Online Appendix for "Production Networks: A Primer"

Vasco M. Carvalho* Alireza Tahbaz-Salehi[†]

This appendix contains the proofs and derivations omitted from the main body of the paper. Section A derives Equation (11) in the paper. Section B provides the proof of Theorem 4.

A CES Production Technologies

In what follows, we derive the expression in Equation (11) in the paper. Suppose that the production technology of firms in industry i is given by Equation (10) in the paper. The first-order conditions of firms in industry i are therefore given by

$$l_i = \alpha_i p_i y_i / w \tag{A.1}$$

$$x_{ij} = (1 - \alpha_i) a_{ij} p_i y_i p_j^{-\sigma_i} \left(\sum_{k=1}^n a_{ik} p_k^{1 - \sigma_i} \right)^{-1},$$
(A.2)

where we are using the fact that $\alpha_i + \sum_{j=1}^n a_{ij} = 1$ for all *i*. Plugging the above expressions back into the production function of firms in industry *i* implies that

$$p_{i}z_{i} = w^{\alpha_{i}} \left(\frac{1}{1-\alpha_{i}} \sum_{k=1}^{n} a_{ik} p_{k}^{1-\sigma_{i}}\right)^{(1-\alpha_{i})/(1-\sigma_{i})}$$

Taking logarithms from both sides of the above equation leads to the following system of equations

$$\log(p_i/w) = -\epsilon_i + \frac{1-\alpha_i}{\sigma_i - 1} \log\left(\frac{1}{1-\alpha_i} \sum_{k=1}^n a_{ik} (p_k/w)^{1-\sigma_i}\right).$$

We make two observations. First, the above system of equations immediately implies that when $\epsilon_i = 0$ for all industries *i*, then all relative prices coincide with another, that is, $p_i = w$ for all *i*. Second, differentiating both sides of the above equation with respect to ϵ_j and evaluating it at $\epsilon = 0$ leads to $d\hat{p}_i/d\epsilon_j = -\mathbb{I}_{\{i=j\}} + \sum_{k=1}^n a_{ik}d\hat{p}_k/\epsilon_j$, where recall that $\hat{p}_i = \log(p_i/w)$ is the log relative price of good *i* and \mathbb{I} denotes the indicator function. Rewriting the previous equation in matrix form, we obtain $d\hat{p}/d\epsilon_j = -e_j + \mathbf{A}d\hat{p}/d\epsilon_j$, where e_j is the *j*-th unit vector. Consequently, $d\hat{p}/d\epsilon_j = -(\mathbf{I} - \mathbf{A})^{-1}e_j$, which in turn can be rewritten as

$$\left. \frac{d\hat{p}_i}{d\epsilon_j} \right|_{\epsilon=0} = -\ell_{ij}. \tag{A.3}$$

^{*}Faculty of Economics, University of Cambridge, The Alan Turing Institute, and CEPR, vmpmdc2@cam.ac.uk.

[†]Kellogg School of Management, Northwestern University, <u>alirezat@kellogg.northwestern.edu</u>.

The above equation therefore illustrates how shocks to industry *j* change the relative prices of all other industries up to a first-order approximation.

Next, recall that the market-clearing condition for good *i* is given by $y_i = c_i + \sum_{j=1}^n x_{ji}$. Multiplying both sides by p_i and dividing by GDP implies that

$$\lambda_i = \beta_i + \sum_{k=1}^n \omega_{ki} \lambda_k,$$

where $\lambda_i = p_i y_i / \text{GDP}$ is the Domar weight of industry *i* and $\omega_{ki} = p_i x_{ki} / p_k y_k$. Note that in deriving the above equation, we are using the fact that the household's first-order condition requires that $p_i c_i = \beta_i \text{GDP}$. Differentiating both sides of the above equation with respect to ϵ_j implies that

$$\frac{d\lambda_i}{d\epsilon_j} = \sum_{k=1}^n \omega_{ki} \frac{d\lambda_k}{d\epsilon_j} + \sum_{k=1}^n \lambda_k \frac{d\omega_{ki}}{d\epsilon_j}.$$
(A.4)

On the other hand, Equation (A.2) implies that $\omega_{ki} = (1 - \alpha_k)a_{ki}p_i^{1-\sigma_k}/(\sum_{r=1}^n a_{kr}p_r^{1-\sigma_k})$. Hence, differentiating both sides of this expression, evaluating them at $\epsilon = 0$, and plugging the resulting expression back into Equation (A.4) implies that

$$\frac{d\lambda_i}{d\epsilon_j} = \sum_{k=1}^n a_{ki} \frac{d\lambda_k}{d\epsilon_j} + \sum_{k=1}^n (1 - \sigma_k) a_{ki} \lambda_k \left(\frac{d\hat{p}_i}{d\epsilon_j} - \frac{1}{1 - \alpha_k} \sum_{r=1}^n a_{kr} \frac{d\hat{p}_r}{d\epsilon_j} \right).$$

Hence, using Equation (A.3), we obtain

$$\frac{d\lambda_i}{d\epsilon_j} - \sum_{k=1}^n a_{ki} \frac{d\lambda_k}{d\epsilon_j} = \sum_{k=1}^n (\sigma_k - 1) a_{ki} \lambda_k \left(\ell_{ij} - \frac{1}{1 - \alpha_k} \sum_{r=1}^n a_{kr} \ell_{rj} \right).$$

Multiplying both sides of the above equation by ℓ_{is} , summing over all *i*, and noting that $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1}$ leads to

$$\frac{d\lambda_i}{d\epsilon_j} = \sum_{k=1}^n (\sigma_k - 1)\lambda_k \left(\sum_{s=1}^n a_{ks} \ell_{si} \ell_{sj} - \frac{1}{1 - \alpha_k} \sum_{r=1}^n a_{kr} \ell_{rj} \sum_{s=1}^n a_{ks} \ell_{si} \right).$$
(A.5)

On the other hand, the fact that $\lambda_i = p_i y_i / \text{GDP}$ implies that

$$\frac{d\log y_i}{d\epsilon_j} = -\frac{d\hat{p}_i}{d\epsilon_j} + \frac{1}{\lambda_i}\frac{d\lambda_i}{d\epsilon_j} = \ell_{ij} + \frac{1}{\lambda_i}\frac{d\lambda_i}{d\epsilon_j},$$

where the second equality is a consequence of Equation (A.3). Plugging for $d\lambda_i/d\epsilon_j$ from Equation (A.5) into the above equation leads to Equation (11).

B Proof of Theorem 4

Consider two economies with symmetric circulant input-output matrices **A** and **A** and suppose the latter is more interconnected than the former, that is, there exists a $\gamma \in [0, 1]$ such that

$$\tilde{\mathbf{A}} = \gamma \mathbf{A} + (1 - \gamma)(1 - \alpha)\mathbf{J}_{z}$$

where $\mathbf{J} = (1/n)\mathbf{1}\mathbf{1}'$ is a matrix with all entries equal to 1/n. We first prove statement (b) of the theorem by showing that the above transformation can only decrease the volatility of each industry, i.e., $\operatorname{var}(\log \tilde{y}_i) \leq \operatorname{var}(\log y_i)$ for all *i*. We then use this result to establish statement (a).

Proof of statement (b). Recall from Theorem 1 that the output of industry *i* satisfies $\log y_i = \sum_{i=1}^{n} \ell_{ij} \epsilon_j$. Under our assumption that all microeconomic shocks are i.i.d. with a common variance $\sigma^2 < \infty$, it is immediate that $\operatorname{var}(\log y_i) = \sigma^2 \sum_{j=1}^{n} \ell_{ij}^2$. Therefore, sectoral log outputs are more volatile in the less interconnected economy (that is, $\operatorname{var}(\log \tilde{y}_i) \leq \operatorname{var}(\log y_i)$ for all *i*) if and only if $\sum_{j=1}^{n} \tilde{\ell}_{ij}^2 \leq \sum_{j=1}^{n} \ell_{ij}^2$ for all *i*. On the other hand, the assumption that input-output matrices **A** and **A** are symmetric and circulant implies that $\sum_{j=1}^{n} \tilde{\ell}_{ij}^2 = (1/n) \sum_{i,j=1}^{n} \tilde{\ell}_{ij}^2 = (1/n) \operatorname{trace}(\tilde{\mathbf{L}}'\tilde{\mathbf{L}}) = (1/n) \operatorname{trace}(\tilde{\mathbf{L}}^2)$. Hence, it is sufficient to show that

$$\frac{d}{d\gamma}\operatorname{trace}(\tilde{\mathbf{L}}^2)\Big|_{\gamma=1} \ge 0.$$
(B.1)

To this end, first note that, by definition, $\tilde{\mathbf{L}} = (\mathbf{I} - \tilde{\mathbf{A}})^{-1}$. Therefore, differentiating $\tilde{\mathbf{L}}^2$ with respect to γ leads to

$$d\tilde{\mathbf{L}}^2/d\gamma = \tilde{\mathbf{L}}^2(d\tilde{\mathbf{A}}/d\gamma)\tilde{\mathbf{L}} + \tilde{\mathbf{L}}(d\tilde{\mathbf{A}}/d\gamma)\tilde{\mathbf{L}}^2.$$

On the other hand, $d\tilde{\mathbf{A}}/d\gamma = \mathbf{A} - (1 - \alpha)\mathbf{J}$. Consequently,

$$\frac{d\tilde{\mathbf{L}}^2}{d\gamma}\Big|_{\gamma=1} = \mathbf{L}^2 \mathbf{A} \mathbf{L} + \mathbf{L} \mathbf{A} \mathbf{L}^2 - (1-\alpha)(\mathbf{L}^2 \mathbf{J} \mathbf{L} + \mathbf{L} \mathbf{J} \mathbf{L}^2)$$
$$= 2(\mathbf{L}^3 - \mathbf{L}^2) - 2(1-\alpha)\alpha^{-3} \mathbf{J},$$

where the second equality uses $\mathbf{LA} = \mathbf{AL} = \mathbf{L} - \mathbf{I}$ and the fact that the row and column sums of \mathbf{L} are equal to $1/\alpha$, i.e., $\mathbf{L1} = \mathbf{L'1} = (1/\alpha)\mathbf{1}$. Hence,

$$\frac{d}{d\gamma}\operatorname{trace}(\tilde{\mathbf{L}}^2)\Big|_{\gamma=1} = 2\operatorname{trace}(\mathbf{L}^3) - 2\operatorname{trace}(\mathbf{L}^2) - 2(1-\alpha)/\alpha^3.$$

Note that the trace of a matrix is equal to the sum of its eigenvalues. Furthermore, the fact that $\mathbf{L} = (\mathbf{I} - \mathbf{A})^{-1}$ implies that $\lambda_k(\mathbf{L}) = (1 - \lambda_k(\mathbf{A}))^{-1}$, where $\lambda_k(\mathbf{L})$ and $\lambda_k(\mathbf{A})$ are the *k*-th largest eigenvalues of \mathbf{L} and \mathbf{A} , respectively. Consequently,

$$\frac{d}{d\gamma}\operatorname{trace}(\tilde{\mathbf{L}}^2)\Big|_{\gamma=1} = 2\sum_{k=1}^n \frac{1}{(1-\lambda_k(\mathbf{A}))^3} - 2\sum_{k=1}^n \frac{1}{(1-\lambda_k(\mathbf{A}))^2} - 2(1-\alpha)/\alpha^3 = 2\sum_{k=2}^n \frac{\lambda_k(\mathbf{A})}{(1-\lambda_k(\mathbf{A}))^3}.$$

The second equality above is a consequence of the fact that the row sums of matrix **A** are all equal to $1 - \alpha$, and hence, by the Perron-Frobenius theorem, its largest eigenvalue is given by $\lambda_1(\mathbf{A}) = 1 - \alpha$. Multiplying and dividing the right-hand side of the above equation by n - 1 and using the fact that the function $g(z) = z/(1-z)^3$ is convex over the interval (-1, 1) implies that

$$\frac{d}{d\gamma}\operatorname{trace}(\tilde{\mathbf{L}}^2)\Big|_{\gamma=1} \ge \frac{2\sum_{k=2}^n \lambda_k(\mathbf{A})}{(1 - \frac{1}{n-1}\sum_{k=2}^n \lambda_k(\mathbf{A}))^3}.$$
(B.2)

Next, note that $\sum_{k=2}^{n} \lambda_k(\mathbf{A}) = \operatorname{trace}(\mathbf{A}) - \lambda_1(\mathbf{A}) = na_{ii} - (1 - \alpha) \ge 0$, where we are using the assumption that $a_{ii} \ge 1/n$ for all *i*. This implies that the numerator of the fraction on the right-hand side of (B.2) is nonnegative. Furthermore, the fact that $\lambda_k(\mathbf{A}) \le \lambda_1(\mathbf{A}) = 1 - \alpha$ guarantees that the denominator of the fraction on the right-hand side of (B.2) is strictly positive. Taken together, these two observations establish inequality (B.1).

Proof of statement (a). We now use statement (b) to establish statement (a) of the theorem. Recall from the previous part that the variance-covariance matrix of sectoral log outputs is given by $\sigma^2 \tilde{\mathbf{L}} \tilde{\mathbf{L}}'$. On the other hand, the assumption that the input-output matrix **A** is symmetric and circulant guarantees that all row and column sums of $\tilde{\mathbf{L}}$ are equal to $1/\alpha$. Therefore,

$$\sum_{i,j=1}^{n} \operatorname{cov}(\log \tilde{y}_i, \log \tilde{y}_j) = \mathbf{1}' \tilde{\mathbf{L}} \tilde{\mathbf{L}}' \mathbf{1} = n/\alpha^2.$$

Furthermore, the assumption that the economy's input-output matrix is circulant implies that all industries are equally volatile, that is, $var(\log \tilde{y}_i) = var(\log \tilde{y}_1)$ for all *i*. Hence,

$$\sum_{i \neq j} \operatorname{cov}(\log \tilde{y}_i, \log \tilde{y}_j) = n(1/\alpha^2 - \operatorname{var}(\log \tilde{y}_1)).$$

Hence, the average pairwise correlation between sectoral log outputs is given by

$$\tilde{\rho} = \frac{1}{n(n-1)} \sum_{i \neq j} \operatorname{corr}(\log \tilde{y}_i, \log \tilde{y}_j) = \frac{1}{(n-1)\operatorname{var}(\log \tilde{y}_1)} (1/\alpha^2 - \operatorname{var}(\log \tilde{y}_1)).$$

Identical derivations for the less interconnected economy with input-output matrix A imply that

$$\rho = \frac{1}{(n-1)\operatorname{var}(\log y_1)} (1/\alpha^2 - \operatorname{var}(\log y_1)).$$

Comparing the right-hand sides of the above two equations completes the proof: by statement (b) of the theorem, $var(\log y_1) \ge var(\log \tilde{y}_1)$, which in turn implies that $\rho \le \tilde{\rho}$.