)dBs.
0 0

(b) For some (measurable) functionsr : [0,T]x IR™ — IR and n : [0,T|x R™ — IR",
re =71(t,Y;) and ny = n(t, Yy).

In part (b) we use r and 1 to represent both the stochastic processes, and the
corresponding functions of the underlying Markov state. The meaning will always
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be clear from the context. Restrictions on p¥ and oY that guarantee C5(a) are
well-known, and can be found, for example, in Karatzas and Shreve (1988). In the
case in which r and 7 are deterministic processes, the process Y should be taken to
be the empty function.

The key idea is that in a solution of (4), V; should be a function of (X3,Y;),
for every t. So let us hypothesize the existence of a function g : [0, 7] x R™™ — IR
such that V; = g(t, X4,Y;) for all t. The dynamics of X become

t t
X, = log(\) + / o5, X, Ya, g(s, Xo, V) ds — / (s, Y. dBs,  (50)
0 0

where the function p is defined by

plt,2,,0) = = (8, 1(1,2,0),0) = r{toy) = 5aty)nlty). (5)

Applying Ito’s lemma, we are led naturally to the following quasilinear PDE
for g (where the arguments of g and its derivatives are omitted):

—f(tI(t,2,9),9) = gap(t, 2,9, 9) + gy1r” (t,y) + g0 — Goyo” (&, y)0(L,y)

1 1
+ §9m7l(t; y)/n(t7 y) + §tl‘(gyy0'y (ta y)O.Y (ta y)/)7 g(T7 ) ) =0.

Notice that the above PDE does not involve the Lagrange multiplier .

PROPOSITION 3. Suppose that C5 holds, g solves PDE (6), and

1

2

E (/0 ng(t’ Xt’Y;‘/)n;:(t?Y;f) B gy(t>Xt7Y;5)UY(t>Y;5)H2 dt) < 0. (7)

For any A\ > 0, if X solves SDE (5), and V; = g(t, Xt,Y:), then (X, V) solves the
FBSDE system (4a,b).

PROOF: The result is an immediate consequence of Ito’s lemma, condition (7) en-
suring that the local martingale part of the expansion is a martingale. W

A numerical implementation of this approach to solving the FBSDE system
(4a,b) can be based on the procedure of Douglas, Ma, and Protter (1997).

Propositions 2 and 3 imply that if we can find a function g that solves (6) and
satisfies (7), then the agent’s problem reduces to the simple task of finding a value
for A that makes the budget constraint tight. Given the Markovian specification
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of optimal consumption, it is a standard exercise to find a corresponding financing
trading strategy in short-term borrowing or lending and m + 1 funds, each one of
which is chosen to be instantaneously perfectly correlated with X or a component
of Y.

The results of Ma, Protter, and Yong (1994) show that the following restrictions
are sufficient for the existence of a solution to (6) that satisfies (7) (in particular
implying that g, and g, are bounded):

(a) There exists € > 0 such that, for all (¢,y) € [0,T] x IR™, the smallest eigenvalue
of n(t,y), oY (t,y)V[n(t,v), oY (t,y)] is at least ¢.

(b) The functions n(t,y), u¥ (t,y), o¥ (t,y), and f(¢,1(t,2,0),0) are all bounded,
and |p(t,z,y,v)| < ¢(|v|) for all z, y, v and ¢, for some function ¢.

In the case of deterministic  and 7, the conditions simplify further to (a) n is

bounded away from zero, and (b) the function f(¢,I(¢,x,0),0) is bounded, and

lp(t,z,v)| < ¢(|v|) for all , v and ¢, for some function ¢. All of these conditions are

far from necessary for Proposition 3 to apply, however. In fact, in the remainder of

this paper we will discuss exclusively problems that violate the above conditions,

but to which Proposition 3 can be applied.

4. A class of homothetic SDU

This section analyzes a parametric homothetic SDU specification, for which the
solution method of the last section simplifies significantly. The main results are
existence and basic properties of the utility function, and the sufficiency of the first
order conditions for optimality. The section concludes with expressions for optimal
consumption plans and portfolios in some simple special cases. The general solution
of the agent’s problem for this SDU class is the topic of the following section.

4.1. Utility specification

We begin by restricting the space of consumption processes:*

T
C:{CED++:E</ cédt><oof0ralll€ﬂ%}. (8a)
0

The intertemporal aggregator we consider takes one of the following forms:

fle,v) = { e ((Cw/v) ]/ ) — 5“) iy #0 (8b)
(14 av)llog(c) — (B/a)log(1l + av)], if v =0,

4 For simplicity, the integrability restrictions we impose are stronger than neces-
sary for our proofs to go through, but have the advantage that they are independent
of utility parameters.
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with parameter restrictions:

. 71 .
> a>—1, and’y<mln{1,(1—|—a) }, if v #£ 0;
>0 and {agﬂ, iy 20, (8¢)

We have omitted the time argument of f, since f is time-independent in this formu-
lation. The consumption argument, c, is restricted to be strictly positive, and for
~v = 0, the utility argument, v, is restricted to be greater than —1/a. Fora =~v =0
we interpret (8b) by taking a limit, that is, f(c,v) = log(c) — Pv.

Ordinally equivalent utility processes are defined by

) y/te), if v > 0;
Ve=q =m0 ity <o, (9)
a"tlog(l+aV;), ify=0.

The backward SDE satisfied by this version of the utility takes the more intuitive
form (omitting the argument of V = V(c)):

B e (@ s+ (/20 1)) | iy £ 0

B E; [ftT e Pls—t) (log(cs) ds + (a/2)d[V]S> 7 if v = 0. (10)

t =

where [V] denotes the quadratic variation of V.

The parameter « clearly has no impact on preferences over the set of deter-
ministic consumption paths. It is a measure of comparative risk aversion in a sense
defined by Duffie and Epstein (1992a), as well as a measure of preferences for the
timing of resolution of uncertainty in a sense defined by Skiadas (1998) (for a related
application, see Duffie, Schroder, and Skiadas (1997)). If v > 0, then V; > 0 for
all ¢t < T, and a negative a penalizes variability of the utility process. Therefore,
if v > 0, risk aversion increases as the value of a decreases, a negative « indicates
preferences for early resolution, and a positive « indicates preferences for late reso-
lution. The same conclusions are valid if v = 0, although V need not be uniformly
signed in this case. Finally, if v < 0, the role of the sign of « is reversed, because
in this case V; < 0 for all t < 7. Therefore, with v < 0, risk aversion increases with
a, and a positive (negative) o corresponds to preferences for early (late) resolution

of uncertainty.

4.2. Existence and basic properties

The above SDU specification is ordinally equivalent to a parametric class first stud-
ied by Duffie and Epstein (1992a,b), who also explain in what sense the functional
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form for v = 0 is a limiting case (under appropriate normalization) of the case for
~v # 0. The above SDU can also be obtained as a continuous-time limit of the CES
Kreps-Porteus utility specification used by Epstein and Zin (1989). Nevertheless, a
general proof of existence and basic properties has been lacking. The aggregator, f,
defined in (8) violates the usual Lipschitz and growth conditions used by Duffie and
Epstein (1992a) (or Pardoux and Peng (1990)) to prove existence and uniqueness
of the backward SDE underlying the SDU definition. Duffie and Lions (1992) give
a PDE characterization of the utility process (for the infinite horizon case), but
their Markovian restrictions on consumption plans are not appropriate in the cur-
rent setting, and their parameter restrictions rule out interesting parameter ranges
satisfying (8¢). Instead, we will base our proof of existence and basic properties on
our probabilistic results on backward SDE’s of Appendix A.
To state the main existence result, we introduce the space

DO:{VED . E |ess sup, |Vi|'| < oo, foreveryl>0},

and its strictly positive cone D * = {V € Dy : V > 0 almost everywhere }. Through-
out our discussion of the utility specification (8), we will assume that utility process
set V is given as

V_ {V:7V6D3r+}, if v # 0;
{V:l4+aVeDi"and (1+aV) ' eDy}, ify=0.

THEOREM 1. Suppose that C and f are specified by (8). Then recursion (2) is
satisfied by a unique V(c) € V. Moreover, Vj is strictly concave, increasing, and
homothetic.?

Other interesting properties of V|, involve comparative risk aversion, and pref-
erences for the timing of resolution of uncertainty, as briefly discussed above. The
respective formal treatments of Duffie and Epstein (1992a, Proposition 6), and Ski-
adas (1998, Appendix A) are based on Lipschitz conditions that are violated here.
Given our results in Appendix A, however, adapting their arguments to the present
setting becomes a tractable exercise that we leave to the interested reader.

A relevant utility property that Theorem 1 does not cover is the existence
and form of the utility gradient. (Once again, the utility gradient computations
of Duffie and Skiadas (1994) do not apply in this context.) Due to integrability

5 Vp is homothetic if, for all k > 0, Vo(c) > Vo(c') & Volke) > Vo(kc').
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issues, condition C2 may not be satisfied for all parameter values specified in (8¢).
However, since the unique optimal consumption plan will later be specified in closed
form, all that we need is the verification of condition C2" at the optimum, which is
accommodated by the following result:

LEMMA 2. Suppose that C and f are specified by (8). For condition C2' to hold
with m given by equation (3), it is sufficient that either ay = 0, or ary # 0 and
E [exp (3 fOTis | fo(ét, V}(é))]) dt] < oo for every ¢ € (0,T).

The integrability condition of Lemma 2 is required only when both « # 0 and
v # 0, and even then it can be weakened, as indicated in the proof of Lemma 2.
Nevertheless, the above form of the lemma will suffice for optimality verification in
our applications below.

4.3. Optimal consumption and portfolios for some special cases

Significant simplifications to the solution of the agent’s problem result if one or
more of the following conditions are satisfied:
I. Time-additive utility: a = 0.
IT. Logarithmic SDU: ~v = 0.
III. Deterministic investment opportunity set: r» and 7 are deterministic.
For easy reference, we summarize these simplifications in the following theorem,

making use of two auxiliary processes:

kt:{ﬁ[ﬁ—a(l—e_f””)}l: if y = 0; (11)
(1 —A(1+a) ", iy £ 0.
and

_ B v ky

Qt_l—v_l—y et e e )

The form of the solution below under a deterministic investment opportunity set has
been previously derived by Svensson (1989) and Obstfeld (1994) (who, however, did
not prove optimality, or that the utility is well defined.) Here, and in the following
section, we will make the assumption that r and 7 are bounded in order to avoid
long technical discussions relating to integrability issues. Depending on parameters,
several of our proofs apply with weaker restrictions on r and 7.

THEOREM 2. Suppose that C and f are specified by (8), and r and n are bounded.

(a) Suppose that at least one of conditions I and III hold. Then the optimal
consumption plan follows the dynamics:

de
C_t = (r¢ — qt + ke - ) dt + kyn), dBy.
¢
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(b) Suppose that at least one of conditions II and III hold. Then the optimal
consumption to wealth ratio is

#’20): [/tTeXp (—/tsq7d7> ds]

(c) Suppose that either condition III holds, or conditions I and II hold (that is,
a =y =0), or all three conditions hold. Then the optimal trading strategy is

—1
/
e =k (ofioft)

Under the assumptions of part (c) of the theorem, the optimal portfolio is
instantaneously mean-variance efficient, even without additivity. But, compared to
the Merton solution (o = 0), less is invested in the risky fund if there are preferences
for early resolution of uncertainty (ya < 0, or v = 0 and & < 0), and more is invested
in the risky fund if there are preferences for late resolution (ya > 0, or v = 0 and
a > 0). An interesting observation is that if v = 0, and r and 7 are deterministic
and constant over time, then, where Merton’s solution involves constant over time
portfolio weights, for a # 0, the optimal positions change deterministically over
time, approaching the Merton solution toward the end of the planning horizon, T'.

An example with non-additive SDU in which the optimal portfolio is instan-
taneously mean-variance efficient under any state price dynamics is outlined in

Section 7.

5. General solution method for homothetic SDU class

This section presents a general solution method for the SDU specification of Theo-
rem 1 and a stochastic investment opportunity set.

5.1. A convenient change of measure

In discussing cases not covered by Theorem 2, it will be convenient to express certain
backward SDE’s in terms of a new probability, P, defined as follows. Recalling that
k is given by (11), we define the new probability P through its density:

dP

E _
tldp

1 t t
=¢ = — | (1 —=k)*ns nsds— | (1—kn.dB, ). (12
G=ow (3 [0 kPnonds— [a-kpan). ()

(Since r and 7 are assumed bounded, the right-hand-side defines a martingale, and
(12a) is therefore consistent.) The expectation operator with respect to P will be
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denoted E, and the corresponding conditional expectation given F; will be denoted
E,. In particular, for any random variable Z, E,[Z] = E,[¢7Z]/&. By Girsanov’s
theorem, the process B, defined by

t
B, = B, + / (1 — kg)ns ds, (12b)
0

is n-dimensional standard Brownian motion under the measure P.

5.2. The case of zero gamma
Throughout this subsection, we assume that C and f are specified by (8) with v = 0,
and therefore k; = 8 [8—a (1 — e‘ﬁ(T_t))] -

In order to solve the first order conditions, we introduce the auxiliary processes
(J,Z) € D" x D™ (where D;"" is defined in Appendix A) as the unique adapted
solution to the backward SDE:

aJ, = — [(1 ) <ﬁ S nt) koo — B)J, + 12, - Zt] dt

2 (13)

+Zt dét, JT - O

Existence and uniqueness of a solution is guaranteed by Theorem A1l of Appendix A.
Simple solutions are obtained if & = 3 or if @ = 0. Lemma Al implies that

T
eXP(/t (1_ks) (ﬁ_rs_%ns'nsds>>]7 lfOé:ﬁ

For a = 0, the unique solution is the zero solution. The PDE characterization of

exp(Jt) = Et

(13) in a Markovian setting is discussed at the end of this section.

LEMMA 3. Suppose that C and f are defined by (8) with v = 0, and r and 7 are
bounded. Then, given any A > 0, the FBSDE system (4a,b) has a unique solution
(X,V) in D x V. The process X is given by

dXy = — [((ﬂ—a)kt -8 Xi+(a=B)y = B+r + mént dt — n;, dB,
with initial value Xo = log(\), while V' satisfies
1 + Oé‘/t = exp (Jt + (1 - kt)Xt) . (14)

In terms of the solution (X, V') of Lemma 3, the optimal consumption plan is
given by
o = I(t, X;, Vi) = e Xt (1 + Vi) = exp(Jy — ki Xy). (15)
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To complete the solution, we need to determine the value of A. Part (b) of Theorem 2
implies that the optimal consumption to wealth ratio is

Ct _ ﬁ
Wie) 1—e PTD

In particular, cg = Bw/(1 — e~ PT), which together with (15) determines the value

(16)

of A (and hence the initial value of X). Applying Ito’s lemma to (15) gives the
dynamics of the optimal consumption plan (without having to solve for A first):
d
U edt + o dB,. (17)
Ct
THEOREM 3. Suppose that C and f are defined by (8) with v = 0, and r and n are
bounded. Then the dynamics of the (unique) optimal consumption plan are given
by (17), where
wi =ry — B+of-n and oy = ki, + Z;.
The optimal consumption rate as a fraction of wealth is given by (16), and the
corresponding optimal trading strategy is

N —1 /N
Y = ky (Uf%#%) i+ (o) 2,
The first term of the optimal trading strategy is the instantaneously mean-
variance efficient strategy of Theorem 2(c). The second term represents the devia-

tion from mean-variance efficiency due to the presence of both a stochastic invest-
ment opportunity set, and time non-additivity.

5.3. The case of non-zero gamma

Throughout this subsection, we assume that C and f are given by (8) with v # 0, and
hence k; = k = (1 — v(1 + a)) . The analysis is analogous to the zero gamma case,
except that now the optimal consumption to wealth ratio is typically stochastic.

Applying Theorem A2 (of Appendix A), we uniquely define the (progressively
measurable) processes (J, Z), where vJ € Dj ™ and fOT Zy - Zydt < 00 a.s., as the
solution to the backward SDE:

1 k
v 1—y yoo2

+Z,dBy, t<T, Jr = Jpr_ =0.
In the additive case, J is given by

T s
5-Ltg / exp(L/ (ru_§+ﬁnu.nu>du) ds|, ifa=0. (19)
v ¢ L=~ /i yoo2

The PDE characterization of (18) in a Markovian setting is discussed at the end of
this section.
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LEMMA 4. Suppose that C and f are defined by (8) with v # 0, and r and 7 are
bounded. Then, given any A > 0, the FBSDE system (4a, b) has a unique solution
(X,V)in D x V. The process X is given by

dX; = — %(1 + )N (1T +a)B+ e+ m;’t dt — 1, dB,

with initial value Xy = log(\), while V satisfies
Ve=(v/ D 1% exp (1 = k) X) - (20)

In terms of (X, V'), the optimal consumption plan is

X o o
e = I(t, X, Vy) :(1_|_a)1/(1—7) exp (_1 t ) A k/1+ak
o (21)

= (14 )07 exp(=kXy) |7 *".

Ito’s lemma then delivers the optimal consumption dynamics.

THEOREM 4. Suppose that C and f are defined by (8) with v # 0, and r and n are
bounded. Then the dynamics of the optimal consumption plan are given by (17),
where

1 k vy «
¢ — - . —2z,.7
e 1_7(7% B)+of-m+ 5 (1_77% us T2 t)7

Q@
of =k(m+—2).
t <77t 7, t)
The optimal consumption to wealth ratio is given by

Ct_ _ 1] 4 /(=) g1
- 1 2 2 .
II}(C) Y ( ) t

The optimal trading strategy is

L

-1
b=k (ofiof’)  uf + 1+ ak)(of) L
t

As in the zero gamma case, the first term of the optimal portfolio expression
represents an instantaneously mean-variance efficient allocation, while the second
term represents deviations from mean-variance efficiency due to a stochastic invest-
ment opportunity set. Formally setting o = —1 in the above expression results in
an instantaneously mean-variance efficient portfolio, for any price dynamics. This
limiting case (not covered by Theorem 4) is revisited in Section 7.
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5.4. PDE characterization of (J, 7)

Given the above analysis, the agent’s problem reduces to the computationally well

understood problem of solving the backward SDE that defines (J, Z). Below, we

outline the PDE characterization of such a solution in a Markovian setting.
Throughout this subsection, we assume the Markovian structure of condi-

tion C5. We also recall the change of measure (12), and we use the dynamics
of Y in the form dY; = i¥ (¢,Y;) dt + ¥ (t,Y;) dB;, where

[Ly(ta y) = N’Y(ta y) - (1 - /ft)UY(tay)U(t,y)~

Letting J; = h(t,Y;) for some function h, and using Ito’s lemma, the BSDE
characterizing (J, Z) leads naturally to a PDE, stated below for various parameter
ranges. In all cases, the stated PDE can be viewed as a simplified version of (6) for
the given parametric SDU class, obtained by letting

a texp (1 —k)x + h(t,y)) — 1], ify=0;
(v/ V) 1t )" exp((1 = k)z), if v # 0.

Given a solution, h, to the appropriate PDE, the BSDE solution is

g(t,z,y) = {

Jy=h(t,Y;) and Z; = h,(t, V)oY (t,Y3).

(In applications, one must of course confirm that (J, Z) are sufficiently integrable.)
We now state the PDE that has to be solved for all parameter ranges for which

Theorem 2 does not provide a complete solution for general price dynamics:®

CASE 1: v=0

Lo,
(B—a)kih = (1 — ky) (5 —r—= §kt77 77) (22)

v 1
+ he + hy 1Y + §tr[(hyy +hihy)o¥ (6¥)'], W(T,) =0.

For a = v = 0, this PDE is also valid, but its solution is zero, corresponding to
the optimal portfolio allocation of Theorem 2(c). Another simplification arises if
a = 3, as we discussed in Section 5.2.

6 The notation tr(A), where A is any square matrix, stands for the trace of A,
that is, the sum of its diagonal elements. For any matrices A, B such that the
products AB and BA are well defined, the identity tr(AB) = tr(BA) holds. Thus

tr [k hyo¥ (o¥)] = hyayaylh; and tr[hyyo¥ (6¥)] = tr[(c¥) hyyo¥].
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CASE 2: v #0and a #0

_ k
+f%-khyMY-+-¢r[(hyy+-9—héhy)ofkayy], h(T,-) = 0.

CASE 3. v#0and a =0

In this case, PDE (23) applies, but it can be further simplified. Let us assume
that the functions r(t,y) and n(t,y) are time independent, allowing us to simplify
notation to r; = r(Y;) and ny = n(Y;). (This is no less general than condition C5,
since a time component can be added to Y.) Using equation (19), we have

1 [T
h(t,Y;) = _/ eP(5=t.Y1) g
T Jt

ep(sft,Yt) = Et exp _’)/ / Tu — g + Enu “Th du| .
L=~ v o2

The function p(7,y) can be computed as the solution to the PDE

where

6 k -
- <T__+_77'77 :_pr'i‘py,uy
=y 7 2 (24)
1
+ §tr [(pyy +p’ypy) UY(UY)’} , p(0,-) =0.

6. Examples with “affine” dynamics

For the homothetic SDU class of Section 4, we have seen in the last section that
the agent’s problem reduces to the solution of a single backward SDE, which in
general can be solved numerically, for example, by numerically solving an associated
quasilinear PDE. The complexity of the last step is a function of the price dynamics
specification. For example, a trivial solution results if » and n are deterministic.
In this section we outline a more general class of price dynamics, familiar from
the term-structure literature (see, for example, Duffie and Kan (1996)), for which
relatively simple solutions to the first order conditions result.

This section’s models are not strictly special cases of Theorems 3 and 4, because
r and 7 are not bounded. For some parameter ranges, our exact proofs apply. For
other parameter values, however, the utility process can diverge to infinity in finite
time, and our verification arguments do not apply, because of integrability issues.
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Below, we provide some coarse sufficient conditions that keep utility finite, while
in some additive cases a complete closed-form solution is possible (and optimality
verification is straightforward). A complete characterization, however, requires an
understanding of the behavior of the underlying affine dynamics that, to our knowl-
edge, is not currently available in the literature, and is beyond the scope of this
paper.

Throughout the section, we assume the SDU specification of Section 4, and
that either v = 0 or @« = 0. Under the price dynamics described below, we show
that the relevant backward SDE reduces to a Riccati equation that can either be
solved in closed form, or is straightforward to solve numerically.

6.1. Price dynamics
Given any v € IR", diag(v) denotes the diagonal matrix with v as its diagonal, /v
denotes the (column) vector (,/v1,...,/0n), and v? denotes (v?,...,v2)". Also,

n

given any square matrix A, A;; denotes its i’th diagonal entry.
We postulate a state process Y, valued in IR", with dynamics:

dY, = (0 — rY;) dt + Sdiag(\/v + CY;) dB; (25)

where 0,v € IR", and (,k, X € IR"*™. Y is assumed to be the unique process that
is valued in

Y={yeR" : v+ y>0, for alli},

and satisfies (25). We refer to Duffie and Kan (1996) and Dai, Liu, and Singleton
(1997) for sufficient conditions on the parameters for this assumption to hold.
The price dynamics we consider are of the following two types:

MODEL A. ry =a+b-Y; and 0, = diag(y/v + (Y;)®, where a € IR and b, ® € IR".

MobDEL B. r; = a, +b.Y; +Y/c,Y; and n: = a,, +b,Y:, where a, € IR, a,,b, € R",
and by, c, € IR"*", and c, is symmetric. Moreover, ( =0 and v; =1 for all .

Given the above assumption, we show below how to solve the appropriate PDE
of Section 5.4. The proposed solution to the consumption-portfolio problem is then
formally constructed as in Theorems 3 and Theorem 4.

6.2. The case of zero gamma

In this subsection, we assume that f is given by (8) with v = 0.

6.2.1. Model A
For Model A, we conjecture that PDE (22) has an affine solution:

h(t7y) = Gt + Ht Y,
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where H and G are functions of time valued in IR™ and IR, respectively. Direct
computation shows that h solves (22) if G, H solve:

Hy =[(B = kel + 1 + (1 — ky)'diag (@) Hy + (1 — k) {b * %4"1’2}

1
—5C(TH)Y,  Hr =0,

G =8 — a)kGy — (1 — k) {5 —a— %y’qﬁ]

1
— Hj [0 — (1 — k) Xdiag(v)® + §Ediag(u)E’Ht] : Gr = 0.

The first equation is a Riccati equation in H, and although straightforward to solve
numerically, it can diverge to infinity in finite time. A sufficient condition that
precludes that is given by the following result:

LEMMA 5. Suppose that b,{ > 0, and »,(;; > 0 for all j. If o < O, then the
Riccati equation in H has a finite solution for any finite T.

Given H, G is easily computed using the second equation. A closed form solution
can easily be obtained in the infinite horizon version of this model (7" = c0), if, for
example, (, k, and ¥ are diagonal.

6.2.2. Model B
For Model B, direct computation shows that a solution to PDE (22) is given by

h(ta y) = Ct + Dllty + ylFtyJ

with F' symmetric, and where C, D, and F' are deterministic functions of time,
obtained by solving the following three equations, in order:”

. k
Ft :(1 — kt) <CT + ?tb%bﬁ> + (6 — Oé)ktFt + [l‘i + (1 — k’t)an]’Ft
+ Ft[:‘i + (1 — k:t)Ebn] - 2FtZZIFt, FT =0.
Dt :[(ﬁ — CY)thI + /‘il - 2Ft/22/ + (]. — k:t)b%Z’] Dt + (]. - kt)[br + k?tb;?an]
—2Ft[9— (1 —k:t)Ea,,], DT :0,
ky

Ct :kt(ﬁ — Oé)Ct — (1 — kt) [ﬁ — Qy — Ean’an}

1
- Dllf lg - (1 - k:t)Ea,, + EEEIDt] - tI‘(FtEE/), CT =0.

7 We use the fact that ¢ Ay = 0, Vy, for some A € IR"*" if and only if A+ A’ = 0.
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LEMMA 6. If ¢, is positive semidefinite and o < 0, then the Riccati equation in F
has a finite solution for any finite T'.

A closed form solution can easily be obtained in the infinite horizon version of this
model (T" = o0), if, for example, ¢,, b,, ¥, and k are diagonal. A simple solution
(with finite T') is also obtained if ¢, = b, = 0, implying that r is an Ornstein-
Uhlenbeck process and 7 is constant. In this case Z and aR;w are deterministic,

F =0, and
T /
D, = — (/ e W (5=t e=Bls=t) (-1 1)ds> kb,
t

6.3. The additive case

In this subsection, we assume that f is given by (8) with & = 0, and CASE 3 of
Section 5.4 therefore applies.

6.3.1. Model A

For Model A, we conjecture a solution to (24) of the form p(7,y) = G, + H; - y,
where H and G are functions of time valued in IR"™ and IR, respectively. Direct
computation shows that p solves (24) if G and H solve:

H. =~ [ + (1 - k){'diag(®)Y'| H, + % (b - gg’®2)
-
+ %(’(Z’HT)Q, Hy =0,
e A P
“rT1 {a 7+2V@}
+ H. [9 — (1 — k)Xdiag(v)® + %Zdiag(u)E’HT] , Go = 0.

Lemma 5 (with analogous proof) remains valid if the assumptions vy = 0 and a < 0
are replaced with v < 0 and a = 0.

From a numerical standpoint, the two equations can easily be solved sequen-
tially, while a closed form solution exists under the additional assumptions:
(a) ¢, K, and X are diagonal.
(b) bi, Cisy ki > 0, and B > 0.

Under (a) and (b), we can rewrite the ODE for H as

Hi(r) = ¢ + P (7) + TEHi(7)2, i=1,...,m,
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where

a i 1 2
I = —— (b, + —Cn@i> ,
1—7 ( 2(1 — ’}/)
b Y c 1 2
I = ki + ——Ci®: X0, 15 = —(uX5;
1—7 2

Letting, &§; = (I12)2 — 4I1¢II¢, A; = ]6i\1/2, and w; = tan"1(I1%/A;), we have the
solution:

( 211¢ (1—e™2i7) ) _
A —(Ha)ie sy L>0;
-1 AL if 6, = 0 and I1? # 0;
WG T 0r=0and I 20,
Hl(T) = 9 Ha / if 8, =TI = 0: (26)
21_[2 tan [ - } - %, if 6 <0 and 7 < (7 — 2w;)Ay;
\ 00, if ; <0and 7> (W—Qwi)Ai.

To relate the above conditions to parameter ranges, we define, for (;; > 0,

_—L —-1/2 2 _ 1/2
B TS (11772 [@2 + 20 = i /) 2 + @1)
’i—‘ 1/2 2 1/2_ |
2 = ®2¢;; + 2b; (' |77 [@F +2(1 — 7)bi/ G cpz).

For (;; = 0, we define Ry = —o0 and Ry = oo. Then §; > 0 corresponds to Hﬁ-’ £ 0
or IT¢IIS # 0 and either of the following conditions: (i) v < 0 or, (ii) v > 0 and
Yii € (R1, Ro). If I # 0, §; = 0 corresponds to v > 0 and ¥;; € { Ry, Ry }. Finally,
§; < 0 corresponds to I1? # 0 or I¢II¢ # 0, and v > 0 and %;; & [R1, Ra]. Given
H |, the value of G follows easily.

6.3.2. Model B

For Model B, direct computation shows that a solution to PDE (24) is given by

p(r,y) =Cr + Dy +y'Fry,

with I’ symmetric, and where C', D, and F' are deterministic functions of time. The
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solution is obtained by solving the following three equations, in order:

By =2 (et thby ) ~ b+ (L= BB,V E,

— Fii+ (1 - k)Sby) + 2F.S5'F,,  Fy=0,

D, =——(b, + kba,) — [ — 2F.S + (1 — k)b, %] D,

-~

+F2F [0 — (1—k)Sa,],  Do=0,
: gl Bk
CT :m (ar - ; + 5@;70,77)

1
+D. [e —(1-k)Sa, + §ZE’DT] Ftr(FXY),  Co=0.

The first of these equations is a Riccati equation in F' that in many cases can
be solved analytically using a procedure described by Gelb (1974, Section 4.6).8
Morever, Lemma 6 (with analogous proof) remains valid if the assumptions v = 0
and a < 0 are replaced with v < 0 and o = 0.

We conclude this section with two particularly simple special cases:
Special Case 1: ¢, =0, =0

In this case F' = 0 and

D. = [ W9y gs.

_1—’7 0

Special Case 2: Diagonal ¢,, b,, X, and &; k,¢, >0
In this case, F' is diagonal and satisfies

F“(T) :H?-FH];F“(T)-FH;:F”(T)Q, 7= 1,...,7],
where )
a Y r 2
I = —— (¢ + 57— (b} );
i (4 g
2
Hs) = —2K;; + 1—72“1)” Hf = 22221
-7

1)

8 The basic idea is to introduce two IR™*" valued functions P and @, such that
P, = F,Q., and Q, = —2Y%'P, + [x + (1 — k)Xb,)Q,, Q(0) = I. Then (P,Q)
satisfies a first order matrix ODE that can be solved easily if the matrix coefficient
is diagonalizable. Given that solution, F'is easily recovered.
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The solution is again given by (26) with F}; in place of H;, while D and C' are easily
computed in terms of F.
To relate the conditions of (26) to parameter ranges, we define

Kii - r1l/2
Ri =~y rgar (01772 1007 +20 = )] +3)
Kii - r11/2
o = G (B [0 +200 - )] Y 0.

Then §; > 0 corresponds to II? # 0 or II?II¢ # 0 and either of the following
conditions: (i) v < 0 or, (i) v > 0 and ¥;; € (Ry,Ry). If 112 # 0, §; = 0
corresponds to v > 0 and ¥;; € { Ry, Ry }. Finally, §; < 0 corresponds to I1? # 0 or
IT¢TIS # 0, and v > 0 and %;; & [R1, Ra].

7. Introducing a bequest function

We conclude the main part of this paper with an outline of how to incorporate
a bequest function in our earlier analysis. We illustrate with a parametric exam-
ple that has the interesting property that the optimal portfolio is instantaneously
mean-variance efficient under any price dynamics, while the optimal consumption
to wealth ratio is typically stochastic. This type of solution has previously been
discussed in a discrete-time setting by Giovannini and Weil (1989). We will keep
our discussion short by omitting existence and verification arguments, as well as
most technical details.

7.1. General formulation

We modify our earlier setting, by endowing D with the new inner product:

T
/ Ty dt + wTyT] )
0

(In particular, x = y in D implies that z7 = yr a.s.) Given consumption plan

(r,y) =F

c € C C DY, we interpret cr as a lump sum terminal consumption.
The utility process V(c) is defined as a unique solution to the backward SDE:

V;e(C) = FE;

/t f(s,cs,%(c))ds+v(cT)], t € 0,7,

for some function v : IRY — IR. We assume that the utility function V5 : C — IR
is strictly increasing. The corresponding utility gradient can be written (under
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technical assumptions) as VVj(c; h) = (m(c), h), where m, is given by (3) for t < T,
and

mT(C) = €xXp (/0 fv(SaCSa VS(C)) dS) b(CT)a

where © denotes the derivative of v.

Taking as given an Arrow-Debreu state price density @ € DT, the agent’s
problem is, as before, to maximize Vj(c) subject to the budget feasibility constraint
(m,¢) < w. Assuming, for simplicity, that ¢ € DT the first order condition for
optimality of ¢ is m(c) = Axw for some A > 0, together with the budget feasibility
constraint. The solution method of this system is analogous to our earlier analysis,
with the main new element being the boundary condition corresponding to the fact
that Vp(c) = v(er). We leave all details to the interested reader, and we proceed
with an outline of an interesting example.

7.2. A homothetic example
The parametric SDU form that we analyze in the remainder of this section is
Vi = Ei

Trey J&; )
= exp(—yVs) — = | ds+log(er)+—|, te€][0,T],
t Y i i

where 3 > 0, 0 # v < 1, and 6 € IR. The ordinally equivalent utility process
V, = v~ Lexp(yV;) satisfies the more suggestive recursion:

T Y
/ o Bs—1) (ﬂ ds — Lyt d[V]s> ©e-BT—t)+6 (C_T> ,
t gl 2 gl

where [V] again represents the quadratic variation process of V. Apart from the

V; = E,

bequest function (which can be made arbitrarily small by decreasing ), this cor-

responds to our earlier homothetic expression, (10), with v # 0 and o = —1. (In
Theorem 4 we assumed a > —1 in order to avoid having Vp = —o0, corresponding
to § = —oo in the above formulation.)

What is interesting about this case is that a consumption plan satisfying the
first order conditions of optimality can be financed by an instantaneously mean-
variance efficient portfolio (no matter what the state price dynamics are). To see
that, we note that, since f, = —cf., the first order conditions can be rearranged to

t T
—% exp (/ ful(cs, Vi) ds) = A\me; and  exp (/ foles, V) ds) = \mrcr.
0 0
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It follows that the wealth process, W, corresponding to c satisfies:

T 1 t
/ TsCs ds + WTCT] = exp (/ fo(es, Vs) dS) : (27)
t 0

W:

Wy = B

Therefore, m; W, is absolutely continuous, which is equivalent to the condition o
n’. Arguing as in Section 2.3, it follows that the optimal portfolio allocation is
the same as that of an investor with time additive logarithmic utility (given in
Theorem 2(c) with k; = 1).

The optimal consumption to wealth ratio is given by

J;
- = eXp (_ 17_t7> S [07 T)a

where the process J solves®

T
1— Js s Ms 0
/ 7exp(—7—)—é—|—r5—|—uds—|—— .
t v v

Jt:Et 2 ,Y

The PDE characterization of J in a Markovian setting, and examples analogous to
those of Section 6, are left to the reader.

We conclude with an outline of a proof of the above claim, omitting several
technical details. Let us first define the process X as the solution to (4a), with

Vi=Ji— X, and I(t,a,0) = {zg((i; )/(v = 1)), E i < ?

With (X, V) thus defined, we claim that the optimal consumption plan is given by

_ _ Jexp(=Xy —vJi/(1 =), iftel0,T);
Ct = I(t,Xta ‘/;) — {exp(—XT), ift = T, (28)

where Xy = log(A\) has been chosen to make the budget constraint tight. (We
will see later that A = —w.) To show that, suppose for the moment that V is in
fact the utility process, V(c), corresponding to c. Equation (28) is equivalent to

9 For the sake of notational simplicity, our choice of J here is not consistent with
that in Section 5.3. It can easily be shown that .J; = exp (v.J;/(1 — 7)) is the first

component of the solution to a backward SDE analogous to (18).
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feler, Vi) = exp(Xy) for t < T, and 0(cr) = exp(Xr). On the other hand, equation
(4a) gives

exp () = myexp (- [ ulen Vi) ). (29)

This confirms the first order condition m = Am, which (by an omitted verification
argument) implies optimality. To confirm that V' = V(c), we notice that

—foler, Vi) = vf(e, Vi) + B = exp <— 17:%7) .
The drift term of J is therefore equal to —(f, + 7+ n-n/2) — f, which together
with (4a) implies that the drift term of dV; + f dt vanishes. It follows that dV; =
—f(ct, Vi) dt + dMy, for some martingale M, and since Vp = (6/v) — Xr = Vr(c),
V =V(e).

Finally, equations (27) and (29) give W; = exp(—X;) (and therefore A = —w).
Combining this with (28) results in the claimed consumption to wealth ratio for-
mula. The optimal consumption dynamics can also be easily obtained by applying
Ito’s lemma to (28).

Appendix A: A class of backward SDE

In this appendix we prove existence, uniqueness, monotonicity, and convexity prop-
erties for a class of backward SDE that arise in connection to the homothetic spec-
ification of SDU discussed in Section 3.

The backward SDE’s we will consider are of the form:
1
dV, = — (Ut — BVi + §A(V}) |\Zt|]2> dt + ZydBy;, V5 =0, (A1)

to be solved for an adapted pair (V, Z). Theorem 1 and the analysis of Section 5
requires the solution of the above backward SDE with either A(V;) or A(V;)V;
being a deterministic constant (and proper restrictions on U and (3). We now
consider these two cases in turn. The terminal value Vi has been set to zero for
brevity of exposition, and since this is the case we focus on in the main text. The
mathematical arguments, however, extend readily to incorporate a more general
terminal value. In fact, in some cases it will become apparent that the zero-terminal-
value case is mathematically the most difficult one, due to integrability concerns as
time approaches T

Throughout this appendix, the underlying probability space, the n-dimensional
Brownian motion, B, and associated filtration, and the space D (with its positive
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cone DT and strictly positive cone DT1) are as in Section 2. D™ denotes the
Cartesian product of n copies of D. For any Z € D", each value, Z(w,t), should
be thought of as a n-dimensional row vector, with Euclidean norm || Z(w,t)|. (In
particular, ||-|| does not denote the norm induced by the inner product of D.) In
addition to the set Dy of Section 4.2, the following subsets of D will be used:

T
Dlz{XGD:E / ]Xt|ldt]<oo, foreverylG(O,oo)},
0

Dé" ={XeD:E

—

exp (ess sup, | | X¢|)] < oo, for every | € (—o0,00) }.

T
exp (l/ | X¢| dt)] < oo, foreveryl € (—o0,00) } .
0

For any S C D, we define St = SN DT and ST = SN DT . As always, we
identify processes that are modifications of each other.

_mW:{XeD:E

The Case of Constant A(V).

This section is on the backward SDE (A1) under the assumption that A is identically
equal to some constant o, U € D", and § € D is non-negative and bounded.
For o« = 0, one obtains easily the solution: V; = E; [ftT Us exp(— fts B du) ds}
Assuming « # 0, a simple rescaling shows that we can assume without loss of

generality that &« = 1. Our objective in this section is therefore to analyze the
backward SDE:

1
W=~ (U= 6Vi + SN2 e+ ZeaB Ve =0 (42)

The following is the central result of this section.

THEOREM Al. Suppose that U € D{*?, and 8 € D7 is non-negative and bounded.
Then there exists a unique pair (V,Z) € D{™ x D" satisfying (A2). Moreover, the
solution V' as a function of the parameter U is monotonically increasing and convex.

The proof of Theorem A1 will proceed in a sequence of lemmas. We assume
throughout that U € D{*?, and that, for some 3 € IR, 0 < 3; < 3 for all t.

We begin with a convenient reformulation of the problem. For any (V,Z) €
D" x D™ and stopping time 7, we consider the recursion

V}:log<Et [exp</7Us—ﬂsv;ds+v,)D on {r>t}. (A3

t
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LEMMA Al. The following statements are equivalent, for any V € D{™":

(a) There exists a unique Z € D™ such that (V, Z) satisfies (A2).

(b) There exists some Z € D" such that (V,Z) satisfies (A2).

(c) V satisfies (A3) with 7 =T, and Vp = 0.

(d) V satisfies (A3) for any stopping time 7, and Vp = 0.

PROOF: (d) < (c). Clearly, (c) is implied by (d). Conversely, suppose that (c)
holds. We then have

exp(V;) = exp <— /Ot Us — BV ds) M;, (A4)

were M is the martingale defined by

T
€xp (/ Us - ﬁs‘/s dS)
0

Suppose now that 7 is any stopping time. By the optional sampling theorem,
M, = Ey[M;] on {7 >t}. From (A4), we have

T t
exp</ Us—ﬁsVsd8+VT>:exp<—/ Us—ﬂsVsds)MT on {1T>t}.
t 0

Applying the operator E; on both sides, simplifying the right-hand side, and using
(A4) again, (d) follows.
(¢) = (b). Suppose that (c) holds, and let M be the martingale defined by (A5),

so that (A4) is also valid. By the martingale representation theorem, there exists a
unique predictable Z € D™ such that dM, = Z, dB,. Let the process Z be defined

by Z; = Z}M[l. Suppose, for now, that Z € D™. Letting W; = exp(V;), and
applying integration by parts to (A4), we obtain
AWy
Wi
Finally, (A2) follows from an application of Ito’s lemma to V; = log(W}).
To conclude that (b) holds, however, we still need to show that Z € D", which
we do next. Let N; = ]\4{1 and N* = max; N;. From the definition of Z, and the

Cauchy-Schwarz inequality, we have
T o 2
(N*)2/ HZtH dt])
0

(E /OT||ZtH2 dt]>2<<E
<E[(NY)YE (/OT th)Q
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To show that Z € D", it suffices to show that the above expression is finite. By
2

the Burkholder-Davis-Gundy inequalities, fOT ) Z:|| dt has a finite second moment

if Mt has a finite fourth moment, which it does since V'€ D§*" and U € D*". To

show that N* has finite fourth moment, we first notice that, by Jensen’s inequality,

N is a submartingale. By Doob’s maximal inequality and (A5), there exists some

constant C such that
T
exp (—4/ Us — BV ds)
0

The latter is finite since V' € D™ and U € D], and the proof that Z € D" is
complete.

(b) = (c). Suppose that (V, Z) € D™ x D" satisfies (A2), and define W; = exp(V}).
By Ito’s lemma, W satisfies (A6). Let M be the stochastic exponential of Z, that
is, the unique local martingale that satisfies dM; = M;Z; dBy, My = 1. (As is well
known, stronger restrictions on Z than mere membership to D™ are required to

E[(N)'] <CE[N;] =CE

make M a martingale.) Integration by parts then gives (A4). Given any stopping
time 7, we let M = My1y,<;y+M;1;45,y. Let {7(n) } be an increasing sequence
of stopping times that converges to T, such that the stopped process M7 is a
martingale, for every n. Arguing as in the first part of the proof (where (A3) was
derived from (A4) and the martingale property of M), we have

7(n)
exp ( | v VTm))
t

Letting n — oo, and using the dominated convergence theorem (made possible by
the assumption V € D§"? and U € DI*"), (c) follows. Having shown (c), it follows
that M is given by (A5), and it is after all a true martingale.

(b) < (a). Clearly, (a) implies (b). Suppose that (b) holds, and let W; = exp(V;).
Then Z represents the diffusion term of the Ito decomposition of dW; /Wy, and is

exp(V;) = E; on {7(n)>t}.

therefore uniquely determined in D. W

An interesting corollary of Lemma Al is that for § = 0, (A3) (with 7 = T)
gives a closed-form expression for the V' € D{™ that is part of the unique solution to
(A2). For the case of nonzero (3, however, a closed-form expression is not apparent
to us, and we will resort to a fixed-point argument. For this purpose, we define a
function Fy : D™ — Dg*?, corresponding to the parameter process U, as follows:

T
exp (/ Us — Bs Vs ds)
t
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(That Fy is indeed valued in D§™ can easily be confirmed using Doob’s maximal
inequality.) By Lemma A1, we are interested in finding a unique fixed point of the
function Fy, and in showing the monotonicity of the fixed point as a function of
the parameter U. Assuming existence for now, uniqueness and monotonicity will
be consequences of the following result:

LEMMA A2. Suppose that, for some U € D", the following conditions hold:
(a) V € Dg™" satisties V- = Fy (V).
(b) V € D§™ is continuous, Vo > 0 and, for any stopping time T,

f/tzlog (Et [exp (/TUs—ﬁs‘%ds%—f/T)]) on {r>t}, tel0,T].
'

Then V; > Vi, for all t € [0,T). The result also holds with all inequalities reversed.

PROOF: Suppose that, for some t, the event A = { V, <V, } is non-null. Consider
the stopping time
T:inf{SZt : f/;ZVS}

Since almost all paths of V and V are continuous, and f/T > 0 = Vp, we have f/T =
V; on A, while V, < V, on AN {t<s < 7}. By our hypotheses, and Lemma A1,

we have, on event A,

0> exp(f/t) —exp(V;) >

Et |:eXp (/ Us_ﬁsf/sds"i_‘z—) — €Xp (/ US_/BS‘/'Sd8+VT)‘| 207
t t

a contradiction. The same argument applies with all inequalities reversed. W

Suppose now that, for each i € {1,2}, U* € D{*?, and V' € D{"" satisfies
Fyi (V") = V. An immediate consequence of the last two lemmas is that if U1 > U?,
then V! > V2, proving the monotonicity claim of Theorem Al. Moreover, taking
U = U? = U, it follows that any two fixed points, V! and V2, of Fiy must satisfy
both V1 > V2 (since U > U?) and V? > V! (since U? > U'). Therefore V! = V2,
proving that Fyy has at most one fixed point.

Next, we turn to the question of existence of a fixed point of Fi;. We begin with
the special case of a bounded U. Let B be the space of progressively measurable
bounded processes, metrized by the (pseudo)metric

d(z,y) = ess sup, 4 [z(w, ) —y(w,8)[, x,y € B.

As usual, we identify any two processes x,y € B such that d(z,y) = 0, which makes
(B,d) a complete metric space. B is ordered in the usual sense: x > y means
Plzy > y] =1 for all ¢.

36



LeEMMA A3. IfU € B, then Fy (V) =V for some V € B.

PROOF: Since U is fixed throughout, we simplify notation by letting F' = Fy;. We
use Blackwell’s version of the contraction fixed point theorem (see, for example,
Stokey and Lucas (1989), Theorem 3.3) to show that I is a contraction if 5T < 1
(recall that (3 is an upper bound of 3). This partial result will then be generalized
by partitioning the time horizon, and by piecing together a solution backward in
time. Alternatively, for any T', we can show that I’ composed with itself k& times is
a contraction, for sufficiently large k.

Given any real number x, we denote also by x the function in B identically
equal to . From the functional form of F' it follows easily that, for every V € B
and positive real x, F(V +z) > F(V) — BTx. Consider now any V,W € B. Since
V < W +d(V,W) and F is decreasing, we have F(V) > F(W 4 d(V,W)) >
F(W) — BTd(V,W). Interchanging the roles of V and W, we also have F(W) >
F(V) — BTd(W, V). Therefore, d(F(V), F(W)) < BTd(V,W), proving that F is a
contraction if AT < 1.

If BT > 1, choose any integer N > BT. Initially, set k = N — 1. The above
argument shows that there exists a V € B satistying (A2) for all ¢ > (k/N)T.
We proceed inductively. Suppose that the last statement is true for arbitrary k£ €
{1,...,N —1}. Let V € B be a solution of (A2) over the time horizon [T'k/N,T].
Applying the same contraction argument over the time interval [T'(k—1)/N,Tk/N]
with terminal value Vir/n, the proof of the lemma is easily completed.

Alternatively, we can define d;(z,y) = ess sup(, ;>4 [7(w, s) — y(w, s)|. Then,
by the argument used above, d,(F(V), F(W)) < B(T —t)do(V, W). A similar argu-
ment repeated k times gives
(B(T — )"

k!

For large enough k, F(®) is therefore a contraction and, for a unique V € B,
F®) (V) = V. Applying I on both sides of this equation, it follows that (V)
is also a fixed point of F(¥) and is therefore equal to V. This shows that V is a
fixed point of /. W

d (F®(V), FR(W)) < do(V, W).

Using the last two lemmas, we now show that, for any U € D", Fy; has a fixed
point in D", Suppose first that U € Dg™ is bounded below. For every integer n,
let U = min{ U, n }, and let V" € B solve Fy» (V™) = V™. By our earlier results,
V™ exists and is monotonically increasing in n. Using these facts, we have

T
exp (/ Us — BV} ds)] .
t
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Since V1 € Dy*, it follows that the sequence {V™} is bounded above almost
surely, and therefore there exists some V such that V,, T V a.s. as n — oco. Using
Doob’s maximal inequality, it is also easy to conclude from the above bound on
V™ that V € Dg™. Letting n go to infinity in Fya (V") = V™, and using the
dominated convergence theorem, we have Fy(V) = V. This proves the lemma
assuming that U is bounded below. To extend the existence proof for U unbounded
below, we use an analogous argument with U™ = max { U, —n }, showing that the
corresponding solutions V" converge monotonically from above to a fixed point of
Fy. This completes the proof of existence and monotonicity.

Finally, we prove the convexity of the solution V' as a function of the parameter
U. For i € {a,b}, let U* € D{"?, and let (V?, Z%) € D§"? x D™ satisfy

dvi = — (Ug’ — BV + % HZ§H2> dt + Z!dB;, Vi =0.

Fixing an arbitrary v € (0,1), we define (V¥,2") = v(V®, Z%) + (1 — v)(V?, 2b),
and we assume that (V,Z) € Dg*™" x D™ is the solution to (A2) corresponding to
U =vU®+ (1 —v)UP Convexity follows, if we can prove that V¥ > Vy. To this
end, we define 2A; = (1/ 1Ze|? + (1= v) HZ£’H2> —1Z2¥|I? > 0 (positivity follows

from Jensen’s inequality). It follows that
1
vy = — (Ut + A =BV + 5 ||Z;||2> dt + ZV dB,, V¥ =0.

Ignoring for now the need for an integrability restriction on A, Lemma Al implies
that, for any stopping time T,

eXp(VZ/) = Et [exp (/ Us + As - ﬂs‘/sy ds + V’TU):|

t

> F, lexp (/ U, —ﬁs‘/'s”ds—l—VT’j)} )
t

By Lemma A2, we obtain V' > Vp (and in fact, it is not hard to show that the
inequality is strict).

As noted above, the application of Lemma A1l is not justified without ap-
propriate integrability restrictions on A, a difficulty that is easily overcome by
slightly modifying Lemma A1l. Returning to the last part of the proof of Lemma A1l
((b) = (¢)), we make the following two changes: (i) We assume the localizing se-
quence { 7(n) } converges to a stopping time 7, instead of T' (by just taking the min-
imum of the original sequence elements and 7); (ii) By replacing A with min { A, 1}
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before taking expectations, we conclude that

exp(V}V) > E; , n=1,2 ...

7(n)
exp (/ Us+min{Ag, 1} — B, V) ds + T”(n)>
t

Taking the limit as n — oo, we can now complete the proof as before, without the
integrability concern. This also completes the proof of Theorem Al.

The Case of Constant A(V)V.
In this section we analyze the backward SDE (A1) with the specification A(v)v equal

to some constant greater than or equal to minus one, U € Dy ", and g € D{*".
Making the change of variable V;, = V, exp (— fg Bs ds), it becomes clear that we
can assume without loss in generality that § = 0, which we do. More precisely, we

consider the backward SDE:

— 1z
th:_<Ut+pT”‘;”>dt+ztdBt, t<T, Vp=Vr_=¢, (A7)
t

where € >0, p > 0, and U € D . Although for the purposes of the main text we
are only interested in the case ¢ = 0, we will attack this case by first solving with
a positive ¢, and then letting ¢ approach zero.

Let £2 be the space of all progressively measurable processes, Z, valued in IR",
satisfying fOT | Z:||* dt < oo a.s. As usual, we identify any two elements Z, Z € £2

2
such that fOT HZt — Z;|| dt =0 a.s. The following is the section’s main conclusion:

THEOREM A2. Suppose that ¢ € [0,00), p € (0,00), and U € D{t. Then there
exists a unique pair (V,Z) € Dgt x L2 satisfying (AT). Moreover, the solution V
as a function of the parameter U is monotonically increasing, and it is convex if
p € [1,00), and concave if p € (0, 1].

In the remainder of this section we prove Theorem A2. The structure of the
proof parallels that of Theorem A1, but the details are considerably more delicate.
We assume throughout that € > 0 and p > 0.

We begin with the closely related recursion:

th:Et{/ pU VP tds +VP| on {7 >1t}, (A8)
t

where 7 is any stopping time.
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LEMMA A4. Suppose that U € D{t and V € D ". Then the following conditions
are equivalent:
(a) There exists a unique Z € L£? such that (V, Z) satisfies (A7).
(b) There exists some Z € L? such that (V, Z) satisfies (AT).
(c) V satisfies (A8) with 7 =T and Vi = €.
(d) V satisfies (A8) for any stopping time T, and Vp = ¢.
PROOF: The key to the proof lies in the fact that (A7) together with Ito’s lemma
implies:

AV} = VP 'pUy dt + pVP ' Z, dB;.
The details are analogous to Lemma A1l. The weaker integrability restriction on Z
simplifies part of the proof. On the other hand, in deriving the integral representa-
tion from the differential representation, it is necessary to use a localizing stopping

time sequence, and take a limit (using monotone convergence for the first term, and
dominated convergence for the second). The details are left to the reader. W

For every ¢ > 0 and U € D, we define the operator F : DJ* — Df ™ by

]

That Ff; is indeed valued in DSF T is a consequence of Doob’s maximal inequality.

T
Fé(V)t:<Et / pU VP~ ds +¢P
t

Because of Lemma A4, we are interested in proving that F; has a unique fixed point.
We will prove this, as well as the claimed monotonicity and convexity properties of
the fixed point, for € > 0 first, and we will then let £ approach zero.

We start with two lemmas that are used below, as well as in the proof of
Theorem 4.

LEMMA A5. Suppose that V = Fg(V) for some ¢ € [0,1] and U € Df". Then,
there exists some positive constant K, such that

T T
/ Us ds / UPlds+1
t t
K(Et

Et ) lpr (1700)7

SVtSK<Et

and

1
) <V, < E if p € (0,1).

T
/ Usds+1
t

T
/ UP ds
t
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For p =1, we have V;, = E; [ftTUsds].

PROOF: The case p = 1 is immediate from Lemma A4. Suppose now that p > 1.

By Lemma A4,
T B 2 T
/ (Usds—l—p—lm)—i—s / Usds + ¢
t t

Vi=FE
t t 5 v
To derive the right-hand inequality, we let p = (p—1)/p € (0,1), and use the

> By

gradient inequality x” < 1+ p(z — 1), © € IR. In particular, letting x = (V;/Uy)P
and rearranging, we obtain pU, V¥ ™' < UP + (p — 1)V, Therefore,

T T
VP = E, / pU VPl ds +eP| < E; / UP+(p—1)VPds+eP
t t

Lemma C1 implies

VP <E;

T
/ =00 P gg 1 8pe@o—l)(T—t)] .

t

Finally, for p < 1, all the above inequalities are reversed. W

LEMMA A6. Suppose that U € D{+;V, Ve DS“JF; V is continuous; ¢,¢ € IR; and
if p € (1,00), then & > 0. If V = Fg(V), Vo = € > ¢ > 0, and, for any stopping
time T,

\N/t2<Et [/ pUS%p1d8+Vf})p on {r>t}, tel0,T],
¢

then V; >V, for all t € [0, T].

PROOF: Suppose first that p € (0,1). Utilizing the gradient inequality applied to
the convex function = — z(P~1/P we obtain, for any stopping time T,

VP —VP > E, U pU (VP — VPN ds + VP — Vf}
t

> E, U (p—l)%(&p—np)dsﬂﬁ—vgﬂ}.
t

S
The result now follows from Lemma C2. The proof is immediate for p = 1. Finally,
we consider the case of p > 1. Again using the gradient inequality applied to the

now concave function z — zP~1/P we obtain, for any stopping time T,

v <m | [ - 0ger - ve -2
t s

and the result follows from Lemma C3. The required integrability restriction in
applying Lemma C3 is satisfied, because U € D; and V>>0. |
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The above lemma immediately implies that if U',U? € D™, FéZ(V’) =V
fori € {1,2}, and (Ul,e!) > (U%,€?) > (0,0), then V! > V2. Tt also implies that
F& has at most one fixed point in Df " if U € D& " and ¢ > 0.

Next we argue that to prove Theorem A2 it suffices to show the case of positive
terminal value. To see that, suppose that V[g] € D§ ™" is the unique fixed point of F§
for € > 0, and the dependence of V]e] on U is monotone and convex (monotonicity
and uniqueness were proved in the last paragraph). Recalling that V[¢] is decreasing
in ¢, we define V; = lim.|oV[e];. By Lemma A5 and dominated convergence,
V € D§ " is a fixed point of FJ. Moreover, V inherits the monotone and convex
dependence on U. There remains to show that V' is the unique fixed point of F}). For
p € (0,1] this is immediate from Lemma A6, but the argument does not apply with
p > 1 (because the integrability restrictions required by Lemma C3 are violated).
Instead, the following indirect argument applies. Suppose that V were another fixed
point of FY. For any € > 0, Lemma A6 shows that V[e] > V. Letting ¢ approach
zero proves that V' > V. To show the reverse inequality, we confirm that V' < V+e
for any € > 0. Fixing ¢ > 0, let V=V+e. Applying Ito’s lemma to VP (as in
Lemma A4), it follows that the assumption of Lemma A6 is satisfied and V>V.
This completes the proof of uniquess.

Given the above arguments, we assume that € > 0 throughout the remainder
of this proof. We first show that F}; has a fixed point. Because of homogeneity, it
is sufficient to prove the Fy- has a fixed point. We consider the bounded case first:

LEMMA AT7. Suppose that there exist constants k, K such that 0 < k < U; < K,
t € [0,T]. Then F} has a fixed point in Dy ", which is also bounded from above
and away from zero.

PROOF: We let the metric space of progressively measurable bounded processes
(B,d) be defined as in the last section, and we introduce the following change of
variables:

X; =log(ply), Yi=plog(V), p=—<1.

The lemma’s hypothesis implies that X € B. The fixed-point condition V = F}(V)
can be written as

T
Y; = log (Et / exp(Xs + pYs)ds + 1
t

) , tel0,T]. (A9)

The lemma will be proved if we can construct a Y € B satisfying (A9). For p €
(—1,1), Blackwell’s theorem (see, for example, Theorem 3.3 of Stokey and Lucas
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(1989)) applies to the operator of equation (A9) directly, proving the lemma for
this case.

Next we prove by induction the following statement, for any integer k: If
1 > p > —k, then there is a unique solution Y € B to (A9), for any X € B. For
k = 1, we have already proved the result. Suppose now we have shown the result
for some k, and we wish to prove it under the assumption —k > p > —k — 1. We

where ¢ € (0,1) is chosen small enough so that p+1 — ¢ > —k. By the induction

break the fixed-point problem in two parts:

T
Y, = Z; =log (Et [/ exp(Xs —(1—e)Ys+ (p+1—¢)Zs) ds
t

hypothesis, for any choice of Y € B, there exists a corresponding Z € B that
solves the second of the two equations. We let Z(Y") denote the resulting functional
relationship, which is monotonically decreasing. (Monotonicity can be shown by
the same argument, following Lemma A5, that we used to prove the monotone
dependence of the fixed point of F}; on U.) We complete the proof by showing that
—Z(-) satisfies the assumptions of Blackwell’s theorem, and therefore has a fixed
point in B.

Let 6 =(1—¢)/(p—¢€) € (—1,0). Since Z(-) is decreasing, it suffices to show
that, for any given constant process x > 0, Z(Y +z) > Z(Y) + 6z, or, equivalently,
A >0, where A= (Z(Y +x)—Z(Y))/x <0. Let

A =B, /tTeXp (X — (1= &)Ys + (p+ 1 — ) Z(Y)) ds

From the definitions of Z, A, and §, we have

(At + 1) exp(Aix) = Arexp ((p — ) (A — §)z + Ayz) + 1
> Arexp ((p—€)(Ar — 6)z + Arx) + exp(Asz).
Canceling out the term exp(A;x), and then the factor Ay, it follows that (p—e)(A;—
6) <0, and therefore A; > ¢, completing the lemma’s proof. W

To complete the existence proof, we need to show that F}; has a fixed point,
without assuming that U is bounded from below and above. Suppose first that
U is only bounded above, and consider the sequence U™ = max{1/n,U}, n €
{1,2,...}. Let V™ be the fixed point of F}},., shown to exist in Lemma A7. We have
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argued (with Lemma A6) that V"™ < V™ for all n, and therefore V; = lim,, o, V}"
is well defined for all ¢ € [0,7]. Moreover, the bounds of Lemma A5 imply that
V; > 0 for t < T. Dominated convergence shows U is a fixed point of F}. For
general U, we consider the sequence U" = min{n,U }, and we apply a similar
argument to construct a fixed point of F};. This completes the proof of existence.
The argument that proves the convexity claims is completely analogous to the
case of A(V) = 0. Where we used the convexity of the function z — ||z||*, one
should now use the convexity of the function (z,v) — | z||* /v, for v > 0, and where

we used Lemma A2, one should now use Lemma A6. This completes the proof of
Theorem A2.

Appendix B: Proofs omitted from main text

Proof of Lemma 1
Let Ay(v) = Vi(c+ vh) — Vi(c), v > 0, and

/t:r exp (/ts fv(w)dw) fe(s)hs ds] :

For any stopping time 7, it follows that

Lt (C) = Et

Li(c)= F, [ [ Feea Vi) + e Vo) Lu(e) ds + L,@} ,

while recursion (2) and the gradient inequality implies that

Al gy [ [ seavitenn + e Vi) 2 g A—“] |

v v v
The proof is completed by applying Lemma C3, with x = A(v)/v — L(c). B
Proof of Theorem 1

The following proof relies heavily on the mathematical results of Appendix A.

CASE 1: v =0.

Given any ¢ € C, we define the process U; = alog(ct). Using the inequality
exp(|z|) < exp(z) +exp(—z) and Jensen’s inequality, it follows that U € D", and
by Theorem A1, there exists a unique pair (V, Z) € D™ x D™ such that

- ~ 1 ¥
dv, = — <Ut — BV + 3 ||Zt\|2) dt + ZydBy, Vr =0.

44



Defining the new process V' to satisfy 14 aV; = exp(f/t), and applying Ito’s lemma
to the above equation, we obtain

dV; = —(1 4+ aV}) (log(ct) — glog(l - aV})) dt + exp(V;)Z, dB;, Vi = 0.

The second term of the above expression is a martingale, because

1
2

T
E ( / exp(271) |1 2 dt) < o,
0

a condition that can be easily confirmed using the Cauchy-Schwarz inequality and
the fact that (V,Z) € D§*P x D™. Integrating the expression for dV; from t to T,
and taking the conditional expectation Fj, it follows that V solves (2) when f is
defined by (8) and v = 0. Reversing the above argument also shows that V' is the
unique solution to (2) within the space V = {V : 1+ aV € DJ " }. Monotonicity
of Vp follows from the monotone dependence of V on U, part of the conclusion of
Theorem Al.

To show concavity, suppose first that 0 < o < B. Then f is concave on
the domain { (¢,v) : ¢ >0, 1+av > 0}. (This is just a matter of confirming that
fee < 0 and feofoo > CQU) We can then apply Lemma 1 to show a gradient
inequality that implies concavity. If a < 0, then, by Theorem A1, the process V in
the above construction is convex and increasing in U, which is in turn convex in c.
This shows that 1 +aV = exp(V) is convex in ¢, and therefore V' is concave in c.

Finally, homotheticity is easily discernible in the ordinally equivalent utilities

defined in (9), since, for any A > 0, we have

1 —exp(—B(T — 1))
3 :

V(Ac) = V(c) + log(\)

This can easily be derived from (10) in differential form, which in turn follows from
the original recursion (2) and Ito’s lemma.

CASE 2: v #0.
Given any ¢ € C, we define the process U; = (¢} / |7]) exp(—t). By Theorem A2
and Lemma A4 (with p = 1 + «), there exists a unique V € Dg " such that

T
Vite = F, / (1+)U,Vds|, tel0,T).
t
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Suppose now that V is related to V by Vi = (|y| /7) V'™ exp((1 4 «)Bt). Then the

above recursion is equivalent to

T Y o
Vie AU+t — / (1 +a)c_se—(1+a)ﬂs V| ™= ds|, tel[0,T].
t v

Writing the above as
~
d(V,e PO+t = (1 4 )L e~ (408t |y T55 gt 4+ 7, dB,,
Y

for some Z € D™, and using integration by parts, it follows that V solves (2) when f
is defined by (8) and v # 0. Letting V ={V € Dy : vV > 0}, the above argument
shows that V is the unique solution in V. Monotonicity of Vj is also a consequence
of the above argument and Theorem A2.

To prove concavity of Vs, we distinguish cases. If ay > 0, and, as usual,
v <min{1, (14 a)"!}, then f is concave on the domain { (c,v) : ¢ >0, yv > 0}.
(This is just a matter of confirming that f.. < 0 and fe.fo, > f2,.) Lemma 1
can then be used to show a gradient inequality, which in turn implies concavity. If
a > 0 and v < 0, then by Theorem A2, V in the above construction is convex and
increasing in U, which is in turn convex in c. It follows that vV is convex in ¢, and
therefore V is concave in c¢. If o < 0 and v > 0, then V, and hence V, is concave
and increasing in U, which is concave in c¢. This completes the proof of concavity.

Finally, homotheticity is easily discernible in the ordinally equivalent utility
defined in (9), since, for any A > 0, we have V;(Ac) = AMV;(c).

Proof of Lemma 2.

When v = 0 and a > 0, or a,y < 0, the result follows from Lemma 1. The
remaining cases follow (in some cases, using weaker integrability restrictions than

that assumed by Lemma 2).

CASE 1: y=0and a < 0.
Let Y; = 1+aVi(c), Yy = 14+aVi (), Ac = c—&, AY = Y=Y, f(t) = f(é&, Vi(&)),
and analogously for the partials of f. By Lemma Al, we have

Y, = E,

T
exp (/t alog(és) — Blog(Yy) ds)] ) (B1)

and similarly for Y. These conditions, together with the gradient inequalities

alog(c) > alog(é) + LAC, and — Blog(Y) > —Blog(Y) — ﬁAY )
¢
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imply

AY, > E;

T . N T aAc, AY,
exp (/t alog(és) —ﬂlog(%)ds) (exp (/t Z I6; 7 ds) - 1)] :

Letting R; = exp (fot fu(s) + ﬁds), and using the fact that alog(és) — Blog(Ys) =
fu(s) + B, and the inequality e — 1 > x, we obtain

T
Acy AY,
—RT / OzA G _ B——ds
Rt t Cs YS

Next we define the new probability, @, by letting dQ/dP = Ry /E[Rr]. Using
the change of measure formula for conditional expectations and (B1), we have
E, [dQ/dP] = R,Y;/E[Rr], and hence

AY; > Ey

AY,
ES — 3= ds < Yt'
t

= —F
Cs Y, K

/T alAcg AY,
t ~

By Lemma C1, it follows that

Simplifying, we obtain:

i T
Vi(e) - Vi(e) < R%Et Ry / e—ff(s—”%ds]
t

t Cs
1 [T Ac,
= —F, / E,[Ry)e Pl =5 d]
Rt I t S
T
= F, / ~8(s—t) Bs £Acs ds]
i t t Cs

_ g /t " exp ( /t ) du) £.(5)Acs ds] .

CASE 2: v >0 and a > 0.
In this case, we show C2’ under the weaker condition F [ fOT_E f2(¢s, Vs (é))ds} <

oo for every € € (0,7).
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We fix some h € F(¢) and define hf = hil{;cjo,r—<}. Concavity of f, the
gradient inequality, the above restriction on f,, and Lemma C3 imply

Vo(é+ h®) < Vu(é) + (m(e),h®), €€ (0,T). (B2)

The next step is to take the limit in (B2) as € | 0. The first order conditions (1)
and square integrability of h and 7 imply lim.|o(m(¢), h¥) = (m(é), h). The proof is
completed by showing that lim.|o Vo (é+h%) = Vy(é+h). The dominated convergence
theorem (justified below), continuity of f in its arguments, and lim. o h* = h, imply

hth(c—I— h®) =

/fcs—i—hs,hmV(c—i—hE))d , tel0,T].

If follows from Theorem A2 that lim. o V(¢ + h®) = V(¢ + h). The last step is to
justify the interchange of limit and expectation. With the uniform (in €) bounds

Ct/2 < ¢+ hi <26+ hy

(because ¢+ h > 0, we can always rescale h to ensure that the lower bound holds),
then
0 < f(ée+h, V(e+h)) < (28 + hy, V(2 + h)).

It is easy to show that ¢/2,2¢ + h € C, which establishes the integrable uniform
bounds.

CASE 3: v >0 and a < 0.

We prove C2’ under the restriction £ [exp ( f * foles, V(e ))> ds] < oo for
every ¢ € (0,T).

We fix some feasible direction h € F(¢) and define h¢ as in Case 2. For any
v > 0, we define Ay(v) = V(¢ + vh®) — Vi(é) and AL(0) = lim, g A¢(v)/v. Below,
we prove that the last limit exists, and Aj(0) = (m(¢), h®). Inequality (B2) then
follows from concavity of V(c) in ¢ and the proof is completed as in Case 2.

Given any v > 0, by the mean value theorem, we have

Ay(v)

1%

/fcCS+<S,V(C+Vh))hE+fU(Cs, ()+§)A(V)dS]’

1%

where ¢V € [0,vh], and €Y € [0, As(v)], (with the convention [0, a] = [a,0] if a < 0).
Since f, + (1 + )8 < 0, the above linear SDE has the unique solution

T
/ Gy s ds
t
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where G, = exp ([, fo(Cu, V(&) + &) du) fe(és + ¢, V(e + vh))hs.

To accommodate taking a limit, we derive uniform integrable bounds on G* for
small v. Monotonicity of V' (¢) in ¢, and f.., fey < 0 imply that there exists small
enough 7 > 0, such that for all v € (0,7),

0 < fe(@s + (5, Val(@ +vh)) < fe(@s/2,Vi(é/2)). (B3)

Because the right hand side of (B3) is proportional to f.(¢s, Vs(¢)), we have uniform
integrable bounds on G if EfOng fre(es, Vi(é))ds < oo for some k > 0 and
every ¢ € (0,7). This condition is implied by the square integrability of m, the
first order conditions (1), our assumed restriction on f,, and an application of the
Holder inequality. A first implication of these bounds is that lim, o A¢() = 0, and

therefore
lim G, = Y, = oxp ( JRA du) Fuls, 60, Va(@)hE.
v t

A second implication of the bounds on G* is that we can apply the dominated
convergence theorem to conclude that A}(0) = E; [ ftT Gy, ds], completing the
proof.

CASE 4: v <0 and a > 0.

In this case, we prove C2" under the restriction F [exp (2 fOT_E fu(és, Vs(é))) ds}
oo for every € € (0,7).

Let V* denote the ordinally equivalent utility process as in (10) but with ter-
minal value Vz = &, where k € IR_. Also, let & = max(é&, |«|). Then V;(c) <
e T and f,(¢F,V/(c)) is uniformly bounded for any ¢ € C. We define
Af(v) = V(e + vh®) — V5 (¢). As in Case 3, we use (B3), V* € Dy, and the
dominated convergence theorem to show that lim, o Af(v)/v = (m”(é¥), h®) where
m"(c") is given by (3) with V* taking the place of V. Concavity implies

Vi (€% + he) < V(™) + (m™(é),h®), K <O.

We take the limit as x T 0 to obtain (B2) by using the dominated convergence
theorem together with the assumed restriction on f,, and the uniform upper bound

t
mi(e) <o ([ flen V2@ ds) £ V@), k<
0
The proof is completed as in Case 2 using the uniform (in &) bounds
f(ee/2,V(¢/2)) < f(ée +hi, V(e+h7)) < 0.
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Proof of Theorem 2.

We prove Theorem 2 using the results of Theorems 3 and 4.

PART (a): Under conditions I or III, the optimal consumption dynamics are corol-
laries of Theorems 3 and 4. (For v = 0, we obtain Z = 0, and for v # 0, we obtain
aZ =0.)

PART (b): Using the notation of equation (17), we have the general identity

TsCs _ e ¢ Gs
= exp We — 1y — 07 M dT | =
TtCy t @

where ( is the exponential supermartingale:

t t
1 2
CtzeXp</ —5 oz =z d7+/0$—77’7d37>-
0 0

Suppose first that r and n are deterministic. Then, by part (a) we have

C_

py =T —0f -y =—q, and oy — 772 = (k't - 1)77115-

Since the appropriate Novikov condition is satisfied, it follows that ( is a martingale,
and therefore:

T T s
Wt(c) — Et [/ TTsCs ds] :/ exp (—/ qr d7-> ds.
Ct t TG t t

Next, we consider the case of v = 0, while » and n are potentially stochastic.
By Theorem 3, we again have u¢—r —o°-n = —q. Given the boundedness of r and
1, ¢ is a martingale, and the same argument applies. A direct argument, that does
not rely on Theorem 3, beyond the fact that the unique solution c satisfies the first
order conditions is as follows. Using the transformation of Lemma Al, we know
that the utility process V = V(c) satisfies:

T
exp (/t alog(cs) — Blog(l + aVy) ds)]

ol [ pieras)]

From this equation and (3), it follows that m;(c) = e5T=Y M, /c;, where M is the

martingale defined by
T
exp (/ fv(cs,Vs)dSH :
0
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The first order condition m;(c) = Am; can be restated as ¢ A\my = eBT=t)pr,. Using
the definition of the wealth process, we obtain W;(c)Ar, = 571 (eﬁ(T_t) — 1) M;.
Dividing the last two equations proves the result.

PART (c): The optimal trading strategy is computed as explained in Section 2.3.
Under condition IT or condition III, part (b) implies that ¢"V(¢) = ¢, Under
condition I or condition III, part (a) implies that ¢¢ = kn’. Combining these
observations gives the result.

Proof of Lemma 3.

Letting V and ¢ be defined in terms of X and J by (14) and (15), respectively, it
suffices to prove that V; + fot f(es, Vs) ds is a martingale. From equations (14) and
(15), and the definition of f, we have

Oéf(ctv‘/;f) - . _ B _
oy, = el V) + 5= (8 - o)k = B) X + (a = ).Jr

Using these equations and (4a) in the Ito expansion of (14), we obtain

o
14+ aV;

(dVi + f(ce, Vi) dt) = [A Xy + Byl dt + (Z; — (1 — k¢)ny) dBy, (B4)
where A; = (3 — )k? — Bk; — k¢, and, with p”/ denoting the drift term of J,

By =l — (1— k) (Tt - B+ %771& . 77t> + k(o — 8)Je + %Zt Zy— (1= ki) Z - e
(Hint: In computing A and B, express everything in terms of f, first, and substitute
in the expression for f, last.) We are to show that both A and B vanish. In fact, the
condition A; = 0, together with kr = 1, is equivalent to (11) (with v = 0), while
the condition B; = 0, together with J; = 0, is equivalent to (13). This completes
the proof of the lemma.

Proof of Theorem 3

We have already argued that the unique solution to the first order conditions is
given by (15), for properly selected A. (That this solution is an element of C follows
by combining Lemma C1, (15), and the assumption that r» and n are bounded.)
Applying Ito’s lemma, we obtain

%_ de— Xt L adV; n de— Xt adV;
e e X 1+ oV, e~ Xt 14+aV, )
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From the dynamics of X in (4a), and Lemma 3 (see equation (B4)), we have

de =Xt

Xt = (folet, Vi) +re +me - me) dt +ndBy,
Oéd‘/; Oéf(Ct,‘/;) ,
- Zy — (1= B;.
1+ aV; 1+ aV, dt + (Ze — (1 = ke)ny) dB

Substituting back in the consumption dynamics, and using the identity

af(cta ‘/;‘/)

1+a‘/*t :fv(ct7‘/t)+ﬁ7

the optimal consumption dynamics of Theorem 2 follow immediately.

Optimality verification follows easily from Lemma 2, while uniqueness is a
consequence of strict concavity of the utility function.

Equation (16) we proved as part of Theorem 1, while the optimal trading strat-
egy follows by the argument in Section 2.3, after observing that, by (16), "V (¢) = ¢

Proof of Lemma 4

Letting V and ¢ be defined in terms of X and J by (20) and (21), respectively, it
suffices to prove that V; + fg f(cs, Vi) ds is a martingale. We define fi” and o so
that

d ~
# = il dt + o dB; = (i} + (1 — k)of - ;) dt + o dB,.
t
We can now expand (20), using Ito’s lemma, the dynamics of X in (4a), and the
identity
fle,v) 1+«
v — o (fv(ca U) +5)7
to obtain
Wit e V)t _ 4 opy | Avat+ (of + 2t} aB|,  (B5)
Vi 1=

where

o fle V) k ak LB

A= pf + ; : +1—7 Tt+§77t'77t +701§]'U£]+1_7@'

We are therefore to show that A; = 0. To do so, we begin with the expression
G 1—1/(14a)
folee, Vi) 2047‘/{& —(1+a)s.
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Using equations (20) and (21), and simplifying, we observe that the coefficient of
X; in the exponent vanishes, resulting in

folee, Vi) 1

= (14 )/ g1 l+a
a ¥ ¢

g (B6)

Given this expression, the backward SDE (18) (where Z; = o J;) is clearly equiv-
alent to A4; = 0. Using the above expression for f, in (4a) results in the claimed
dynamics for X.

Proof of Theorem 4
Suppose that the assumptions of Theorem 4 are satisfied, and that c is given by

(21) (as constructed in Section 5.3). The following lemma shows that ¢ € C.

LEMMA B1. The process |J;|“ exp (fg foles, Vs(c)) ds) is bounded above and away

from zero (by deterministic constants, and uniformly in time).

PROOF: Fix some t € [0,T), and let
Js = vJsexp {/ audu} , s>t
t

where a, = v(1—~) " ru — (3/7) + (k/2)n, - 74]. Then, with B defined in (12), we
have
3 k s " ~s - .
djs = — | (1 —|—o¢)7/(1_7) exp (/ audu) + %Z : : } dt + z, dBg, jr = 0.
t Js
By the boundedness of r and 7, we choose a K > 0 such that |a;] < K for all
t € [0,T]. Using the monotonicity result in Theorem A2, upper and lower bounds

for j; are found by replacing a, with K and — K, respectively, when u > t. This
results in the following bounds for J;:

1 — o~ K(T—1) CK(T—1) _

K K
Using equation (B6) and integrating, it follows that, for some constants Cq,Cy > 0

<y Ji(14a) /077 <

that do not depend on the choice of ¢,

c, <eK(T—t) _ 1) - < exp (/t fv(s)ds) < (4 (eK(T—t) _ 1) -
0

From the same bounds on vJ; we also get
Cy (KT=0 1) < || < €y (XT-0 1),

for some constants C3,Cy > 0 (independent of ¢). Multiplying the last two sets of
inequalities completes the proof of Lemma B1. W
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Returning to equation (21), and applying Ito’s lemma, we obtain the dynamics:

de; 2 ) dJ,  ak(ak —1) (dJ,\° ) dJ,

Simplifying the expression using (18) and the dynamics of X of Lemma 4, results
in the theorem’s expressions for p¢ and o¢. Optimality verification follows easily

from Lemma 2 using
Q@
el

The boundedness of r and 7 and the bounds in Lemma A5 imply that for any ¢ > 0,

folee, Vi) = —(1+ )77 = (1 + )3

|.J¢t| is uniformly bounded away from zero for ¢ € [0,7 —¢]. Uniqueness follows from
strict concavity of the utility function.

To determine the optimal consumption and portfolio rules, we use Lemma B2
below in conjunction with equation (29), to obtain:

Wi(e) = (1 + a)yV; exp(—Xy). (B7)

Equations (BT7), (20), and (21) combined give the claimed optimal consumption to
wealth ratio. Using expression (B5) (where o/ = Z;/J;) and (BT), we find

Z

UtW(C)zkn’—i-(l—i-ozk:)J.
t

Arguing as in Section 2.3 we obtain the claimed optimal portfolio allocation.

LEMMA B2. Forallt <T,

RV = A (L aviess ([ t Fs)ds) . #0

PROOF: We start with the Ito expansion

Vr_cexp ( /O o fu(S)dé‘) — Viexp ( /O t fv(s)ds)
_ 7 [ / e ( / 8 fv(U)dU) (Vatu(s) = £(5)) ds] ,

for any € € (0,7). In eliminating the martingale part, we have used the fact that
Eexp (fOTfa 27, (u)du) < oo (which follows from f, < 0 if < 0, and from the

E;
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boundedness of r and 7 if @ > 0), and the fact that F <fOT_E AV ds) < oo for

every € € (0,7) (which follows from the Burkholder-Davis-Gundy inequality and
the bounds in Lemma A5). Substituting v[Vsfu(s) — f(s)] = —c? |[Va|*/" ") and
using the first order condition

14+ a)ex w(uw)du | el |V o/(1+a) _ ACsTs
(14 a)exp fo(u) 5
0

we obtain, for all € € (0,7,

s anvies ([ t Fo(e)as)

/d Vi exp ( /O“ Ms)ds)].

The proof is completed by letting € approach zero, provided that we show

= Et +A_1(1+a)'yEt

lm . [vt exp ( /0 t fv(s)dsﬂ _0, sel0,7). (BS3)

If « <0, then f, <0 and (B8) follows trivially since lim;;p Eq(V;) = 0. If a > 0,
we use (20) and the definition of X to get

t ¢
Vieo ([ £uo)is) = O/ DN 4rt 4l exp ([ k1)
0 0
The limit (B8) then follows by Lemma Bl. H

Proof of Lemma 5
We first show that H < 0. We have the following upper bound for J from (13):

J<K—E, [/tT exp (/:(a _ Bk, du) (1—ky) (b+ %(@2)'gs> Y, ds]

for some constant K. If a < 0 then k; < 1 for ¢ < T. The restrictions on £ along
with Y; € Y imply that Y has a uniform constant lower bound, which implies a
constant upper bound on J. This is contradicted, however, if Hf > 0 for some
i since we can consider starting the Y process at time ¢ with Y;’ arbitrarily large,
violating the upper bound on J. It remains to show that H has a finite lower bound.
The ODE for H is of the form

. 1
Hr = Pr+ Q- H: + 3¢/ (S'Hy)*, Ho=0,
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where P, € IR", Q, € IR"*", and 7 = T — t measures time from the horizon date.
For any K € IR,

1 1

d—l’e_KTHT =1e 5P+ (Q, — KI)H, + §§’(E’Ht)2]

-
>1e 57[P, + (Q, — KI)H,]

Because @ is uniformly bounded, we can choose K large enough so that 1'(Q, —

K1) <0, for all 7 > 0, which, combined with H < 0 implies

1H, >1 / K= p_ds.
0
[ |

Proof of Lemma 6
The ODE for F' is of the form

P, =P+ Q,F + F,Q, + 2F,XY'F,, Fy=0,

where P, € IR™, Q, € R"*"™, and 7 = T — t measures time from the horizon date.
The matrix P is negative semidefinite. Lemma 6 then follows from the following
claim, which can be shown by adapting the proof of Lemma 16.4.2 in Lancaster and
Rodman (1995) to the variable coefficient case: For any z € IR™,

7' F.z = max { / Z'(Pr_s —2hLhs)Zsds } ,
h bounded 0

where Z is IR™ valued and satisfies Z, = (Qr—s —2Xhs)Zs, Zop=2. N1

Appendix C: Extensions of the Gronwall-Bellman Inequality

In this appendix we give some generalizations of the “stochastic Gronwall-Bellman”
inequality of Duffie and Epstein (1992a), results that are used by several of our
proofs. The probabilistic setting and notation are the same as in Appendix A.
We also use standard lattice notation: Ay = min{z,y}, *Vy = max{x,y},
rt =max{z,0}.

LEMMA C1. Suppose that « € DI, 3 € D1, x € Dy, and ¢ € IR. If ay > 0 and
x < B, [ftT(as:cs + Bs) ds + 5} for all t € [0,T], then

/tTﬁsexp (/:audu> ds + € exp (/tTOzudu>] . telo,T)
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The result is also valid with the last two inequalities reversed.

PROOF: Let y; represent the right-hand side of the last inequality. It can easily be
shown that y; = E; [ftT(ozsys + Bs)ds + 5] for all t. Letting § = x — vy, it follows
that §; < F, [ftT PR ds] for all t. Let now A; = exp (f(f o ds), C, = f(f sl ds,
and My = Ey(Cr). We observe that M is a martingale, and § < M — C. It follows
that d(A;Cy) = a A (Cy + 6;)dt < MydAy = d(AyMy) — AydM,. Integrating from ¢
to T, and applying the operator E;, gives M — C < 0, and therefore § < 0. The

above argument is also valid with all inequalities reversed. W

LEMMA C2. Suppose that ™ € DI*?, 3 € Dy, x € Dy, and x is right-continuous. If
for every stopping time T, x; < E; [ftT(asxs + () ds + 337] on {t<T1},tel0,T],

then
T s
/ B, exp (/ o du> ds] , tel0,T].
t t

The result is also valid with the last three inequalities reversed.

xy < By

PROOF: The same argument as in the first part of Lemma C1 shows that it is enough
to prove the result when ( vanishes. Assuming [ = 0, suppose that, for some time
t, the event A = {z; > 0} is non-null, and define 7 = inf{s >1¢ : 25 <0}. Since
x is assumed right-continuous, x, < 0, and z; > 0 on AN{t <s < 7}. It follows
that, on the event AN{t < s <7}, z; < E,[[] auzy du]. Therefore,

zs < Ey on A, seltT].

T
/ 0414;1{ u<r } Ty ds

Applying Lemma C1 on A x [t, T, we conclude that x; < 0 on A, a contradiction. B

A more elaborate argument in the following lemma shows that, for § = 0,
Lemma C2 is valid under much weaker integrability assumptions.

LEMMA C3. Suppose that a and x are progressively measurable processes satisfying
E [fOT a; dt} < oo and E [fOT af of dt] < o0o. Suppose further that x is right-
continuous, and, for every stopping time T,

v < E [/ asxsds—l—mT] on {1T>t}, (C1)
'

and x7 < 0. Then z; <0 for all t.

PROOF: Suppose, to the contrary, that, for some time ¢, the event A = {x; > 0} is
of positive probability. In the argument that follows we restrict time to the interval
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[t,T]. Consider the stopping time 7 = inf{s : s > ¢, v, <0}. Since x is right-
continuous, x, < 0, and zs > 0 on AN{t < s < 7}. Moreover, defining the process
X, = E, [f;vs al Ty, du], s € [t,T], we have, from (C1), that

s < Xson {s<7}, forall s >t, (C2)

and in particular, X; > 0 on A, while of course X, = 0. We also define the stopping

times .
Tn:inf{s : szt,ng—}lA—{—tlQ\A, n=12,...,
n

and the martingales

T SNATn dMu
My = FEq [/ aixudu], Ns":/ s>t, n=1,2,..
t t

By Ito’s lemma,

X ™aX, 1 /dX.\> ™ 4X ™ oty
] Tn | — s _ 2 ) > S _ 2578 ds + N™ — N™.
Og ( ) t XS 2 ( XS ) - t XS t XS ° + 4 K

Since X; > 0 on A, there exists € > 0 small enough so that the event { X; > ¢} is
of positive probability. Fixing such an e, and using the fact that X, < 1/n, we

T
/ af ds|,
0

where the last inequality follows from (C2). Letting n approach infinity, we reach

obtain

the conclusion that F [ fOT at ds] = 00, contradicting the lemma’s assumptions. M

The above lemma is not valid without the assumption F [ fOT oy dt} < oo. For
example, if oy = (T —t)~ !, then (C1) is satisfied as an equality by z; = M;(T —t)
for any martingale M.
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