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1. Introduction

1.1. Introduction and Overview of
the Main Contributions

This paper is concerned with the problem of staffing a
telephone call center that serves multiple customer classes
using agents of multiple skill sets. In particular, we study a
tractable solution method to this problem, whose salient fea-
ture is that it is data-driven. By that we mean that it essen-
tially requires only historical call data to arrive at staffing
decisions, and in doing so imposes minimal assumptions
with regard to the nature of this data. To the best of our
knowledge, this represents a departure from most studies
of the staffing problem in the operations research litera-
ture, which are typically model-based, insofar as solutions
proposed there are constructed using probabilistic structure
that is assumed to characterize the data-generating process;
see Gans et al. (2003) for a comprehensive survey on the
topic of modeling and analysis of telephone call centers.
(A review of literature relevant to this paper is deferred to
the end of this section.)
Before we can explain in more detail the contributions

of this paper, let us first describe in broad strokes the call
center model that will be the focus of our attention. As indi-
cated above, our model has multiple customer classes and
multiple agent pools. Each of the pools consists of identical
servers (agents), whose skills dictate the possible customer

classes they can serve and the speed at which such service
is delivered. Customers of various classes arrive randomly
over time and upon arrival are either served immediately
or wait in an infinite-capacity buffer.
Two important assumptions are made with regard to the

call arrival process. First, arrival rates of incoming calls
are not assumed to be constant or known. Rather, we allow
these rates to be temporally varying and random; that is,
there is inherent uncertainty with respect to their true value.
Second, we assume that customers waiting for their ser-
vice to commence might abandon before they are assigned
a server. Both of these modeling assumptions capture key
characteristics present in actual telephone call center operat-
ing environments; see, e.g., Gans et al. (2003) and Steckley
et al. (2004) for a discussion of the latter, and Avramidis
et al. (2004) and Brown et al. (2005) for discussion of the
former, as well as references therein.
To describe the staffing problem, consider a fixed and

given time interval, hereafter referred to as a “staffing seg-
ment,” over which staffing decisions are held constant.
That is, a segment represents the smallest time interval over
which a staffing decision cannot be revised (typically this
interval ranges from 30 minutes to two hours). We assume
that there are two types of costs related to operating the
call center: personnel costs and abandonment costs. The
objective is then to find a staffing level for the various
server pools that minimizes the sum of the two costs over a
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given staffing segment. (The solution of the staffing prob-
lem usually forms the basis for more detailed workforce
management decisions that assign individual agents to spe-
cific work schedules, although this level of granularity is
beyond the topic of this paper.)
A major obstacle in solving for the “optimal” staffing

levels is that the performance of any proposed solution
requires specification of a routing policy that describes how
incoming calls will be assigned to agents at any point in
time, so as to minimize abandonment-related costs. Unfor-
tunately, this dynamic control problem can rarely be solved,
and thus it has become common practice to consider only
relatively simple call routing rules and then rely on simu-
lation to evaluate the performance of a given staffing level;
see Gans et al. (2003) and the literature review that fol-
lows. As a consequence of this limitation, it would be
difficult to discern, for example, whether a given staffing
level performs poorly because the associated routing logic
is deficient, or whether this is due to the staffing level itself
being strictly suboptimal. (In particular, it is not clear how
one identifies, even in theory, the optimal solution of the
staffing problem; the characterization of the latter is obvi-
ously useful for purposes of benchmarking any other pro-
posed solution.) One of the contributions of this paper is
that it provides an approach for studying the staffing prob-
lem essentially in “isolation.”

Main Contributions. The main algorithmic contri-
bution of this paper is in proposing a computationally
tractable method for obtaining prescriptive solutions to the
staffing problem described above. (See §4.2.) The method
builds on recent work of Harrison and Zeevi (2005),
but whereas that paper develops a model-based approach
(namely, it assumes knowledge of the probabilistic struc-
ture characterizing the mean call arrival patterns), this paper
relies only on past call data as an input.
The main theoretical and methodological contribution of

this paper is in establishing that the proposed data-driven
staffing method yields prescriptions that are provably near-
optimal in a suitable asymptotic sense. This analysis blends
two different types of asymptotics that form the basis of
our main results. The first asymptotic considers a sequence
of systems in which call arrival volume, as well as aban-
donment and processing rates, increase without bound. This
type of asymptotic is of the variety used in operations
research studies of high-volume large-scale systems. In par-
ticular, we use multiscale fluid limit machinery developed
in Bassamboo et al. (2005) (see also Bassamboo et al.
2006) to characterize the “approximation error” that results
from applying our method to finite sized systems; see The-
orems 1 and 2. The second type of asymptotic is one that is
frequently used to study properties of statistical estimators,
and it involves the size of the data growing large. In partic-
ular, we rely on machinery from empirical process theory
(see, e.g., van der Vaart and Wellner 1996) to characterize
the “estimation error” that stems from having access only
to historical call arrival data; see Theorems 3 and 4.

To the best of our knowledge, the combination of the
two types of asymptotics discussed above is new in the
operations research literature, and this paper illustrates
the benefits of this synergistic approach; see in particular
Theorem 4. Using these results, the performance of the pro-
posed solution is seen to be eventually “close” to the best
achievable performance, and in that sense it is asymptoti-
cally optimal.
The above claim of asymptotic optimality appears to

be somewhat peculiar in light of the earlier discussion
on the difficulties of characterizing the optimal solution
to the staffing problem. In particular, recall that the latter
requires knowledge of the optimal routing logic that should
be paired with it. To this end, imagine that one has access
to an oracle that provides the optimal routing policy associ-
ated with any given staffing vector and hence can compute
the optimal solution to the staffing problem. With this aid
of the oracle, it is possible to assess the loss in performance
that stems from using our proposed solution as opposed
to the optimal one. The surprising observation is that we
can characterize this optimality gap without ever having to
compute the (oracle-based) optimal staffing solution. The
techniques used to establish this might be of independent
interest and could prove useful in other related problems of
design and control of stochastic systems.

The Remainder of the Paper (and a Reading Guide).
This section concludes with a review of related literature.
Section 2 provides a mathematical description of our call
center model, and §3 describes the staffing problem. Read-
ing both sections is in some sense necessary to follow §4,
which explains our data-driven solution method. Section 5
provides the intuition behind the proposed method. Those
who are not in need of such intuition can skip this section
and move on to §6, which presents numerical examples
illustrating the performance of the method. Those seeking
theory that supports the results observed in the numeri-
cal examples can find that in §7. Some qualitative insights
and other points pertaining to these theoretical results are
summarized in §8. Finally, all proofs are collected in two
appendices, which are part of the online companion for the
paper (available at http://or.journal.informs.org/): the main
results are proved in Appendix A, and auxiliary results are
proved in Appendix B.

1.2. Literature Review

Most of the literature on call center staffing focuses on
a single pool of identical servers. In that realm, the case
where there is only a single class of customers leads to
trivial control decisions, and if the system is Markovian
then the Erlang-C formula provides the main mathematical
tool for solving the staffing problem. An important rule-of-
thumb that arises from the Erlang-C formula is the so-called
square-root staffing rule; see Gans et al. (2003, §4.1.1) for
further discussion. Borst et al. (2004) refine the square-
root rule to balance queuing and staffing costs; this type of
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objective function is similar to what we use in our paper, but
we take abandonments as the indicator of congestion-related
costs. Extensions include Garnett et al. (2002) that incorpo-
rates abandonments, as well as Feldman et al. (2008) and
recent work by Mandelbaum and Zeltyn (2008).
Staffing a single pool of servers when there are mul-

tiple customer classes involves a significant escalation in
complexity because the control problem must be tackled as
well. Research on this problem has started only recently,
and the primary example of such work is that of Gurvich
et al. (2008), which exploits many server diffusion limits in
the so-called quality- and efficiency-driven regime (QED)
first introduced by Halfin and Whitt (1981). Work on the
staffing problem in the context of a multiclass/multipool
model is still in its infancy and relies mostly on simulation-
based methods; for an example of the latter see Wallace
and Whitt (2005), Cezik and L’Ecuyer (2008); for further
discussion see Gans et al. (2003).
Our paper is closely related to the recent work of

Harrison and Zeevi (2005), which proposes a method
for staffing multiclass/multipool call centers and moreover
allows for temporal variation and randomness (uncertainty)
in arrival rates. In Harrison and Zeevi (2005), a model-
based approach is taken, in the sense that the prescribed
staffing levels are computed by taking as input the prob-
abilistic structure of the arrival rate process. This makes
the approach impractical to implement because it relies on
idealized information that is typically not available in any
realistic setting. In contrast, this paper prescribes a solution
to the staffing problem using only historical data.
The work of Bassamboo et al. (2006) establishes, using

machinery of multiscale fluid limits, that the method pre-
sented in Harrison and Zeevi (2005) is asymptotically opti-
mal. We rely on that machinery here as well, but unlike
Bassamboo et al. (2006), this paper uses it to: (i) develop
a key element in the estimation technique; and (ii) pro-
vide performance bounds that characterize the optimality
gap (as opposed to just establishing that this gap shrinks
to zero).
As indicated earlier, the output of any staffing method

requires a control to be paired with it. In this paper, we
do not explicitly address this issue and in fact show how
one can essentially decouple the staffing problem from such
considerations. Having said that, the bounds we derive on
the optimality gap build on the fact that one can at least
characterize an asymptotically optimal control. To that end,
we rely on earlier work reported in Bassamboo et al. (2005),
where asymptotically optimal solutions to the dynamic rout-
ing problem are derived when staffing levels are exoge-
nously determined.
To the best of our knowledge, this paper is the first

to provide a data-driven solution for staffing multiclass/
multiskilled call centers and to prove that the proposed
solution enjoys some optimality properties. There are few
other papers in the operations research literature that rely
on data-driven approaches, and one method of choice seems

to be that of stochastic approximations; for an example
of an application in revenue management, see van Ryzin
and McGill (2000). Our work is quite different because
it involves batch (off-line) optimization based on histori-
cal data, the framework being that of empirical risk min-
imization, which is a classical approach for obtaining
“good” statistical estimators (see, e.g., van der Vaart and
Wellner 1996).

2. The System Model
Our call center model has m customer classes and r server
pools, each consisting of bk identical servers (k= 1� � � � � r)
that can be cross-trained to handle customers of several
different classes. Similarly, there might be several pools
that are able to handle a given customer class. Customers
of the various classes arrive randomly over time accord-
ing to a doubly stochastic Poisson process with instan-
taneous arrival rates given by �1�t
� � � � ��m�t
; a more
precise definition will be given shortly. Those customers
who cannot be served immediately wait in an infinite-
capacity buffer that is dedicated to their specific class.
An example with m= 3 customer classes and r = 2 server
pools is shown schematically in Figure 1.

Preliminaries, Notation, and Basic Modeling Assump-
tions. To describe server capabilities, we will use the
notion of processing “activities.” There are a total of � pro-
cessing activities available to the system manager, each of
which corresponds to servers from one particular pool serv-
ing customers of one particular class (activities are denoted
by solid arrows leading from buffers to server pools in
Figure 1). For each activity j = 1� � � � � �, we denote by
i�j
 the customer class being served, by k�j
 the server
pool involved, and by �j the associated mean service rate
(that is, the reciprocal of the mean of the service time dis-
tribution). The actual service times are taken to be expo-
nentially distributed random variables with the above rates,
these being independent of one another and also of the

Figure 1. A call center with three customer classes, two
agent pools, and four activities.
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arrival processes. Note that we allow the service time dis-
tribution of a customer to depend on both the customer’s
class and on the pool to which the server belongs.
We define two matrices: an m× � matrix R with entries

Rij = �j if i = i�j
 and Rij = 0 otherwise, and an r × �
matrix A with entries Akj = 1 if k= k�j
 and Akj = 0 oth-
erwise. Thus, one interprets R as an input-output matrix,
its �i� j
th element specifies the average rate at which activ-
ity j removes class i customers from the system; and A is
a capacity consumption matrix, its �k� j
th element is one
if activity j draws on the capacity of server pool k and is
zero otherwise. We define an m× � matrix B to describe
which customer class is served by which activity, setting
Bij = 1 if i�j
= i and Bij = 0 otherwise.
An important assumption of our model is that customers

of any given class will abandon their calls if forced to
wait too long for the commencement of service; aban-
doned calls are represented by the horizontal dotted arrows
emanating from the storage buffers in Figure 1. Specifi-
cally, each class i customer is endowed with an exponen-
tially distributed “impatience” random variable � that has
mean 1/�i, independent of the impatience random variables
characterizing other customers and of service times and
arrival processes. The customer will abandon the call when
his or her waiting time in queue (exclusive of service time)
reaches a total of � time units. This assumption is quite
standard in call center modeling; cf. Garnett et al. (2002),
Gans et al. (2003), and Harrison and Zeevi (2004). Let
� = diag��1� � � � � �m
 denote the abandonment rate matrix.
Consider an interval �0� T � that represents the staffing

segment of interest (taking zero to be the starting point is
merely a convenient normalization). Let �i = ��i�t
� 0 �
t � T 
, i= 1� � � � �m denote the arrival rate process in each
customer class, which is nonnegative and has continuous
ample paths, such that Ɛ

∫ T

0 �i�s
ds exists. Let N �d

i =

�N
�d

i �t
� 0� t <�
 be mutually independent Poisson pro-

cesses, each with unit rate, for i= 1� � � � �m and d= 1�2�3.
The Poisson processes are further taken to be indepen-
dent of the arrival rate processes. We use the processes
�N

�1

1 � � � � �N �1


m 
 to construct arrivals in our model, defining

Fi�t
 �=N
�1

i

(∫ t

0
�i�s
ds

)
for i=1�����m and 0� t�T �

(1)

This is a standard construction of a doubly stochastic
Poisson process; cf. Bremaud (1981). We interpret Fi�t
 as
the cumulative number of class i arrivals up to time t. The
unit-rate Poisson processes N �2


i and N
�3

i will be used to

construct service completions and abandonments, respec-
tively, under a given control policy, via relationships anal-
ogous to (1).

Staffing, Control Formulation, and System Dynamics.
Let b = �b1� � � � � br 
 denote a staffing vector, whose
kth component is the number of servers to be employed
during the specified planning period for server pool k. By
assumption, the value of b cannot be revised as actual

demand is observed during the period �0� T �; for ease of
reference, we will refer to this time horizon as a “staffing
segment.” In what follows, we will relax integrality con-
straints and for simplicity allow b to take values in �r

+;
because we focus on high-volume call centers, where a
large number of servers are used per staffing segment, this
distinction is not crucial for our purposes.
Given a staffing vector b, we define a control as a stochas-

tic process X = �X�t
� 0 � t � T 
 taking values in �n
+,

whose sample paths are right continuous with left limits
and Lebesgue integrable. Furthermore, we assume that X
is nonanticipating, i.e., it is adapted to the filtration gener-
ated by the arrival rate processes �, arrivals, service com-
pletions, and abandonments. Writing X�t
 = �X1�t
� � � � �
X��t

, we interpret Xj�t
 as the number of servers engaged
in activity j at time t. A control X is said to be admissible
with respect to a staffing vector b if there exist processes
Z and Q, both having time domain �0� T �, both taking val-
ues in �m

+, and both necessarily unique, that jointly satisfy
conditions (2)–(4) below for all t ∈ �0� T �:

AX�t
� b� (2)

Q�t
=Z�t
−BX�t
� 0� (3)

Zi�t
= Fi�t
−N
�2

i

(∫ t

0
�RX
i�s
ds

)

−N
�3

i

(∫ t

0
�iQi�s
ds

)
� 0� i= 1� � � � �m� (4)

Here Zi�t
 represents the number of class i customers in
the system at time t (we call Z the headcount process and
Zi its ith component); and Qi�t
 represents the number of
class i customers in the buffer that are waiting for service
at time t (we call Q the queue length process and Qi its ith
component).
Constraint (2) requires that the number of servers in vari-

ous pools that are engaged in some activity at time t cannot
exceed the total number of servers in each pool. In the sec-
ond constraint (3), BX�t
 is a vector whose components
represent the numbers of servers allocated to various cus-
tomer classes at time t. The constraint therefore prohibits
allocating to a given class a number of servers that exceeds
the headcount in that class. The third constraint (4) is the
system dynamics equation, where the second term on the
right-hand side is interpreted as the cumulative number of
class i service completions up to time t, while the third term
represents cumulative class i abandonments. The instanta-
neous departure rate for class i customers due to abandon-
ments is �iQi, and the instantaneous departure rate for class
i due to service completions is

∑
�jXj , where the sum is

taken over activities j that serve class i. (It is straightfor-
ward to establish that there (almost surely) exists at most
one pair �Z�Q
 satisfying (3) and (4); see Bassamboo et al.
2006.) For future purposes, we use ��b
 to denote the set
of admissible controls for a given staffing level b.
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3. Problem Formulation
The Staffing Problem and Best Achievable Perfor-

mance. Let p = �p1� � � � � pm
 be the penalty cost vector,
where pi is the cost associated with an abandonment of a
class i customer, and let c = �c1� � � � � cr 
 be the personnel
cost vector, where ck is the cost of employing a server in
pool k for the entire planning horizon �0� T �, which con-
stitutes a staffing segment. The total cost associated with a
given staffing vector b and an admissible control X is given
by the functional

��b�X
 �= c · b+
m∑
i=1

piƐ

[
N

�3

i

(∫ T

0
�iQi�s
ds

)]

= c · b+ Ɛ

[∫ T

0
p · �Qi�s
ds

]
� (5)

using the properties of Poisson process and the vector nota-
tion introduced in §2. Here x · y represents the scalar prod-
uct of the vectors x and y. The minimal expected total cost
associated with a staffing vector b is given by

� �b
= inf
X∈��b


��b�X
� (6)

where the minimization is over the set of admissible con-
trols. We refer to � �·
 as the performance function. The
goal of the system manager is to find the optimal staffing
level b∗ that solves the following optimization problem:

inf'� �b
� b ∈�r
+(� (7)

Given that � �b
 is defined via (6), it is not clear a priori
whether this operation results in a bona fide (measurable)
function, and hence it is not clear if one can define the
optimization problem in (7) using � �·
. To this end, we
have the following result.

Proposition 1. The mapping � � �r
+ →�+ defined via the

optimization problem (6) is Lipschitz continuous.

Thus, � �·
 is differentiable almost everywhere with
bounded derivative (where it exists). The continuity is suf-
ficient to ensure that the minimum in (7) is achieved by
a vector b∗ because the domain of the optimization prob-
lem can be restricted to the compact set 'b� c · b �� �0
�
b ∈ �r

+(. The corresponding optimal value will be de-
noted by

�∗ =� �b∗
� (8)

a quantity that we will refer to henceforth as the best
achievable performance.
Of course, what we have just described is a highly ide-

alized sequence of steps. Even if the probabilistic struc-
ture of the instantaneous arrival rates is known and it is
possible to compute ��b�X
, it is virtually impossible to
solve the dynamic optimization problem (6) over the space
of admissible controls. Hence, one can view the deriva-
tion of the staffing problem (7) along with its solution b∗ ∈
argmin'� �b
( as being made possible only with the aid
of an “oracle,” having at its disposal all information on the
primitive processes (including arrival rates) and imaginary
computational power.

The Data-Driven Staffing Objective. The system
manager is assumed to have access to historical data in
the form of call arrival epochs over n previous staffing
segments with similar “characteristics” (the term will be
explained shortly). All other primitive parameters, includ-
ing service rates and abandonment rates, are assumed to
be known. We index past segments by l = 1� � � � � n and let
�l �= 'F l

i �t
� 0 � t � T � i = 1� � � � �m( be the record of
arrivals for all customer classes during segment l= 1� � � � � n.
The complete set of data is then given by �n =

⋃n
l=1�l.

For simplicity, we shall assume that �1� � � � ��n are mutu-
ally independent and identically distributed. Because F is
a simple counting process, one can view information con-
tained in �n as a record of all customer arrival epochs over
the past n segments.
A data-driven solution to the staffing problem takes as

input the known problem primitives and produces a (mea-
surable) mapping from �n to a staffing level b̂n ∈ �r

+.
The performance of this staffing prescription is given by
Ɛ�� �b̂n
�, the expectation being over the probability dis-
tribution corresponding to the data �n. This performance
will be compared against the best achievable performance
�∗ =� �b∗
 given in (8), which corresponds to the oracle-
based solution b∗. Clearly, by optimality of b∗, we have
� �b
�� �b∗
 for all vectors b ∈�r

+, and it follows that

Ɛ�� �b̂n
�

�∗
� 1� (9)

The ratio in (9) measures the suboptimality of the ex-
pected performance of the data-driven solution on a relative
scale, i.e., percentage of excess cost relative to the best
achievable performance. We are interested in developing a
constructive method for computing the data-driven estima-
tor b̂n from the problem primitives and historical observa-
tions of call arrivals, such that its performance is nearly
optimal in the sense that the above optimality gap is suit-
ably small.

4. The Proposed Data-Driven
Staffing Method

4.1. Preliminaries

We now proceed with a description of an optimization
problem that at a first glance does not appear to be closely
related to the original staffing problem given in (7). For any
* ∈ �m

+ and b ∈ �r
+, let +�*�b
 denote the optimal value

of the following linear program (LP): choose x ∈��
+ to

minimize p · �*−Rx


s.t. Rx� *� Ax� b� x� 0�
(10)

Furthermore, let b̄ be the minimizer of

V �b
 �= c · b+ Ɛ

[∫ T

0
+���t
� b
dt

]
�
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where the expectation is taken with respect to the distribu-
tion of the arrival rate process, � = ���t
� 0 � t � T 
.
Define the following cumulative distribution function
(c.d.f.):

G�*
= 1
T

∫ T

0
����s
� *
ds� * ∈�m

+� (11)

where x� y for x� y ∈�n
+ means the inequality holds com-

ponentwise. One interprets G�*
 as the expected fraction
of time (within the planning period �0� T �) during which
��·
 � *. The function V �·
 can then be expressed as
follows:

V �b
= c · b+ T
∫
*∈�m+

+�*�b
dG�*
 (12)

and is easily seen to be convex (see Proposition 1 in
Harrison and Zeevi 2005). In addition, if G is atomless,
then V is differentiable. Thus, finding the minimizer b̄ of
V �·
 is a convex programming problem. This optimization
problem was first formulated in Harrison and Zeevi (2005),
where extensive numerical examples indicated that both
V �b̄
 as well as � �b̄
 are “close” to �∗.

4.2. The Proposed Approach

The main idea is to use historical call arrival observations
to approximate the distribution G given in (11). Consider
first a scenario where one has access to n independent repli-
cations �1� � � � ��n of the multivariate arrival rate process
�= ���t
� 0� t � T 
. We can then construct the empirical
analogue of the c.d.f. G:

Gn�*
=
1
T

∫ T

0

1
n

n∑
l=1

	'�l�s
�*( ds� * ∈�m
+� (13)

where 	'·( is the indicator function and the subscript “n”
is used to denote the dependence of this quantity on the
“data.” Of course, even if an arrival rate process exists, it is
not observable, so the above estimate is not computable.
In practice, the system manager has access to data only

in the form of arrival epoches of customers over n previous
segments (each consisting of an interval of length T ), which
suggests the following strategy: construct estimators of the
arrival rates based on the observed arrival epochs, and plug
these estimates in (13). A straightforward nonparametric
method for estimating the arrival rate is based on counting
the number of arrivals over a small window and dividing by
the window length. Specifically, let w > 0 be a window size.
Then, for each previous segment �= 1� � � � � n, we estimate
the arrival rate at time s ∈ �0� T � as follows:

�̂l�s
= F l�s+w
− F l�s


w
� (14)

In §7, we discuss a rule-of-thumb for choosing a “good”
window length w, based on asymptotic considerations.
There are numerous other approaches for constructing such

estimates; for example, regression-based models involving
latent variables (see, e.g., Brown et al. 2005). What we
focus on here is a general procedure that is independent
of problem particulars and can be easily modified to incor-
porate other estimation methods by appropriately redefin-
ing (14).
We now form an empirical counterpart to (11) using the

arrival rate estimators described above:

Gn�*
=
1
T

∫ T

0

1
n

n∑
l=1

	'�̂l�s
�*( ds� (15)

Based on this empirical distribution, we construct the
empirical counterpart of V �·
,
Vn�b
= c · b+ T

∫
*∈�m+

+�*�b
d Gn�*
� b ∈�r
+�

The empirical analogue of b̄, the minimizer of V �·
, is then
given by

b̂n ∈ argmin
b∈�r+

Vn�b
� (16)

which is our proposed (data-driven) solution to the staffing
problem.

Computation of the Data-Driven Solution. We now
describe an algorithm based on gradient descent that can
be used to compute the minimizer of Vn�·
. To this end,
let 0 be a mapping from �r

+ ×�m
+ to �r

+ such that 0�*�b

represents the optimal dual variables associated with the
constraint Ax � b in LP (10). The algorithm operates as
follows.

Algorithm 1
Step 1. Let i= 0 and start with an initial “guess” b̂�0
n .
Step 2. Calculate the expectation of 0�*� b̂�i
n 
 over *

with respect to the empirical distribution Gn�·
 and compute

1b�i
n = c+
∫
*∈�m+

0�*� b̂�i
n 
 d Gn�*
�

Step 3. Set b̂�i
n +2i1b
�i

n → b̂�i+1
n .

Step 4. Increment counter i→ i+1 and repeat Steps 2–4
until �1b�i
n � is “close” to zero.

The sequence '2i( in Algorithm 1 represents the step-
size that is chosen so that 1b�i
n → 0 as i→� (e.g., 2i =
1/i), and �·� represents the Euclidean norm in �r

+. (See
Birge and Louveaux 1997.) The above algorithm is based
on the fact that c + ∫

0�*�b
d Gn�*
 is the “gradient” of
the convex function Vn�·
; implicit here is an interchange
argument which can be justified under mild assumptions.
Because the empirical measure Gn is not atomless, the
function Vn�·
 might not be differentiable at all points,
in which case 1b�i
n is interpreted as a subgradient. This
is a potential source of instability for the gradient descent
algorithm, and to overcome this impediment one can sim-
ply use a “smoothed” version of the distribution Gn in the
implementation of the above algorithm.
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5. Intuition: Why Should the
Method Work?

Intuition and Supporting Logic. The function de-
scribed in (12) is referred to in Harrison and Zeevi (2005)
as the pointwise stationary fluid model (PSFM) objec-
tive, which involves two levels of approximation. First, all
Poisson flows in the system are replaced with their rates,
i.e., N �1


i �
∫ t

0 �i�s
ds
 ≈
∫ t

0 �i�s
ds, and this reduces the
system dynamics (4) to that of a fluid model:

dZ�t


dt
=��t
−RX�t
− �Q�t
� t ∈ �0� T �� (17)

The next reduction assumes that the system reaches equilib-
rium “instantly,” implying the following instantaneous flow
balance equation:

��t
=RX�t
+ �Q�t
� (18)

which constitutes a pointwise stationary approximation
to (17). We can now approximate the cost functional in (5)
as follows:

��b�X
= c · b+ Ɛ

[∫ T

0
p · �Q�s
ds

]

≈ c · b+ Ɛ

[∫ T

0
p · ���s
−RX�s

ds

]
� (19)

where the second line uses (18), and the expectation there
is with respect to the distribution of the process �. Using
the above, we approximate the performance function in (6)
as follows:

� �b
= inf
X∈��b


��b�X


�a

≈ c · b+ Ɛ

[∫ T

0
+���s
� b
ds

]

�b
= c · b+ T
∫
+�*�b
dG�*
=� V �b
� (20)

where (a) uses (19) to approximate to the cost functional
��b�X
 and then minimizes the integrand in (19) at each
instant in time, and (b) uses the definition of V �·
 in (12).
Finally, using the empirical distribution Gn�·
 instead of
G�·
 in (20) and noting that for n large Gn�·
 ≈ G�·
,
we expect that

V �b
= c · b+ T
∫
+�*�b
dG�*


≈ c · b+ T
∫
+�*�b
d Gn�*
=� Vn�b
�

These approximations give rise to the proposed data-driven
optimization problem stated in (16).

Error Sources Affecting the Performance of the Data-
Driven Solution. To shed light on the approximations
involved in the derivation of the data-driven solution and
the effect these have on its performance, we introduce the
following error decomposition:

Ɛ�� �b̂n
�−�∗ = Ɛ�� �b̂n
�−� �b∗


= Ɛ�� �b̂n
−V �b̂n
�+ �V �b∗
−� �b∗
�

+ �Ɛ�V �b̂n
�−V �b∗
�

� Ɛ�� �b̂n
−V �b̂n
�︸ ︷︷ ︸
approx� error I

+ �V �b∗
−� �b∗
�︸ ︷︷ ︸
approx� error II

+ �Ɛ�V �b̂n
�−V �b̄
�︸ ︷︷ ︸
estimation error

� (21)

where the inequality follows because b̄ is the minimizer
of V �·
, and all expectations are taken with respect to the
distribution of the database �n.
To better understand (21), and the terminology used to

describe the various error terms, recall that the following
two simplifications are made in deriving the data-driven
solution: First, the original objective was replaced by a
fluid-like (PSFM) approximation; and second, the actual
distribution of the arrival rates was replaced by its empir-
ical counterpart given by (15). These steps result in two
errors: an approximation error and an estimation �data-
related
 error, respectively. In (21), the first and the second
terms on the right-hand side measure deviations between
the original objective � �·
 and the PSFM analogue V �·

for a fixed staffing level. The last term captures the error
introduced by using the data-driven solution b̂n as opposed
to the V -optimal value b̄.
If the system is such that the volume of arrivals is

“large” and customers are processed “quickly,” we expect
that � �·
 ≈ V �·
. If in addition the number of historical
observations n is large, then one can expect Vn�·
 ≈ V �·

and thus b̂n ≈ b̄. Under these conditions, all error terms on
the right-hand side of (21) should be small and hence the
performance of the data-driven solution should be close to
the best achievable performance, namely, Ɛ�� �b̂n
� ≈ �∗.
The next two sections investigate the validity of this logic
both via numerical experiments and theoretical analysis.

6. Accuracy of the Proposed Method:
An Illustrative Numerical Example

In this section, we study numerically the efficacy of the pro-
posed data-driven staffing method as a function of arrival
rate variability and the number of data points (correspond-
ing to past call arrival observations).

Description of the Example and Numerical Exper-
iments. The example we consider has two customer
classes �m = 2
, which are served by two server pools
�r = 2
. There are three processing activities ��= 3
: serv-
ers in pool 1 can serve only class 1 customers (activity 1),
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Figure 2. Schematic of the two-class/two-pool system
used for the numerical study.
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and servers in pool 2 are cross-trained and can serve
both class 1 and class 2 customers (activities 2 and 3,
respectively). All the services are exponentially distributed
with mean equal to four minutes, that is, �j = 1/4 cus-
tomers per minute for j = 1�2�3. (For simplicity, it is
assumed that all services can be preempted.) Customers of
both classes abandon at rate �1 = �2 = 1/8 customers per
minute. The nominal abandonment penalties for class 1 and
class 2 are p1 = $1 per customer and p2 = $2 per customer,
respectively. (In what follows, we also discuss sensitivities
with respect to these parameters.) A schematic of the sys-
tem together with various parameter values is depicted in
Figure 2.
We focus on a two-hour staffing segment over which

staffing is kept constant, so T = 120 minutes. The cost of a
server in pool 1 for the two-hour period is $15, and $30 in
pool 2 where the servers are cross-trained (these servers can
process requests from either customer class). Customers
from classes 1 and 2 arrive according to a Poisson pro-
cess with random rates �1 and �2, which will be specified
shortly. The cost structure described above has been judi-
ciously chosen so that the optimal control that minimizes
the cost functional ��b�X
 can be easily identified. In par-
ticular, this control has all servers in pool 2 giving strict
priority to class 2 customers. With the control in place,
one can compute the performance function and proceed to
optimize it as in (7) by means of simulation. It is probably
worth noting that in general it is not possible to identify
the optimal control, and hence it is also impossible to com-
pute the optimal staffing level and best achievable system
performance (even via simulation).
Consistent with the system model that was described ear-

lier in the paper, arrivals of calls/customers occur accord-
ing to a Poisson process whose rate, for each class, is
given by �1 = 2�2 = max'0� Y (, where Y is a ran-
dom variable whose distribution is specified below. That
is, we assume that arrivals are generated by a homoge-
nous Poisson process with an intensity that is constant

but random. We perform several experiments that illustrate
the (in)sensitivity of our method to the characteristics of
this intensity. In particular, we consider three distributions
for Y , with two scenarios considered in each case: one
where Y has relatively low variance (LV) and one with high
variance (HV).
• Normal distribution: Y has mean 5 and standard

deviation 0�5 (LV) and 1�5 (HV).
• Uniform distribution: Y ∼U�4�1�5�9� (LV) and Y ∼

U�2�4�7�6� (HV).
• Discrete distribution: Y puts equal mass on two

points: '4�5�5�5( (LV) and '3�5�5�5( (HV).
The parameters are chosen so as to maintain the same

mean and variance for all distributions (thus keeping the
coefficient of variation constant). For each of the three dis-
tributions outlined above, we simulate the system under
various staffing levels and estimate the value of the per-
formance function � �·
 for the low and high variability
scenarios, respectively. (The number of simulation runs for
each staffing level is 1,000.) Based on this, we obtain a
simulation-based estimate of the optimal staffing levels b∗

and the value function � ∗ �=� �b∗
.
We study properties of the data-driven solution for two

sizes of historical data: a “small” sample consisting of
arrival epochs that have been recorded over n = 5 past
staffing segments, and a “large” sample consisting of arrival
epochs for n = 100 past segments. For each arrival rate
scenario, we construct N = 5�000 replication of the data
set, and for each replication we use the data-driven staffing
algorithm described in §4 to obtain the recommended
staffing levels b̂n as in (16). In doing so, we use a win-
dow length w = 20 minutes to estimate rates from arrival
epochs. (We have found this to be a reasonable choice in
terms of performance.) Computing this estimate involves
solving the LP with recourse that was described in §4. This
operation took a few seconds or less in all scenarios con-
sidered on a standard desktop computer running MATLAB.
The estimates of the performance function � �·
, obtained
in the previous simulation experiments for both the LV and
HV scenarios, are then used to compute an estimate of
the performance of the data-driven solution. Specifically,
we estimate Ɛ� �b̂n
 by taking an average of � �b̂n
 over
the N = 5�000 replications.

Discussion of the Main Results. The main results are
summarized in Tables 1 and 2. Table 1 details the per-
formance of the data-driven staffing method and the loss
relative to the optimal performance � ∗. Table 2 depicts
the properties (mean and variance) of the data-driven esti-
mator itself, and contrasts that with the optimal staffing
level b∗. The results reported encompass all cases out-
lined above, and the 95% confidence intervals are given in
parentheses as relative percentage values. The results given
in Table 1 illustrate that the data-driven solution achieves
near-optimal performance in all cases, in particular, the
ratio Ɛ�� �b̂n
�/�∗ is almost always very close to one.
Moving now to Table 2, we observe that the mean of the
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Table 1. Performance of the data-driven staffing method.

Optimal Large sample Small sample

�∗ =� �b∗
 Ɛ�� �b̂100
� Ɛ�� �b̂100
�/�∗ Ɛ�� �b̂5
� Ɛ�� �b̂5
�/�∗

LV Normal 690.4 696�9 �±0�03%� 1.01 698�7 �±0�2%� 1.01
Uniform 690.5 701�3 �±0�01%� 1.02 701�9 �±0�03%� 1.02
Two point 690.3 700�8 �±0�01%� 1.02 701�6 �±0�03%� 1.02

HV Normal 747.7 754�7 �±0�1%� 1.01 771�1 �±0�2%� 1.03
Uniform 747.8 763�1 �±0�03%� 1.02 781�7 �±0�08%� 1.05
Two point 749.5 774�0 �±0�05%� 1.03 792�3 �±0�08%� 1.06

Notes. This table reports the performance of the data-driven staffing solution � �b̂n� for small and large sample sizes, for low variability (LV)
and high variability (HV) scenarios and the various arrival rate distributions (normal, uniform, and discrete).

data-driven solution is close to the value of the optimal
staffing level in all cases. The variance of the data-driven
estimator is much higher, as expected, when the variabil-
ity of arrival rates is large and increases when the sample
size is small. (We also performed sensitivity analysis rela-
tive to other input parameters, for example, penalties p and
costs c, and we observed results similar to those reported
above over a wide range of values; for brevity these results
are not reported herein.)
The behavior of the estimator observed in Table 2 makes

the results reported in Table 1 perhaps even more sur-
prising. In particular, one would expect that as the esti-
mator’s accuracy degrades, so will its performance. The
reason this is not the case hinges on the effects of arrival
rate variability on the properties of the performance func-
tion � �·
. Specifically, when the variability of the arrival
rates increases, the performance function becomes rela-
tively flat in the vicinity of its minimum; see also Harrison
and Zeevi (2005). Consequently, the performance of the
system does not degrade in a significant manner even when
b̂n is not that “close” to b∗. Of course, when the variabil-
ity of the arrival rates is low, then the performance func-
tion is not as flat in the vicinity of the optimal staffing
vector b∗. Roughly speaking, the reason one still observes
good performance in this case, even for small sample sizes,
is that the low variability implies that a small number of
data points suffices for accurately estimating the arrival rate
distribution. (That is, in this case there is more statistical

Table 2. Properties of the data-driven estimator.

Optimal Large sample Small sample

b∗ Ɛ�b̂100� Var�b̂100� Ɛ�b̂5� Var�b̂5�

LV Normal �17�10
 �19�5�10�0
 �0�25�0�23
 �19�4�10�3
 �1�3�0�4

Uniform �17�11
 �19�2�10�7
 �0�16�0�20
 �19�3�10�6
 �1�6�0�5

Two point �18�10
 �19�2�10�6
 �0�2�0�2
 �19�3�10�6
 �1�6�0�4


HV Normal �16�10
 �19�4�10�3
 �0�58�0�25
 �19�4�10�4
 �9�7�2�4

Uniform �18�12
 �18�3�10�3
 �13�1�1�2
 �19�5�10�4
 �20�5�5�3

Two point �15�11
 �18�9�10�3
 �13�12�1�24
 �19�5�10�4
 �20�6�5�3


Notes. Mean and variance of the data-driven staffing estimator b̂n for small and large sample sizes, for low variability (LV) and high variability
(HV) scenarios, and the three distributions for the arrival rates (normal, uniform, and discrete). Here b∗ denotes the optimal staffing level, and
both b̂n and b∗ give the staffing level in each of the two server pools.

“information” in each sample.) Due to these two contradict-
ing effects, our data-driven estimator of the optimal staffing
level performs well in all scenarios.

Sample Size Effects: A Hint Toward Asymptotic The-
ory. The purpose of the following experiment is to indi-
cate how the performance of the data-driven staffing level is
affected by the number data points n. We consider the same
system model introduced earlier in this section, but with
the following parameters. Service rates are �j = 1 call per
minute for each activity, and abandonment rates are �i = 0�5
call per minute in each class. The time horizon is again taken
to be 120 minutes, and the cost of servers in each pool are
�c1� c2
= �30�60
 over that time interval. The abandonment
penalties are taken to be �p1� p2
= �1�2
.
The arrival rate in this example is such that �1, mea-

suring number of arrivals per minute, is drawn from a
15-point distribution placing equal mass on each of the
points 50�55�60� � � � �120 and �2 = 0�5�1. The number of
runs to determine the function � �·
 was taken to be 405.
We compute the value function for staffing levels in the
range of 80–120 in pool 1 and 40–60 in pool 2. (Confidence
intervals are ±2%–3% in all experiments.) The simulation-
based estimate of the optimal staffing level is found to
be b∗ = �100�53
, and the optimal expected total cost is
� ∗ = 6�887.
We consider samples sizes that contain data for n =

50�60� � � � �400 past segments, each such segment compris-
ing arrival records over the interval �0� T �. We generate
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Figure 3. The dots represent performance of the data-
driven solution (Ɛ� �b̂n
) relative to the opti-
mal performance (�∗), as a function of the
sample size (n).
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N = 100 such replications for each value of n, and com-
pute the data-driven estimator b̂n. We then estimate the per-
formance of the data-driven solution Ɛ� �b̂n
 by averaging
over the N replications. Figure 3 displays the optimality
gap (on a relative scale) as a function of n. That is, it
plots Ɛ��∗�b̂n
�/�∗ −1. From the results in Tables 1 and 2,
we expect this difference to be small, but our interest here
is in assessing the rate at which it decreases as the sam-
ple size grows large. The curve in Figure 3 is obtained
by regressing the function g�n
= C1 +C2/

√
n against the

observed performance of b̂n for each sample size. More
precisely, it is derived by regressing the relative loss in per-
formance, Ɛ� �b̂n
/�∗ − 1, against n. The fit is evident,
and the power of n−1/2 is found to be statistically signifi-
cant (the values of the constants are C1 = 6�07× 10−4 and
C2 = 3�4× 10−2). One again sees good performance of the
data-driven estimator even for small sample sizes (this is
also reflected in the moderate values of the constant Ci in
the fitted curve). In the next section, we will show that the
empirical observations drawn from Figure 3 can be formal-
ized in a precise mathematical sense, articulating the rate
at which the data-dependent error associated with the per-
formance data-driven staffing level converges to zero.

7. Accuracy of the Proposed Method:
Asymptotic Analysis

7.1. Preliminaries

To evaluate the performance of our data-driven solution
method, we introduce a scaling of model parameters that
characterizes systems with high volume, rapid turnover and
many servers. Let f � �+ → �+ be a superlinear func-
tion, i.e., x−1f �x
→� as x →�, and for each positive

integer 8 put R8 = 8R, �8 = 8� , and �8�·
 = f �8
��·
.
We also scale the cost of servers by a factor 8, c8 = 8c,
because they now process work at 8-times the original rate.
(Note that because the arrivals are scaled up by a super-
linear function f �·
 while the service rates are scaled up
only linearly, the number of servers required for nominal
operation should increase without bound.)
We will indicate the dependence of various state pro-

cesses, cost functionals, etc., on the above scaled parame-
ters by using the superscript “8.” In particular, let Z8 and
Q8 denote the headcount and queue-length processes that
jointly solve (2)–(4) with the input parameters R8, �8, and
�8 and with control that belongs to �8�b
, the correspond-
ing admissible control set. Let �8�b�X
 be the cost func-
tional for the 8-scaled system for a staffing vector b ∈�r

+
and control X ∈ �8�b
, and let the 8-scaled performance
function be � 8�b
= infX∈�8�b
 �

8�b�X
. Similarly, let � 8
∗

denote the best achievable performance for the 8-scaled
system

� 8
∗ = inf

b∈�r+
� 8�b
� (22)

In light of Proposition 1, there exists an optimal staffing
level b8∗ that achieves the infimum in (22) and thus � 8

∗ =
� 8�b8∗
.
We also need to define the counterparts of G, V , and +

for the 8-scaled system. Let G8�*
 be as in (11) with arrival
rate � replaced by �8, namely, for * ∈ �m

+ set G8�*
 =
T −1 ∫ T

0 ���8�s
� *
ds. Put

V 8�b
= c8 · b+ T
∫
*∈�m+

+8�*�b
dG8�*
� (23)

where +8�*�b
 is the value of the LP (10), where the
matrix R is replaced by the scaled matrix R8.

7.2. Performance Bounds

To derive our main results, we require the following tech-
nical assumption with regard to the arrival rate processes.

Assumption 1. The path of �i�·
 is nonnegative, uni-
formly bounded, and Lipschitz continuous (a.s.) over �0� T �
for i = 1� � � � �m. Furthermore, the Lipschitz constant is
uniformly bounded and the number of sign changes in the
derivative of �i�·
, i = 1� � � � �m (where it exists) is uni-
formly bounded.

This assumption ensures that paths of the arrival rate pro-
cess are suitably “smooth” and do not oscillate too much.
(One expects these conditions to hold in any reasonable
practical setting.)
We first analyze an idealized scenario where data con-

sists of “observed” arrival rates. This assumption eliminates
any error associated with inferring the arrival rates from
arrival epochs and hence will lead to an optimistic perfor-
mance bound for our data-driven solution, irrespective of
the method used to construct arrival rate estimates. Subse-
quently, we will analyze the performance of our proposed
data-driven method, which uses a window-based scheme to
estimate arrival rates.
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Performance Bounds: The Case of “Observed” Arriv-
al Rates. Using the prescription in §4, construct the em-
pirical analogue of the c.d.f. G8�·
,

Ǧ8
n�*
=

1
T

∫ T

0

1
n

n∑
l=1

	'�8� l�s
�*( ds� * ∈�m
+�

and put

b̌8n ∈ argmin
b∈�r+

{
c8 · b+ T

∫
*∈�m+

+8�*�b
dǦ8
n�*


}
� (24)

The estimator b̌8n is clearly an idealized quantity because
it is constructed based on a sample that consists of
“observed” rates; the notation used here is meant to distin-
guish this estimator from the one that is constructed based
on past arrival epochs data b̂n, which is discussed in what
follows.
The total cost of running the system with this staffing

level is given by � 8�b̌8n
. Let

b̄8 ∈ argmin
b∈�n+

V 8�b
� (25)

Note that V 8
n �0
 �Mf �8
 and V 8�0
 < Mf �8
, where M

is a finite constant such that Ɛ�
∫ T

0 p ·��s
ds��M . Thus,
the minimization in (24) and (25) can be taken over the
compact convex set �8 = 'b� c8 · b�Mf �8
(.
Using Proposition 1, there exists a staffing level b8∗ such

that � 8�b8∗
=� 8
∗ for each 8 ∈�. Using the error decom-

position in §5, we get the following counterpart of (21) that
bounds the relative error between the performance of the
staffing level b̌8n and the optimal performance:

Ɛ�� 8�b̌8n
�

� 8∗
�1+ Ɛ�� 8�b̌8n
−V 8�b̌8n
�

� 8∗
+ �V 8�b8∗
−� 8�b8∗
�

� 8∗

+ �Ɛ�V 8�b̌8n
�−V 8�b̄8
�

� 8∗
� (26)

We next state three theorems that characterizes the asymp-
totic behavior of each error term on the right-hand side
of (26). For this purpose, it will be useful to introduce the
following notation: for a real-valued sequence 'a8( and a
positive real-valued sequence 'd8(, we say that a8 = �d8

as 8→� if lim sup8→� a

8/d8 <�.

Theorem 1 (Approximation Error I). Let Assumption 1
hold. Then,

sup
b∈�8

�� 8�b
−V 8�b



� 8∗
→ 0 as 8→��

If in addition ���t
� 0� t � T 
 is time homogenous, then

sup
b∈�8

� 8�b
−V 8�b


� 8∗
= 

(√
8

f �8


)
as 8→��

This result ensures that � 8�·
 is uniformly “close” to
its fluid analogue V 8�·
 in the sense of relative error. With
regard to the second approximation error in (26), we have
the following theorem.

Theorem 2 (Approximation Error II). Let Assumption 1
hold. Then,

V 8�b8∗
−� 8�b8∗

� 8∗

= 

(
1√
f �8


)
+

(
1
8

)
as 8→��

We observe that Theorem 2 has two terms characteriz-
ing the error. The first term, which is �1/

√
f �8

, cor-

responds to the “fluid approximation,” based on which we
replace all Poisson flows in the system by their rates. This
error term stems from the functional central limit theorem,
which in the case of Poisson processes states that the devi-
ations from the mean path are of order square root of the
mean. The term �1/8
 corresponds to the pointwise sta-
tionary approximation, which was used in the reduction of
the fluid dynamics equation (17) to the instantaneous flow
balance equation (18). Roughly speaking, the fluid model
converges to its steady-state exponentially fast with param-
eter 8 (because both service and abandonment rates are
scaled by 8), hence the relaxation time should be �1/8
.
Finally, with regard to the third term on the right-hand

side of (26), we have the following theorem.

Theorem 3 (Estimation Error). Let Assumption 1 hold.
Then, for all 8= 1�2� � � � �

Ɛ�V 8�b̌8n
�−V 8�b̄8


� 8∗
= 

(
1√
n

)
as n→��

The term appearing in the right-hand side above is in fact
uniform in 8. Roughly speaking, the above theorem states
that having a finite number of past observations results
in deviations of �1/

√
n
 between the fluid (PSFM) objec-

tive values V �b̄8
 and V �b̌8n
.
Combining Theorems 1–3, we see that the performance

of b̌8n relative to the best achievable performance is given by

Ɛ�� 8�b̌8n
�

� 8∗
= 1+

(
1
8

)
+

(√
8

f �8


)
+

(
1√
n

)

as 8→� and n→�� (27)

where for a real-valued double-indexed sequence 'a8n� n=
1�2� � � � and 8 = 1�2� � � �( and positive real-valued func-
tions h1�·
 and h2�·
, we say that a8n = �h1�n

+�h2�8


if there exists a finite constant C such that a8n �C�h1�n
+
h2�8

 for all 8= 1�2� � � � and n= 1�2� � � � �

Performance Bounds for the Data-Driven Solution.
We now extend the results derived above to cover the case
where the observations consist of past arrival epochs in
each class. Let

�8
n = 'F 8� l

i for l= 1� � � � � n and i= 1� � � � �m(�

where F 8� l
i = �F 8� l

i �t
� 0 � t � T 
 is the arrival process
for customer class i in the 8-scaled system over the lth
past segment. We use the window-based estimator defined
in (14) to “convert” arrival epochs to arrival rate estimates.
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Let ��̂8� l�t
� 0� t � T 
 be the estimated arrival rate pro-
cess that is generated as follows:

�̂8�t
= 1
w8

�F 8� l�t
− F 8� l�t−w8

 (28)

for t ∈ �w8� T �. Here w8 �= g�8
−1 represents the length of
a 8-scaled sliding window over which arrivals are counted,
where g� �+ → �+ is an increasing function. Recall that
F 8�t
 = �F 8

1 �t
� � � � � F
8
m�t

 is the vector of cumulative

arrivals up until time t in each customer class.
From these estimators of the arrival rates, we construct

the empirical c.d.f.

G8
n�*
=

1
T

∫ T

0

1
n

n∑
l=1

	'�̂8� l�s
�*( ds

for 8= 1�2� � � � and n= 1�2� � � � �

For each n and 8, let the data-driven solution be given by

b̂8n ∈ argmin
{
c8 · b+

∫
*∈�m+

+8�*�b
d G8
n�*


}
� (29)

where +8�·� ·
 is the value of the LP (10), where the
matrix R is replaced by the scaled matrix R8.
The performance of b̂8n is again affected by approxima-

tion errors identical to those characterized in the previous
section. However, here the data-related error consists of two
components: an observation error and an estimation error.
The former stems from estimating arrival rates from arrival
epoches, and the latter is identical to that stated in Theo-
rem 3. For the specific arrival rate estimator given in (28),
the observation error shrinks to zero as the arrival rates
grow large and the window size shrinks accordingly. The
counterpart of Theorem 3 that characterizes both the obser-
vation error and estimation error is stated next.

Theorem 4 (Estimation and Observation Error). Let
Assumption 1 hold. Then,

Ɛ�V 8�b̂8n
�−V 8�b̄8


� 8∗
=

(
1√
n

)
+

(
1

g�8


)
+

(
g�8
√
f �8


)

as 8→� and n→�� (30)

Discussion. Note that the first term on the right-hand
side of (30) is identical to that in Theorem 3 and corre-
sponds to the estimation error; the last two terms correspond
to the observation error, and both vanish if g�8
→� and
g�8
/

√
f �8
→ 0 as 8→ �. Roughly speaking, the win-

dow size should be large enough to have sufficiently many
observations fall within its support and simultaneously not
too large so that the arrival rate can be estimated consistently
over the entire interval of interest. In particular, the order
of the sum of the last two terms on the right-hand side
of (30) is minimized by setting g�8
= �f �8
1/4
, which
suggests, as a rule-of-thumb, to set the window size pro-
portional to the inverse of the fourth root of the maximal

arrival rate. For example, this suggests that for staffing pur-
poses if the arrival rate is around 200 customers per hour,
then an estimation window whose length is around 15 min-
utes is needed.
With this choice of windowing scheme, it is possible,

by examining the order of magnitude of quantities in (27)
and (30), to determine which error term will dominate in
various regimes. Specifically, if the rate of call arrivals is
close in magnitude to the rate of turnover in the system
(f �8
� 82), then the fluid-model error articulated in The-
orem 1 dominates. On the other hand, if the arrival rate to
the system is moderately larger than the rate of turnover in
the system (82 � f �8
� 84), then the windowing scheme
introduces the dominant error term. Finally, if the arrival
rate to the system is significantly larger than the rate of
turnover in the system (f �8
� 84), then the error stem-
ming from the pointwise stationary approximation dom-
inates. A simple rule of thumb that emerges is that the
method we propose should produce adequate performance
when arrival rates are large and significantly larger than the
turnover times.

8. Discussion and Qualitative Insights

On the Choice of Windowing Scheme. The analy-
sis in §7, particularly the discussion following Theorem 4,
suggests that a “good” choice of window size for estimat-
ing arrival rates from past arrival epochs should be such
that it is significantly larger then the characteristic inter-
arrival time. The logic for choosing this window size is
that the arrival rate should not vary by a large amount
within the window, and still a large number of arrivals
should occur within a window. Furthermore, when volumes
of incoming calls are high, recorded arrival epochs should
be sufficient to produce “good” estimates of the arrival rate.
In particular, in such environments the observation error is
expected to be small. However, if the arrival rates are of
moderate size, then the observation error can be significant.
To efficiently implement the proposed data-driven staffing
method, one can resort to more explicit modeling of the
arrival rates—for example, using latent variables that could
include time of day, day of the week, seasonality effects,
etc; see Brown et al. (2005) for an example of this type of
approach.

Asymptotic Optimality of the Data-Driven Staffing
Method. From Theorems 1, 2, and 4, we see that if both
n and 8 increase without bound and g�8
 is taken such
that g�8
→� and g�8
/

√
f �8
→ 0 as 8→�, the per-

formance of the data-driven solution approaches the best
achievable performance �∗. That is, we have proved that
the data-driven solution b̂8n is asymptotically optimal in the
sense that

Ɛ�� �b̂8n
�

� 8∗
→ 1 as 8�n→�� (31)
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(More precisely, there exists a sequence n8 such that
n8 →� as 8→� and the above ratio approaches one.)
The example studied in §6 illustrates that the asymptotics
in (31) might be observed in practice even for moderate
values of system parameters and a relatively small number
of past segment observations.

On the Control Associated with the Data-Driven Solu-
tion. Our analysis of the staffing problem essentially “as-
sumes away” the issue of call routing logic as the perfor-
mance of any staffing rule (whether optimal or not) was
evaluated by pairing it with its associated optimal control.
This approach allows us to discuss the staffing problem in
isolation but leaves open an obvious question: What con-
trol should be implemented in conjunction with the pro-
posed data-driven staffing solution to guarantee “good per-
formance”? A careful look at the proofs of the main results
suggests one possible answer to that question. In particular,
the proofs use a construction of a control that is similar to
the one introduced in Bassamboo et al. (2006) and involves
a repeated solution of a linear program. This identifies a
family of easily implementable controls which are “good”
candidates for being paired with the output of our proposed
data-driven staffing method.

9. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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